
Systematic design of high-radix Montgomery multipliers
for RSA processors

Atsushi Miyamoto, Naofumi Homma and
Takafumi Aoki

Graduate School of Information Sciences,
Tohoku University, Japan

{miyamoto, homma}@aoki.ecei.tohoku.ac.jp

Akashi Satoh
Research Center

for Information Security,
AIST, Japan

akashi.satoh@aist.go.jp

Abstract— The present paper proposes a systematic design
approach to provide the optimal high-radix Montgomery mul-
tipliers for an RSA processor satisfying user requirements. We
introduces three multiplier-based architectures using different
intermediate-data forms ((i) single form, (ii) semi carry-save
form, and (iii) carry-save form), and combined them with a
wide variety of arithmetic components. Their radices are also
parameterized from 28 to 264. A total of 202 designs for 1,024-
bit RSA processors were obtained for each radix, and were
synthesized using a 90-nm CMOS standard cell library. The
smallest design of 0.9 Kgates with 137.8 ms/RSA to the fastest
design of 1.8 ms/RSA at 74.7 Kgates were then obtained. In
addition, the optimal design to meet the user requirements can
be easily obtained from all the combinations. In addition to
choosing the datapath architecture, the arithmetic component,
and the radix parameters, the proposed systematic approach
can also adopt other process technologies.

I. INTRODUCTION

Modular exponentiation is the most important arithmetic
operation for public-key cryptosystems, such as the RSA
scheme, the ElGamal scheme, and the Diffie-Hellman key
agreement protocol. Modular exponentiation is performed
by repeating modular multiplication and squaring operations
with large operands (1,024∼4,096 bits), and thus opti-
mization of modular multiplication is essential in order to
achieve high-performance public-key cryptosystem designs.
The Montgomery multiplication algorithm [1] is widely used
for practical hardware and software implementations because
of its high-speed capability.

Many computation techniques and hardware architectures
have been proposed for Montgomery multiplication [2]–[8].
Among them, the radix-2 algorithms proposed in [7] are
primarily implemented with long k-bit adders to scan the k-
bit operand bit-by-bit in a straightforward manner. Hardware
architectures have large fan-out signals and large wire delays
for long operands. These drawbacks can be reduced by
systolic array architectures [6][8] with multiple operation
units. However, these architectures are usually tailored for
fixed-precision computations and cannot respond flexibly to
changes in operand size. To deal with variable-length data,
a radix-2 architecture was proposed [3][5] in which a k-bit
operand is divided into mr-bit word blocks, and k-bit addition
is performed by repeating r-bit addition m times. These
radix-2 architectures are quite simple, but have difficulty in
improving the performances of circuit area and efficiency.
A high-radix architecture using a 64-bit × 64-bit multiplier

was proposed in [2] to achieve higher circuit efficiency.
The performance of such a multiplier-based architecture
depends heavily on the datapath structure, and varies with the
structure of the arithmetic components, but previous papers
focused on the designs of their own architectures. These
architectures are optimal for some design parameters such
as size and speed, but the best design point in practical
use varies with the application and the user requirements.
Therefore, in order to provide the design that best satisfies
these requirements, a systematic study from the datapath-
architecture level to the arithmetic-component level is indis-
pensable from a practical standpoint.

The present paper proposes a systematic design of high-
performance high-radix Montgomery multipliers, in which
three types of datapath architectures are combined with a
wide variety of arithmetic components with a parameter-
ized radix. Three datapath architectures that employ three
intermediate data forms ((i) single form, (ii) semi carry-
save form, and (iii) carry-save form) are newly introduced
for architecture-level design. To demonstrate the capability
of the proposed approach, 202 Montgomery multipliers are
exhaustively generated, and 1,024-bit RSA processors with
all of the multipliers are synthesized using a 90-nm CMOS
standard cell library. Their size and speed features are
then displayed graphically and analyzed so that a user can
easily choose the best combination of datapath architecture,
arithmetic unit, and radix.

II. HIGH-RADIX MONTGOMERY MULTIPLIER

A. Montgomery multiplication algorithm

Given two large integers X and Y , the Montgomery
multiplication algorithm performs the following operation:

Z = XY R−1 mod N, (1)

where R = 2k and the modulus N is an integer in the range
2n−1 < N < 2n such that gcd(R,N) = 1. For cryptographic
applications, N is usually a prime number or a product of
primes, and thus satisfies the condition easily. In addition, the
k-bit integers X , Y , R, and N satisfy the following condition:

0 ≤ X ,Y < N < 2k = R. (2)

ALGORITHM 1 shows the original Montgomery multi-
plication algorithm [1], which replaces a modular division-
by-N with a k-bit right shift operation. Equation (1) can

978-1-4244-2658-4/08/$25.00 ©2008 IEEE 416

ALGORITHM 1
MONTGOMERY MULTIPLICATION

Input: X ,Y,N,R(= 2k),
W = −N−1 mod R

Output: Z = XY R−1 mod N
1 : t := XY ·W mod R;
2 : Z := (XY + tN)/R;
3 : if (Z > N) then Z := Z −N;

