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ABSTRACT 

Network resources are shared as needed by a community of users. Without effective traffic 

controls, networks are vulnerable to possible congestion when the offered traffic exceeds the 

network capacity, leading to serious deterioration of network performance. This chapter gives an 

overview of traffic control methods and their underlying principles. The main preventive 

controls are admission control and access regulation (policing). They seek to avoid congestion by 

limiting the amount of traffic entering the network. Within the network, packets may have 

different requirements for reliable or timely delivery. These requirements are recognized by 

packet scheduling and buffer management algorithms implemented in switches and routers. At 

the transport layer, protocols such as TCP can adapt their traffic rate to the level of congestion. 

Finally, this chapter covers the question of measurement and verification of network 

performance.    

 

INTRODUCTION 

Although an analogy between computer networks and automobile highways is simplistic, 

the view of networks as a type of infrastructure points out the need for traffic control. Highways 

have a limited capacity which can be exceeded when many people want to travel at the same 

time. Vehicles begin to slow down and back up in a congested area. The backup spreads if traffic 

approaches the congested area faster than traffic can leave. Similarly, computer networks are 

designed to handle a certain amount of traffic with an acceptable level of network performance. 

Network performance will deteriorate if the offered traffic exceeds the given network capacity. 
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Packets will suffer long queueing delays at congested nodes and possibly packet loss if buffers 

overflow. 

Traffic management refers to the set of traffic controls within the network that regulate 

traffic flows for the purpose of maintaining the usability of the network during conditions of 

congestion. Traffic management has multiple goals. First, it attempts to distinguish different 

types of traffic and handle each type in the appropriate way. For example, real-time traffic is 

forwarded with minimal delay while best-effort traffic can afford to wait longer for any unused 

bandwidth. Second, traffic management responds to the onset of congestion. TCP is an example 

of a protocol that adapts the rate of TCP sources to avoid serious congestion. Third, traffic 

management seeks to maintain an acceptable level of network performance under heavy traffic 

conditions. The primary means of protection are admission control and access regulation (or 

policing) which limit the rate of traffic entering the network. By restricting the total amount of 

carried traffic, congestion will be avoided, and acceptable network performance will thus be 

sustained at the expense of blocking some amount of ingress traffic.     

 

Quality of service 

Quality of service (QoS) is closely related to network performance, but QoS metrics are 

oriented towards a user’s end-to-end experience (Gozdecki et al., 2003). Network performance is 

measured mainly from the network provider's viewpoint. Network performance metrics are 

defined to provide a meaningful portrait of network behavior to the network provider or network 

manager. Metrics can include end-to-end or hop-by-hop performance, and may be aggregated 

over the entire user population. Examples of network performance metrics may be average end-

to-end packet delay or fraction of packets lost per hop observed over an interval of time. While 
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interesting to the network provider, these metrics do not mean that a particular user will see this 

network performance. Therefore, they are not that meaningful to users concerned with their 

application’s requirements. 

In contrast, QoS is the end-to-end network performance seen from the viewpoint of a 

user’s particular connection. QoS parameters are defined to quantify the performance needed and 

experienced by a user’s application. For example, a real-time application might require QoS 

guarantees such as an end-to-end packet delay of 10 msec and packet loss rate of 10-6. The user 

would be assured that his or her application would see this level of performance. At the same 

time, a different user may require a different QoS from the same network. Ultimately, a certain 

amount of subjectivity is involved. A user will judge the QoS provided by the network according 

to how well his or her application seems to work. 

QoS may not necessarily be quantified in specific terms. “Hard” QoS may refer to 

specific guarantees, whereas “soft” QoS involves specific parameters but no guarantees. An 

example of hard QoS is a guarantee that no more than one percent of packets will experience a 

delay of 100 msec. Hard QoS can be verifiable by measurements of the QoS parameters. Soft 

QoS may specify target QoS parameters but offers no guarantees that the QoS will be met, hence 

soft QoS is not verifiable by measurements. Soft QoS is often defined for one service relative to 

another service. An example is a high priority service that is guaranteed to always have a shorter 

average packet delay than a low priority service, but there are no absolute guarantees for either 

high or low priority service.  

ATM has taken the approach of hard QoS guarantees. Table 1 lists the ATM definitions 

of QoS parameters (ATM Forum, 1999). Although guarantees are offered on all QoS parameters, 

not all guarantees need to be specified explicitly. For example, it is assumed implicitly that the 
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bit error rate in ATM networks will be very low, so the cell error ratio will be very low and 

therefore unnecessary to negotiate explicitly. Likewise, misinserted cells are considered to be 

very rare and negligible under normal operating conditions. The QoS parameters that are 

explicitly negotiated are mainly the cell loss ratio, cell transfer delay, and cell delay variation. 

 
Table 1. ATM definitions of QoS parameters 

 
Aspect Parameter Definition 

Cell error ratio Fraction of cells delivered with bit errors 
Severely errored cell block 
ratio 

Fraction of N-cell blocks delivered with M or 
more errored cells 

Accuracy 

Cell misinsertion rate Rate of appearance of misdirected cells from a 
different connection 

Dependability Cell loss ratio Fraction of cells not delivered 
Cell transfer delay Maximum delay in delivering cells measured 

by p-percentile 
Speed 

Cell delay variation (jitter) Range between maximum and minimum cell 
delays, or deviation of cell delivery times from 
a reference pattern 

 
 

Similar QoS definitions have been standardized for IP networks (Seitz, 2003). In the late 

1990s, the IETF (Internet Engineering Task Force) IP Performance Metrics (IPPM) Working 

Group documented a set of QoS metrics for IP networks including one-way packet delay, 

roundtrip packet delay, and one-way packet loss. More recently, the ITU-T (International 

Telecommunication Union - Telecommunication Standardization Sector) has standardized the set 

of IP performance metrics listed in Table 2 (ITU-T, 1999). 