ALGORITHM 2
HIGH-RADIX MONTGOMERY MULTIPLICATION

Input: X = (xm−1, ...,x1,x0)2r ,
Y = (ym−1, ...,y1,y0)2r ,
N = (nm−1, ...,n1,n0)2r ,
w = −N−1 mod 2r

Output: Z = XY 2−r·m mod N
1 : Z := 0;
2 : for i = 0 to m−1 – Loop1
3 : c := 0;
4 : ti := (z0 + xiy0)w mod 2r;
5 : for j = 0 to m−1 – Loop2
6 : Q := z j + xiy j + tin j + c;
7 : if (j 6= 0) then z j−1 := Q mod 2r;
8 : c := Q/2r;
9 : end for
10: zm−1 := c;
11: end for
12: if (Z > N) then Z := Z −N;

be calculated by one multiplication and a k-bit right shift
operation if the lowest k bits of XY are equal to 0. For this
purpose, a multiple of N is added to XY in this algorithm.
The final result is not changed by the addition because (1)
is in modulo N arithmetic. In addition, the coefficient t is
generated in advance using a pre-computed number W .

Public-key cryptosystems, such as the RSA scheme, use a
very long key-length k of over 1,000 bits. In the high-radix
Montgomery algorithm [2], a k-bit operand is divided into
m blocks (k = r ·m) in order to use a normal r-bit × r-bit
multiplier. The k-bit operand X can be represented by r-bit
words xi (0 ≤ i ≤ m−1) as follows:

X = xm−12r(m−1) + ...+ x12r + x0. (3)

For simplification, we use the following notation.

X = (xm−1, ...,x1,x0)2r . (4)

ALGORITHM 2 shows the high-radix Montgomery mul-
tiplication algorithm in which each operand is divided into
smaller words, and are processed in nested loops (Loop1 for
xi and Loop2 for y j, n j), respectively. The size of temporary
variable Q is 2r bits and its upper r bits and lower r bits are
stored separately in the word z j and the intermediate carry c,
respectively. Finally, the stored value Z = (zm−1, ...,z1,z0)2r

is the output of this algorithm.
In the above algorithm, the most critical operation for

circuit delay and area is the multiply accumulation at Line
6, which consists of two multiplication operations and three
addition operations. In order to improve operation efficiency,
the multiply accumulation is divided into two three-term
operations [9], and each operation is usually performed by
a multiplier in the datapath. As a result, the design of

0 10 20 30 40 50 60

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Output port [digit]

D
e
la

y
 [
n
s
]

PPA (Partial Product Accumulator)
CPA (Carry-Propagation Adder)

Hitachi 0.18µm CMOS Library

Fig. 1. Output arrival profile of conventional array multiplier.

such multiplier is of major importance for the hardware
implementation of the high-radix Montgomery multiplier.

B. Proposed Montgomery multiplication algorithms

In this section, we first discuss the delay profile of the
output signals from a parallel multiplier to design high-Radix
Montgomery multiplication algorithms for high-performance
hardware designs. In the multiplier, a Carry Propagation
Adder (CPA) follows a Partial Product Adder (PPA) to
generate the final product in twos complement form from
carry-save form. (See the following section for more details.)
Fig.1 shows the delay profile of a 32-bit × 32-bit parallel
multiplier, where the horizontal axis denotes the bit position
from LSB to MSB, and the vertical axis shows the output
signal delay time. The triangle and square symbols indicate
the signal delay times for output bits of the PPA and CPA,
respectively. As shown in Fig.1, the long carry-propagation
chain of the CPA causes longer delays for higher bits. In
contrast, the position of the slowest signal for the PPA is
around the middle (32nd) bit, where the maximum number
of operands exist. This delay profile suggests that it would
be possible to improve the performance of the multiplier by
optimizing the output data form to minimize the delay time
corresponding to the word size of the CPA.

Based on the delay profile, we design three types of high-
radix Montgomery multiplication algorithms for hardware
implementations with different intermediate-data forms: (i)
single form (Type-I), (ii) semi carry-save form (Type-II), and
(iii) carry-save form (Type-III). These algorithms are vari-
ations of ALGORITHM 2 using Finely Integrated Operand
Scanning (FIOS) method in [9]. ALGORITHMS 3∼5 show
the proposed algorithms corresponding to the above types,
where the tuple (c,z) indicates c · 2r + z, and v is the carry
bit used in the i-th loop.