 
Table 2. QoS metrics for IP networks 

 
Aspect Parameter Definition 

IP packet error ratio Fraction of packets delivered with bit errors Accuracy 
Spurious IP packet rate Rate of appearance of misdirected packets at a 

network egress 
Dependability IP packet loss ratio Fraction of packets not delivered 
Speed IP packet transfer delay Mean or maximum delay in delivering packets 
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 IP packet delay variation 
(jitter) 

Deviation in packet transfer delays from a 
reference packet transfer delay 

 
 
Service level agreements 

Expectations for QoS may be specified in the form of a service level agreement (SLA) 

between users and their network provider or between two network providers (Verma, 2004). An 

SLA formally spells out expectations about the level of service in a way that allows monitoring 

and verification. SLAs often include terms for billing and financial compensation in case the 

received service level falls short of expectations. Hence SLAs are legal contracts that must 

include clearly specified QoS metrics - typically availability, packet delay, jitter, packet loss, and 

throughput (Park, Baek, and Hong 2001). In common practice, SLAs are viewed more as 

insurance for unexpected lapses in network performance than as absolute guarantees due to the 

practical difficulties of measuring and verifying QoS metrics.  

SLAs typically share a few common elements: criteria to be used for measuring service 

levels; a method for reporting outages and service failures; timeframe for the network provider to 

respond to identified failures; a method for escalating network problems; and procedures for 

enforcement and compensation for failure to meet SLA goals. 

SLAs are typically limited to a single provider network. However, routes through the 

Internet can cross multiple networks. SLAs can be negotiated between network providers, but the 

issue becomes how to guarantee the end-to-end QoS to users (Pongpaibool and Kim, 2003). 

 

General principles 

Traffic management is a difficult problem because it fundamentally involves a balance 

between conflicting objectives: statistical sharing versus isolation. At one extreme, statistical 
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sharing of network resources without reservations is desirable to achieve a high efficiency. But 

since demand can exhaust resources, it is difficult (if not impossible) to guarantee QoS without 

reservations. At the other extreme, it is well known that QoS can be guaranteed by reserving 

resources for each traffic flow. Reservations isolate resources for each traffic flow so that flows 

do not have to compete for resources. 

Another general principle is that traffic controls can be exercised simultaneously at 

various levels. At the node level, routers and switches are responsible for packet scheduling and 

selective packet discarding. Ingress nodes can perform access policing. Nodes may be capable of 

explicit congestion notification. At the network level, the network makes admission control 

decisions to accept or block new packet flows. At the higher level, transport or application layer 

protocols can be adaptive to the congestion level in the network.  

Traffic control methods can be classified as preventive or reactive. Reactive methods are 

activated to ameliorate congestion after it is detected. For example, TCP reacts to congestion by 

reducing TCP source rates. A general principle is that prevention of congestion is preferred to 

reacting to congestion. If congestion occurs, packets will be lost, and it takes time to clear the 

queues in congested nodes. Preventive methods such as explicit congestion notification are 

preferred because congestion and packet loss may be avoided.   

 

Overview of methods 

In practice, networks generally depend on a variety of traffic controls employed at 

different points in the networks (El-Gendy, Bose, and Shin, 2003). The main preventive traffic 

control is admission control. Admission control gives the network an opportunity to make a 

decision whether to accept or reject a new traffic flow before the flow begins. Admission control 
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can be quite effective in protecting the network from congestion by blocking new traffic flows at 

the network ingress (Firoiu, Le Boudec, Towsley, and Zhang, 2002). Typically, admission 

control relies on a signaling protocol that allows applications to explicitly request a QoS or 

service class. Information about the new traffic flow (e.g., peak rate, average rate, burstiness) 

must be provided to the network at the same time so that sufficient resources can be allocated. A 

signaling protocol is not absolutely necessary if the required QoS can be inferred implicitly from 

knowledge about the traffic. For example, the telephone network uses admission control. Since 

every telephone call requires the same QoS, the required QoS does not have to be signaled 

explicitly.  

Access or ingress policing is another preventive traffic control that typically accompanies 

admission control. Since admission control decisions are based on information about the 

accepted new traffic, it is important that source traffic conforms to the given parameters because 

excessive traffic could degrade network performance to the point of violating QoS guarantees. 

The most widely used algorithm for access policing is the leaky bucket. The leaky bucket 

algorithm is simple to implement with counters, and allows adjustable tolerance for bursty traffic 

sources. For conforming traffic, the access policing should be invisible and make no difference. 

For excess traffic, three actions are possible: the excess traffic is admitted; admitted but marked 

with lower priority; or discarded immediately.  

Packet scheduling is an essential traffic control because it recognizes that packets have 

different forwarding requirements. Packet scheduling should recognize different service 

priorities and give preferential treatment to packets with more stringent delay requirements. 

Buffer management is a complementary problem to packet scheduling. Whereas packet 

scheduling deals with the order of packets to depart from a buffer, buffer management dictates 
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how incoming packets should fill up limited buffer space. Buffer management should recognize 

different loss priorities and selectively discard packets of lower loss priority. In a way, loss 

priorities may be viewed as priorities related to space, while service priorities are related to time. 

In addition to simple loss priorities, packets may be discarded in coordination with higher layer 

protocols. For example, random early detection (RED) is a random packet discarding strategy 

that takes advantage of the congestion control algorithm in TCP to improve network throughput 

and stability (Floyd and Jacobson, 1993). 

Instead of simply discarding packets during congestion, it is better to avoid congestion 

entirely if possible. Congestion might be avoided by inferring the state of congestion in the 

network by watching for long packet delays and packet losses. This does not require the network 

to provide any congestion information. However, the most effective way to avoid congestion is 

explicit congestion notification by the network. Protocols such as ATM and frame relay allow 

switches to mark packets when congestion appears to be imminent. Traffic sources are given 

enough advance warning to slow down and prevent congestion. This so-called closed loop 

control works only for some adaptable applications that can adjust their transmission rate 

dynamically (in contrast, admission control is open loop control because sources are not 

controlled by feedback after they are accepted). 

 

ADMISSION CONTROL 

Admission control is one of the most effective means of congestion control. The 

objective is to prevent congestion by blocking new packet flows before the flow begins. If a new 

flow is accepted, the network is explicitly or implicitly agreeing to provide the required QoS for 
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the duration of the flow. This agreement is explicit if the admission control is carried out with a 

signaling protocol. 

Many approaches to admission control can be found in the literature (Firoiu et al., 2002). 

As shown in Fig. 1, approaches can be classified according to where the acceptance decision is 

made: hop-by-hop, endpoint or edge router, or centralized bandwidth broker (BB). Hop-by-hop 

admission control follows the traditional approach of telecommunications networks. A signaling 

message requesting resources attempts to find a path through the network. Each router or switch 

along the path has an opportunity to accept and forward the request, or reject and block the 

request. Although this is a natural approach, the complexity required for routers limits the 

scalability to large networks. 

 

 
 

(a) 

 

 
(b) 
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(c) 

Fig. 1. (a) Hop-by-hop admission (b) endpoint admission (c) centralized bandwidth broker. 

 

The second approach leaves the admission decision to the source endpoint (host) or an 

edge (ingress or egress) router (Elek, Karlsson, and Ronngre, 2000). The decision can be based 

on data collected passively (without any extra effort) or actively by special probe packets. This 

approach simplifies the role of the core network, resulting in better scalability. 

The third approach is also aimed at better scalability. Admission into each network 

domain is controlled by a centralized bandwidth broker (Zhang, Duan, Gao, and Hou, 2000). The 

available resources of the domain are monitored by the bandwidth broker, which makes all 

admission decisions and keeps track of accepted traffic flows. The bandwidth broker concept has 

two potential advantages. It keeps the core network stateless for scalability. Also, it can make 

network-wide optimal resource allocation decisions.  

In order to make an acceptance or rejection decision, the network must estimate the 

amount of bandwidth and buffer resources needed for a new traffic flow. The required resources 

are compared with the available resources. The network also estimates the hypothetical impact of 

the new traffic flow on the current network performance. There must be assurance that the new 

flow will not cause the QoS for current traffic flows to fall below acceptable levels.  

Approaches for admission control can be alternatively classified by how the decision is 

made: deterministic, stochastic, or measurement-based (Perros and Elsayed, 1996). Deterministic 
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approaches use worst-case bounds. In contrast, stochastic approaches assume statistical 

characteristics of the traffic for more accurate estimation of required resources. However, the 

accuracy of stochastic approaches depends heavily on the choice of traffic models. Traffic 

modeling is a difficult problem due to the dynamic nature of network traffic. Measurement-based 

approaches attempt to avoid the modeling problem by using measurements of the actual traffic 

instead of assumed traffic models. 

 

Hop-by-Hop Admission Control 

As in traditional telecommunications networks, a signaling message is sent along a path 

to request resources. The signaling message carries information needed for routers and switches 

along the path to make decisions about whether sufficient resources are available. If a router or 

switch has sufficient resources, it forwards the request to the next hop. If insufficient resources 

are available, it drops the request and notifies the source host by a “reject” signaling message.  

RSVP (Resource Reservation Protocol) is a well known signaling protocol for IP 

networks capable of unicast or multicast reservations (Braden, Zhang, Berson, Herzog, and 

Jamin, 1997). In the basic reservation setup, a source sends an RSVP PATH message which is 

forwarded by each router, according to its routing table, until it reaches the destination, as shown 

in Fig. 2. The most important element is a TSpec object that provides information about the 

source traffic characteristics. Traffic characteristics in the TSpec object are specified in token 

bucket parameters: token rate, token bucket size, peak rate, minimum policed unit, and 

maximum packet size.  
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Fig. 2. RSVP messages. 

 

The RSVP RESV message is returned from the destination to the source to request 

resources along the path traversed by the PATH message. In addition to a TSpec object, the 

RESV message can contain a controlled load or guaranteed load flow specification. Controlled 

load and guaranteed services are part of the IETF Integrated Services (IntServ) framework 

(Braden, Clark, and Shenker, 1994). Controlled load service is intended for real-time 

applications that can tolerate a limited amount of packet loss and excessive packet delay. It can 

be viewed as “better than best-effort” and equivalent to QoS seen from an unloaded network. 

The controlled load flow specification in the RESV message consists of the token bucket 

parameters as in the TSpec object. Guaranteed service provides “hard” and measurable QoS 

guarantees in terms of throughput and maximum packet delay. The controlled load flow 

specification in the RESV message consists of token bucket parameters and an RSpec object 

which includes a rate and a delay slack (delay variation) term. 

RSVP suffers from two serious drawbacks: complexity and scalability (El-Gendy, Bose, 

and Shin, 2003). Routers must be programmed to understand the signaling protocol and perform 

packet classification, packet scheduling, and admission control. The scalability problem is 

caused by the need for traditionally stateless routers to keep state information for each flow. 

RSVP uses soft state, meaning that reservation states are automatically deleted if not refreshed 

after some time. However, it is clear that the number of flows in the Internet will only be 
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increasing over time, necessitating more state information to be maintained by RSVP-capable 

routers.  

 

Endpoint/Edge Admission Control 

Hop-by-hop admission control suffers from two drawbacks: the need for a signaling 

protocol, and the need for all routers or switches to keep track of flow reservations. An 

alternative idea is the source host could probe the network to determine if it can accommodate 

the new flow (Elek et al., 2000). For example, the source host (or ingress edge router) could 

inject a stream of probe packets at the same rate of the new flow and measure the packet delay 

and loss rate. This is a direct measurement of whether the new flow can be accommodated or 

not. The probe test may work better if routers along the path can mark the packets with 

congestion information (Gibbens and Key, 2001; Ganesh, Key, Polis, and Srikant, 2006).  

The probing method has been proposed for voice over IP (VoIP) calls (Mase, 2004). It is 

claimed that the probing method over-controls call admission, so the method is modified so that 

call requests failing the probe test can be accepted with some adjustable probability.  

Egress admission control places the decision at the egress edge router (Cetinkaya, 

Kanodia, and Knightly, 2001). The network is viewed as a black box, and the egress router just 

monitors data flows to infer the internal state of the network. The service capacity between 

ingress and egress endpoints is estimated. If the new flow combined with the existing flows can 

be accommodated by the service capacity, the new flow is admitted. The advantage of the 

method is no need for probe packets.  

 

Bandwidth Brokers 
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In Diffserv, the core routers are stateless for scalability, and complex traffic controls are 

pushed to the edge routers. Although ingress or egress routers could take responsibility for 

admission control, another idea is to centralize admission control in a BB entity (Nichols, 

Jacobson, and Zhang, 1999). The BB keeps track of allocated and available resources in a 

Diffserv domain, makes all admission decisions, and configures the packet classifiers and traffic 

conditioners at the edges of the Diffserv domain to regulate incoming traffic. 

The major advantage is scalability because core routers are concerned only with packet 

forwarding. Another advantage is the network-wide view of the BB. This network-wide view 

should enable the BB to make optimal resource allocation decisions (e.g., balance traffic across 

the network). However, there may be a performance issue because the BB keeps all state 

information and makes all decisions. As a Diffserv domain grows larger, the BB could become a 

processing and communications bottleneck. It is also a single point of failure. To alleviate this 

problem, a hierarchy of BBs may be possible.   

It is envisioned that bandwidth brokers in adjacent Diffserv domains could negotiate with 

each other to establish end-to-end services across multiple domains. However, an inter-BB 

protocol does not currently exist. 

 

Deterministic bounds 

The deterministic approach to admission control assumes the worst case traffic scenario 

which is the peak rate for each traffic flow. A new flow is accepted if the sum of the peak rates 

for all flows is less than the physical capacity. It is obvious that traffic flows may be well below 

the peak rates in actuality, leading to considerable underutilization of capacity. However, this 

approach has appealing advantages. First, admission control is a simple decision. Second, the 
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peak rate is always known, so the physical capacity will never be exceeded and QoS can be 

guaranteed with certainty.   

 

Stochastic bounds 

For bursty traffic flows with random time-varying rates, it makes sense to allocate 

bandwidth less than the peak rates and assume some capacity can be saved by statistical 

multiplexing (Firoiu, et al., 2002). When a large number of flows are multiplexed, it is unlikely 

that all flows will be bursting at their peak rates simultaneously. Hence, an amount of bandwidth 

somewhat less than the sum of peak rates is needed.  

The savings from statistical multiplexing is usually estimated from a finite-size queueing 

model. The queue represents the buffer in the switch or router making the admission control 

decision. The input to the queue is a stochastic process represents the random behavior of traffic 

sources. A number of traffic models have been proposed in the literature based on studies of 

historical traffic measurements (Michiel and Laevens, 1997). Common traffic models include the 

Poisson process, interrupted Poisson process, simple on-off model, Markov modulated processes 

(such as the Markov modulated Poisson process), and ARMA (autoregressive moving averages) 

time series (Adas, 1997). Due to the challenges of solving complex queueing systems, another 

popular model is the stochastic fluid buffer, where the input traffic is viewed as Markov 

modulated fluid flow instead of discrete packets. In any case, the delay through the queue and 

probability of buffer overflow are calculated for the hypothetical traffic. If the delay and buffer 

overflow probability meet the desired QoS, then the new traffic flow is accepted. 

A popular alternative approach is to calculate the equivalent capacity for each traffic flow 

(Kelly, 1996). The appeal of equivalent capacity is a simple admission control decision. The 
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equivalent capacity for the total traffic is compared with the available physical capacity. The 

equivalent capacity for a source is derived by imagining the source as input into a finite queue. 

The equivalent capacity is the service rate resulting in the target buffer overflow probability. 

There are different expressions for equivalent capacity, depending on the source traffic 

characteristics. The equivalent capacity for multiple sources is derived similarly, where the 

aggregate traffic from the sources is the input into a finite queue. Generally, the equivalent 

capacity for multiple sources will be less than the sum of their individual equivalent capacities, 

due to the savings from statistical multiplexing.  

 

Measurement-based admission control 

The accuracy of statistical admission control depends on correct assumptions for the 

source traffic models. Measurement-based admission control is motivated by the difficulty of 

choosing a traffic model for a new packet flow based on limited information. A traffic source 

may provide descriptive parameters but they may be inaccurate or uncertain. Measurement-based 

admission control avoids the need to assume a traffic model by characterizing sources by 

statistics measured from the actual traffic instead.  

Several measurement-based methods have been proposed (Shiomoto, Yamanaka, and 

Takahashi, 1999). The various methods all depend on measurements of the actual traffic made 

during a recent time window but differ in their usage of the measurements. For example, the 

measurements can be used to derive a marginal probability distribution for the source rates. The 

marginal probability distribution is then used to estimate the buffer overflow probability for a 

hypothetical finite queue. As a second example, the mean and variance of the source rates are 

measured. The effective capacity of the sources is derived from the mean and variance. As a 
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third example, a frequency analysis of the source rates reveals the low frequency and high 

frequency components. Queueing is considered to accommodate high frequency variations, and 

admission control is based on the low frequency components.  

 

ACCESS CONTROL 

Access control or policing refers to regulation of ingress traffic at the user-network 

interface. There are reasons for regulating traffic at the network edge and not internally within 

the network. At the network boundary, excessive traffic can be blocked before consuming any 

network resources. Moreover, it is natural to verify conformance of the traffic as close to the 

source as possible before the traffic shape is effected by other packet flows. Finally, individual 

packet flows at the network edge are slower than multiplexed flows in the core network. 

 

Traffic contracts  

When an admission control decision is made, that decision is based on traffic descriptors 

and QoS parameters provided by traffic sources. If the network admits a packet flow, it might be 

said that the user and network have agreed upon a traffic contract. Unlike SLAs, traffic contracts 

are a misnomer because they are not legal agreements. A traffic contract is an implicit 

understanding between the network and sources that both sides are cooperating in admission 

control. Sources are obligated to conform to the traffic descriptors that they provided for the 

admission decision. Excessive traffic will consume more network resources and deteriorate the 

QoS seen by all users. In accepting a new flow, the network is obligated to provide and sustain 

the requested QoS.  
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Traffic classification 

Packets must be classified to determine their QoS requirements or which flow they 

belong to (Ji and Carchia, 2001). In the Intserv framework, reservations are made for individual 

flows. Packets belonging to the same flow can be identified by these IP header fields: source IP 

address, destination IP address, source port number, destination port number, and protocol.  

Packet classification is difficult due to at least two reasons. First, routers must process 

terabytes of packets per second (Chao, 2002). Thus, packet classification must be done very 

quickly and efficiently (Yu, Katz, and Lakshman, 2005). Second, there may be an enormous 

number of flows going through a router. Classification of a packet to a particular flow essentially 

involves a table search, but the table could be enormous. Packet classification is an ongoing 

research problem that is central to router design (Van Lunteren and Engbersen, 2003; Wang et 

al., 2004; Baboescu and Varghese, 2005).  

In the Diffserv framework, packets must be classified at the ingress to the Diffserv 

network such that an appropriate Diffserv codepoint (DSCP) can be assigned (Carpenter and 

Nichols, 2002). The DSCP is encoded in the first six bits of the Type of Service (ToS) field in 

the IPv4 packet header. The DSCP identifies the per hop behavior (PHB) to be applied to the 

packet.  

 

Traffic regulation 

The rate of traffic entering the network can be regulated as a means of enforcing the 

traffic contract. Since admission control decisions are based on traffic parameters given for a 

packet flow, it is important that flows do not exceed their stated parameters because excessive 

traffic would deteriorate the network performance seen by all users.  
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The goal of traffic regulation is to differentiate between conforming and non-conforming 

packets (according to the traffic contract). Conforming packets should be allowed immediate 

entrance into the network as if the traffic policer was transparent. Non-conforming packets may 

be discarded immediately or allowed entrance with some kind of packet marking. The former is 

preferred if the network load is heavy, then it would be better to discard the non-conforming 

packets to avoid any wasted use of network resources. The idea behind packet marking is that the 

purpose of the network is to carry packets. If the network load is light, it does no harm to carry 

non-conforming traffic. If congestion is encountered anywhere, the marked packets can be 

discarded first.  

In the Diffserv framework, packets may also be classified into flows which are subject to 

policing and marking according to a traffic conditioning agreement (TCA). The TCA includes 

traffic characteristics (such as token bucket parameters) and performance metrics (delay, 

throughput) as actions required for dropping out of profile packets (Longsong, Tianji, and Lo, 

2000). Out of profile packets are non-conforming packets, and either dropped or marked with a 

lower priority level.  

 

Traffic shaping 

Traffic shaping can be done at the source prior to entrance into the network or within the 

network. Traffic shaping at the source is a means of self regulation in order to ensure 

conformance to the traffic contract. Conformance is desirable to minimize the amount of traffic 

discarded at the network ingress. 

Traffic shaping within the network is not concerned with a traffic contract. The idea is 

that smooth traffic will cause smaller queues and hence incur shorter queueing delays and less 
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delay jitter (Rexford, Bonomi, Greenberg, Wong, 1997). Since traffic shaping is done by 

buffering, some queueing delay is added by the traffic shaper, but then smooth traffic should 

flow more quickly along the rest of the path. Overall, network performance is improved by keep 

traffic smooth (Elwalid and Mitra, 1997). 

 

Leaky bucket algorithm 

The leaky bucket algorithm is widely used for access control. There are different 

versions. The basic version consists of a buffer (bucket) of size B and a leak rate R, as shown in 

Fig. 3(a). Packets are conforming if they can join the buffer without overflowing. The contents of 

the buffer are emptied at the leak rate R. A larger bucket size allows greater variations from the 

rate R. A burst at higher rate can still be conforming as long as the burst is not long enough to 

overflow the bucket. Hence the maximum burst length is directly related to the bucket size.  

One variation is the token bucket. Tokens at some generation rate R can collect in a 

bucket size of B, as shown in Fig. 3(b). A packet is conforming if it can find and consume a 

token waiting in the bucket. Again, a larger bucket allows longer bursts to be conforming. 

 

 
(a) 
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(b) 

Fig. 3. (a) Leaky bucket policer (b) token bucket. 

 

The leaky bucket algorithm can be easily implemented by a counter. Another advantage 

is the simple use of dual leaky buckets in tandem to regulate both average rate and peak rate. For 

example, the first leaky bucket can regulate the peak rate, and the second leaky bucket can 

regulate the average rate.  

 

PACKET SCHEDULING 

Packet scheduling addresses the different needs of buffered packets contending for the 

same link bandwidth (El-Gendy, et al., 2003). Packet scheduling should take into account the 

QoS requirements of each packet flow. A packet flow may require a minimum throughput, 

maximum end-to-end delay, or maximum packet delay jitter.  

A general principle of packet scheduling is that the average waiting time for all packets 

does not change under different schedules. In other words, giving higher priority to transmit one 

packet earlier comes at the expense of making other packets wait longer. Benefits to one packet 

flow penalizes other packets. Hence, fairness is another issue when packet schedules are 

considered (Dua and Bambos, 2005). 
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Priorities 

A simple and intuitive packet schedule gives preferential treatment according to static 

priorities. Each packet belongs to one of priorities levels 1 to N, where priority 1 is always 

transmitted first, priority 2 is transmitted when there is no priority 1 packets, and so on. The 

priority is static in the sense that a packet’s priority never changes during its lifetime.  

The advantage of static priorities is straightforward implementation. Different priority 

packets may be queued in separate buffers, as shown in Fig. 4. The priority buffers may be 

implemented as physically separate buffers or a single physical buffer separated into multiple 

virtual buffers.  

 

 
 

Fig. 4. Priority buffers. 

 

A well-known disadvantage of static priorities is the possibility of starvation of low 

priorities. The high priority packets can consume all of the bandwidth and prevent low priority 

packets from receiving service. A possible solution to the starvation problem is dynamic 

priorities. For example, the priority of a packet can increase with its waiting time. As a packet is 

waiting, it will eventually receive service, ensuring some fairness. However, dynamic priorities 

are much more difficult to implement than simple priorities because the waiting times must be 

tracked for each packet. 
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Round robin 

Round robin is another simple and intuitive scheduling algorithm. Each packet flow is 

queued in a separate buffer, and the head of line 1 is transmitted, then head of line 2, and so on, 

eventually back to line 1, as shown in Fig. 5. Empty queues are skipped over immediately to 

avoid wasting bandwidth.  

 

 
 

Fig. 5. Round robin scheduling. 

 

Round robin is intuitively fair because each packet flow takes equal turns during a round 

or cycle. However, it may not be entirely fair. First, packets may be unequal in size. If the 

packets of one flow are long, that flow will consume more bandwidth compared to flows with 

shorter packets. Second, certain flows may naturally require more bandwidth than other flows 

(e.g., video versus voice). 

A simple modification is weighted round robin. The packet flows are assigned weights 

w1, w2,.., wN. A larger weight means that more packets are transmitted from that buffer in each 

turn. For example, if w1 = 2w2, then twice as many packets are transmitted from queue 1 than 
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queue 2 in each turn. Sophisticated schemes can adapt the weights per flow based on the traffic 

behaviors (Wang, Shen, and Shin, 2001). 

 

Fair queueing 

Fair queueing is closely related to round robin. Recall that a potential cause of unfairness 

in round robin scheduling is unequal packet sizes. A logical modification is round robin on the 

basis of bits instead of packets. Fair queueing might be considered as an approximation to bit-by-

bit round robin. It is obvious that bit-by-bit fair queueing can not be implemented in actuality 

because packets must be transmitted in their entirety, not piecemeal as separate bits.   

In fair queueing, the hypothetical finishing time of each packet under bit-by-bit round 

robin is calculated and associated with that packet (Demers, Keshav, and Shenker, 1989). The 

next packet chosen to transmit is always the packet waiting with the earliest hypothetical 

finishing time.  

Along the same idea, weighted fair queueing (WFQ) is a packet-by-packet approximation 

to bit-by-bit weighted round robin. It is so-called fair in the sense that the i-th packet flow is 

guaranteed a fraction of bandwidth equal to at least wi/(w1 + … + wN).   

As a consequence of the guaranteed bandwidth, it may be expected that if a traffic source 

is rate limited, then the delay through a queueing system with WFQ would be bounded (Parekh 

and Gallager, 1993). Suppose each traffic flow is regulated by a token bucket with bucket size Bi 

and token rate Ri. Furthermore, assume that WFQ is used with relative weights wi = Ri for the 

flows. The maximum delay experienced by the i-th flow through the node will be bounded by Di 

≤ Bi/Ri. The bounded delay is an important advantage of WFQ because it means that admission 

control can guarantee a maximum end-to-end packet delay.  
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Deadline scheduling 

A widely studied class of scheduling algorithms are based on deadlines (Conway, 

Maxwell, and Miller, 2003). When a packet arrives at the buffer, it is assigned a deadline d 

which is the time when it should be transmitted. For example, a real-time packet might have a 

deadline that is a short time after its arrival time a, whereas a nonreal-time packet might have a 

deadline much farther in the future. The finishing time f of a packet is the sum f = a + w + x, 

where w is the waiting time before starting service, and x is its service time (i.e., transmission 

time). If a packet is transmitted by finishing time f, the packet’s lateness is l = f – d. A packet 

with positive lateness has not met its deadline, whereas a packet with negative lateness is 

considered early. Typically, a penalty is associated with lateness but not earliness.  

A number of optimal schedules are known, depending on the criterion to optimize. The 

shortest processing time (SPT) discipline takes packets in order of increasing service time. That 

is, the next packet to transmit is always the packet waiting with the smallest service time. The 

SPT schedule is known to minimize the average waiting time and minimize the average lateness 

(averaged over all packets).  

In certain cases, the most late packet is more important than the average lateness. Another 

well known optimal schedule is the earliest due date (EDD) or earliest deadline first (EDF) 

discipline. The next packet to transmit is always the packet waiting with the earliest deadline. 

The EDD schedule is known to minimize the maximum lateness. Suppose the packet that is most 

late under any schedule has lateness lmax. EDD is optimal in the sense that no other schedule will 

realize a smaller lmax than the EDD schedule.  
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BUFFER MANAGEMENT 

Buffer management deals with how packets are given preferential access to limited buffer 

space. If packets are allowed into a full buffer, then packets already waiting in the buffer must be 

discarded to make space available. Hence buffer management is also the problem of selective 

packet discarding (Labrador and Banerjee, 1999).  

 

Loss priorities 

In theory, packets may be marked with an explicit loss priority. ATM and frame relay are 

examples of protocols that include a bit in the packet header to indicate loss priority. The ATM 

cell header has a cell loss priority (CLP) bit, and cells with CLP=1 are dropped first at congested 

switches. The frame relay header has a discard eligibility (DE) bit. Frames marked with DE=1 

are discarded before DE=0 frames. 

Although the TOS field in the IP packet header has a bit to maximize reliability (or 

presumably minimize the likelihood of dropping), the TOS field has ambiguous interpretations 

and has been preempted by the Diffserv codepoint. Thus, IP does not allow explicit loss 

priorities. However, strategies for discarding IP packets are an active area of research because 

packet loss effects TCP performance. These strategies are usually called active queue 

management (AQM) (Ryu, Rump, and Qiao, 2003). The most important example, random early 

detection (RED), is discussed later.  

 

Pushout schemes 

The simplest packet discarding strategy is tail drop. When a buffer is full, arriving 

packets are dropped. This strategy has a potential “lock out” problem where a subset of flows 
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can monopolize the buffer space and prevent other flows from access. In fact, higher rate flows 

will gain more buffer space at the expense of lower rate flows. Another drawback is that buffer 

congestion can continue for a long time when the traffic is TCP. TCP slows down when a 

dropped packet is detected by a retransmission time-out. A packet at the queue tail was 

transmitted later than a packet at the head of the queue. Therefore, a packet dropped from the tail 

will time-out at a later time than a packet dropped from the head. TCP sources will continue to 

transmit for a longer time before slowing down.  

A third drawback is that simple tail drop does not recognize that packets have different 

loss priorities. If an arriving packet has high loss priority, it should be able to access the buffer 

space by discarding a packet of lower priority already in the buffer. The packet of lower priority 

is said to be pushed out (Roy and Panwar, 2002). There are mostly three push out strategies: 

dropping low priority packets near the head first, near the tail first, or randomly from anywhere 

in the buffer. For TCP traffic, dropping from the head of the queue works better (Lakshman, 

Neidhardt, and Ott, 1996). In general though, optimal pushout schemes are not known (Sharma 

and Viniotis, 1999). 

 

Random early detection 

The simple tail drop strategy causes the undesirable phenomenon of global 

synchronization of TCP flows. TCP sources search for the proper sending rate by essentially 

increasing the rate until a dropped packet is detected by a retransmission time-out. The details of 

the TCP congestion avoidance algorithm are described later. When a buffer overflows, it takes 

some time for TCP sources to detect a packet loss. In the meantime, the buffer continues to 

overflow, and packets will be discarded from multiple TCP flows. Thus, many TCP sources will 
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detect packet loss and slow down at the same time. Even if the TCP sources were initially out of 

phase, they will become synchronized. The synchronization phenomenon causes underutilization 

and large queues. Underutilization occurs when all sources slow down (in “slow start”), then 

large queues are accumulated when all sources simultaneously increase their transmission rates. 

RED eliminates the synchronization phenomenon and thereby achieves better utilization 

and smaller queue (Floyd and Jacobson, 1993). A great advantage is that RED can be 

implemented as a buffer management strategy without any change to the existing TCP protocol. 

Instead of waiting for the buffer to overflow, RED drops a packet randomly with the goal of 

losing packets from multiple TCP flows at different times. Therefore, the TCP flows slow down 

and ramp up at different times. Since they are unsynchronized, their aggregate rate is smoother 

than before. From a queueing theory viewpoint, smooth traffic achieves the best utilization and 

shortest queue. 

RED keeps track of the average queue length, calculated as an exponentially weighted 

moving average of the instantaneous queue length. The average queue length is compared to a 

minimum threshold, Tmin, and a maximum threshold, Tmax. The packet drop probability is 

calculated with the help of an intermediate drop probability q shown in Fig. 6. Below Tmin, no 

packets are dropped because the short queue means no congestion. Above Tmax, all packets are 

discarded because the large queue is a sign of serious congestion. Between Tmin and Tmax, the 

intermediate drop probability q increases linearly to a maximum probability P. The actual drop 

probability pdrop is calculated as 

� 

pdrop =
q

1! q " count
 

where count is the number of undropped packets since the last dropped packet. In this way, RED 

attempts to drop packets in proportion to the rates of connections. 
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Fig. 6. RED probabilities of discarding. 

 

Since its introduction, RED has found wide commercial acceptance. Under certain traffic 

conditions, RED performs effectively if its parameters are properly tuned. However, it can be 

difficult to determine the proper parameters. Moreover, several problems can arise depending on 

the traffic, such as unfairness, lowered throughput, and increased delay. Consequently, numerous 

variations have been proposed, including flow RED (FRED), weighted RED (WRED), stabilized 

RED (SRED) (Ott, Lakshman, and Wong, 1999), BLUE (Feng, Shin, kandlur, and Saha, 2002), 

PURPLE (Pletka, Waldvogel, and Mannal, 2003), adaptive virtual queue (AVQ) (Kunniyur and 

Srikant, 2004), and predictive AQM (PAQM) (Gao, He, and Hou, 2002), just to name a few. 

RED continues to be an active subject of research (Zhu, Wang, Aweya, Ouellette, and Montuno, 

2002; Bohacek, Shah, Arce, and Davis, 2004). 

  

CONGESTION CONTROL 

Congestion control is a very broad term that is sometimes used interchangeably with 

traffic control. Here congestion control refers to actions taken by hosts to prevent serious 

congestion. Congestion control can be classified as reactive or predictive (proactive). Reactive 

congestion control ameliorates congestion after it occurs. Generally, hosts observe the symptoms 
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of congestion (packet loss and long packet delays) and then slow down. Predictive congestion 

control attempts to avoid congestion altogether by slowing down before the onset of congestion. 

Avoidance of congestion is obviously preferable, but predictive congestion control usually 

depends on explicit congestion information provided from the network.  

 

Reactive congestion control 

Reactive congestion control takes action when congestion is detected. A prime example 

of this approach is the congestion avoidance algorithm in TCP. TCP takes responsibility for 

congestion control in the Internet because IP is too simple by design to handle congestion 

control. Strictly speaking, TCP does not actually avoid congestion. TCP pushes the network 

gently to the brink of congestion and then backs off. This is necessary because a TCP source 

does not know the appropriate transmission rate and must search for it. 

A TCP source limits itself by means of a congestion window. The congestion window is 

adjusted dynamically to the level of network congestion by an AIMD (additive increase 

multiplicative decrease) algorithm (Jacobson, 1988). The onset of congestion is detected by a 

retransmission time-out. As shown in Fig. 7, a parameter ssthresh (slow start threshold) is set to 

half of the congestion window when congestion was encountered. The congestion window is 

closed to one TCP segment and the congestion control algorithm goes into slow start. In the slow 

start phase, the congestion window can increase at an exponential rate as long as 

acknowledgements for packets are returned promptly. When the congestion window size reaches 

ssthresh, the congestion control algorithm enters the congestion avoidance algorithm. In this 

phase, the congestion window increases by one segment for every roundtrip time until 

congestion is encountered again. The idea is that linear increase during congestion avoidance is a 
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cautious approach to the previous congestion point. When congestion is encountered, the 

ssthresh parameter is set to half of the congestion window, and the congestion control algorithm 

repeats again.  
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Fig. 7. TCP congestion control algorithm.  

 

Predictive congestion avoidance 

The congestion avoidance algorithm in TCP is forced to probe for the appropriate 

transmission rate by pushing the network to the brink of congestion because the IP network is 

incapable of providing congestion information. A capability for explicit congestion notification 

is preferable as a method of “early warning.” Protocols such as ATM and frame relay include 

explicit forward congestion indication (EFCI) and backward/forward explicit congestion 

notification (BECN/FECN), respectively.  

Explicit congestion notification allows routers and switchers to give early warning to 

sources before congestion occurs. This advance warning can give sufficient time for traffic 

sources to reduce their rates in time to avoid congestion. This is a proactive approach to avoiding 

congestion instead of a reactive approach to ameliorate congestion. It has been shown that 
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explicit congestion notification improves the performance of TCP with active queue 

management (Yan, Gao, and Ozbay, 2005). 

Explicit congestion notification in the forward direction refers to marking packets as they 

pass through a router or switch. Packets in the forward direction are delivered to the destination, 

and the destination must have a separate means of communicating congestion information to the 

source. The overall delay is one roundtrip time. For efficiency, explicit congestion notification in 

the backward direction goes directly to the source. However, it is harder to implement because a 

router or switch must find and mark a packet going in the backward direction. 

The current version of IP does not include a capability for explicit congestion notification 

but an IETF proposal calls for using the last two bits from the TOS field in the IP packet header 

(Ramakrishnan and Floyd, 1999). One bit for ECN capable transport (ECT) would allow hosts to 

signal whether they are capable of making use of ECN. The second bit for congestion 

experienced (CE) would allow routers or switches to signal a state of congestion to hosts. An 

open research issue is how routers should choose packets to mark (Leung and Muppala, 2001). 

 

QOS MONITORING 

Observability is a prerequisite for controllability. Measurements of QoS can verify the 

effectiveness of traffic management and provide evidence to validate SLAs. In addition, QoS 

monitoring can identify network performance problems and help to tune traffic controls (Jiang, 

Tham, and Ko, 2000). 

 

Network layer performance monitoring 
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Since the Internet has not historically supported QoS, there has not been a compelling 

need for sophisticated performance monitoring at the IP layer. By far, most methods and tools at 

the IP layer are based on ping (ICMP echo and echo response messages) or traceroute (which 

exploits the time-to-live field in the IP packet header).  

A few large-scale performance monitoring projects use ping and traceroute to make 

regular measurements between multiple selected points in the Internet (Chen and Hu, 2002). The 

basic idea is that performance measured on these selected routes will reflect the overall 

performance of the entire Internet if the monitoring points are numerous and geographically 

distributed. Repeated pings are an easy way to obtain a sample distribution function of round trip 

time and an estimate of packet loss ratio (reflected by the fraction of unreturned pings). Although 

round trip times measured by ping are important, especially for adaptive protocols such as TCP, 

ping is unable to measure one-way packet delays without additional means for clock 

synchronization among hosts such as GPS. Another drawback to ping is the low priority or 

blocking given to pings by some networks, because pings are invasive and possibly involved in 

some types of security attacks.  

 

Transport/application layer performance monitoring 

Another monitoring method is TCP bulk transfer between selected sites. One site acts as 

the source and another as the sink for TCP bulk transfer. The packets are recorded by tcpdump 

and analyzed for packet delay and loss.  

Measurements at the transport layer is appealing because they are closer to the 

application’s perspective. Moreover, they do not depend on ICMP or traceroute, which are not 

entirely reliable. At the transport layer, the idea is to run a program emulating a TCP session to 
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send test traffic through the Internet. The performance of the TCP connection can be measured in 

terms of delay, loss, and throughput.  

For example, TReno (traceroute Reno) is an emulation of TCP to measure throughput or 

bulk transfer capability. It combines traceroute and an idealized version of the flow control 

algorithm in Reno TCP. Other examples are ttcp (throughput TCP) and netperf. Ttcp is a 

client/server benchmarking program to measure throughput and retransmissions. Netperf is a 

network performance benchmarking program for measuring bulk data transfer and 

request/response performance using TCP or UDP. One host runs netperf and another runs 

netserver. Tests can be a TCP stream performance test, UDP bulk transfer, or TCP 

request/response test. 

Similarly, network performance can be measured at the application layer. For example, 

NetIQ’s commercial Chariot or Qcheck software agents are installed and configured at hosts 

with scripts to emulate various applications and collect application-level performance 

(throughput, delay) measurements. Application layer measurements have the advantage of 

measuring performance that is reflective of what applications are seeing. On the other hand, 

special software is needed at selected sites and it is an active monitoring method that adds traffic 

into the network. 

 

CONCLUSIONS 

 

As seen in this chapter, traffic management is a challenging problem covering an 

impressive breadth and depth. The breadth is due to various traffic controls that should work 

together. Moreover, many details are involved in engineering each control to work effectively.  
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Traffic management continues to be an active area of study, not because solutions are not 

possible but because many solutions are possible. The “optimal” solution continues to be elusive 

because many factors (fairness, effectiveness, efficiency, practicality) usually need to be 

considered, allowing for different opinions of optimality. 

Even as next-generation network provide more bandwidth, traffic management will still 

be an important problem. Next-generation networks will support a greater variety of applications. 

Different applications require different treatment by the network. The intelligence to recognize 

different traffic and their requirements implies the need for sophisticated traffic management.   

 

GLOSSARY 

 

Access policing: regulation of ingress traffic at the user-network interface. 

Active queue management (AQM): intelligent buffer management strategies enabling traffic 

sources to respond to congestion before buffers overflow. 

Admission control: an open loop control method to accept or block traffic flows before flows 

start.  

Differentiated services (Diffserv): an IETF framework supporting QoS classes by means of 

Diffserv code point marking, per hop behaviors, and stateless core routers.  

Explicit congestion notification: a proactive congestion avoidance method involving routers or 

switches conveying congestion information to hosts. 

Integrated services (Intserv): an IETF framework supporting QoS based on RSVP reservations 

per flow. 
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Leaky bucket: an algorithm for policing a specific traffic rate while allowing a limited variation 

around that rate. 

Quality of service (QoS): the end-to-end network performance defined from the perspective of a 

specific user’s connection. 

Random early detection (RED): an active queue management approach for preventing 

synchronization of TCP connections. 

Resource Reservation Protocol (RSVP): an IETF standardized signaling protocol for IP 

networks. 

Service level agreement (SLA): a contract between users and network provider or between two 

network providers specifying expectations about the level of service in a way that allows 

monitoring and verification. 

Signaling protocol: rules for exchanging messages to request reservations of network resources. 

Traffic contract: an implicit agreement between users and the network to meet QoS requirements 

as long as ingress traffic conforms to specified traffic descriptors. 

Traffic shaping: smoothing the traffic rate to improve network performance. 
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