ALGORITHM 3 (Type-I) is based on a straightforward
algorithm with a three-term multiply-addition operation such
as z + xy + c. The arithmetic operation Q := z j + xiy j +
tin j +C in ALGORITHM 2 is divided into two steps: a
multiplication step ((c,z) := z j + xiy j +C) and a reduction
step ((c,z) := z j + tin j +C). In order to avoid increasing the
number of variables, which are mapped to register arrays
in hardware, this algorithm does not use a carry-save form
for the intermediate-data. The multiply-addition result is a
2r-bit value, and its upper half is the carry c fed to the

417

ALGORITHM 3 (TYPE-I)

1 : Z := 0; v := 0;
2 : for i = 0 to m−1
4 : (ca,z0) := z0 + xiy0;
5 : ti := z0w mod 2r;
6 : (cb,z0) := z0 + tin j;
7 : for j = 1 to m−1
8 : (ca,z j) := z j + xiy j + ca;
9 : (cb,z j−1) := z j + tin j + cb;
10: end for
11: (v,zm−1) := ca + cb + v;
12: end for
13: if (Z > N) then Z := Z −N;

ALGORITHM 4 (TYPE-II)

1 : Z := 0; v := 0;
2 : for i = 0 to m−1
4 : (cs1a + cs2a + eca,z0) := z0 + xiy0;
5 : ti := z0w mod 2r;
6 : (cs1b + cs2b + ecb,z0) := z0 + tin j;
7 : for j = 1 to m−1
8 : (cs1a + cs2a + eca,z j) := z j + xiy j + cs1a + cs2a + eca;
9 : (cs1b + cs2b + ecb,z j−1) := z j + tin j + cs1b + cs2b + ecb;
10: end for
11: (v,zm−1)

:= cs1a + cs2a + eca + cs1b + cs2b + ecb + v;
12: end for
13: if (Z > N) then Z := Z −N;

ALGORITHM 5 (TYPE-III)

1 : Z := 0; v := 0;
2 : for i = 0 to m−1
3 : (cs1a + cs2a,zs1+ zs2) := z0 + xiy0;
4 : ti := (zs1+ zs2)w mod 2r;
5 : (cs1b + cs2b,zs1+ zs2) := zs1+ zs2+ tin j;
6 : (ec,z0) := zs1+ zs2;
7 : for j = 1 to m−1
8 : (cs1a + cs2a,zs1+ zs2) := z j + xiy j + cs1a + cs2a;
9 : (cs1b + cs2b,zs1+ zs2) := zs1+ zs2+ tin j + cs1b + cs2b + ec;
10: (ec,z j−1) := zs1+ zs2;
11: end for
12: (v,zm−1) := cs1a + cs2a + cs1b + cs2b + ec+ v;
13: end for
14: if (Z > N) then Z := Z −N;

multiply-addition in the next cycle. The lower half is used
as an intermediate sum z.

ALGORITHM 4 (Type-II) uses the carry-save form only
for the carry c, where cs1 and cs2 are the r-bit carry-save
values generated by the PPA operation, and ec is the 1-bit
value from the previous CPA operation. The carry is given
as c = cs1+ cs2+ es.

ALGORITHM 5 (Type-III) uses the carry-save form for
both intermediate sum z and carry c, where cs1 and cs2
are the carries, and zs1 and zs2 are the sums. No CPA
operation is performed during the iteration cycles. Extra CPA
operations are performed at the end of the inner loops at
Lines 6 and 10. Type-II and Type-III algorithms using carry-
save form can improve the operating frequency for hardware
implementation, while they need extra registers to store the
intermediate data in carry-save form.

C. Proposed datapath architectures

Fig.2 shows the proposed datapath architectures corre-
sponding to ALGORITHMS 3∼5 (i.e., Type-I∼III). Each

Z

(c , z) = z + x y + c

X Y

zx y

CaCb

c

r

r r

r+1

z

r

Inv

xi, ti yj, nj zj

x y zc

s1 s2

qr
2r

c

zj-1

(a) Type-I

Z

(cs1 + cs2 + ec , z)

 = z + x y + cs1 + cs2 + ec

X Y

zx y

CaCa

cs1 cs2 ec

cs1 cs2 ec

1rr

r r

r+1

z
r

Inv

xi, ti yj, nj zj

x y zcs1
cs2

ec

zs1 zs2

cs1cs2 ec z

zj-1

(b) Type-II

Z

(cs1 + cs2 , zs1 + zs2)

 = zs1 + zs2 + x y + cs1 + cs2 + ec

X Y

zs1x y

CaCa

cs1 cs2 ec

cs1 cs2

rr

r r

r+1

zs1

Inv

xi, ti yj, nj zj

x y zs1cs1
cs2

ec

zs1 zs2cs1 cs2

zj-1

zs2

r+1

zs2

ec

zs2

(c) Type-III

Fig. 2. Datapath architectures of Montgomery multiplication block.

datapath has an r-bit × r-bit multiply-accumulator called
Arithmetic Core, which consists of three components: a Par-
tial Product Generator (PPG), a Partial Product Accumulator
(PPA) and a Carry Propagation Adder (CPA). The PPG
stage first generates partial products from the multiplicand
x and multiplier y in parallel. The PPA stage then performs
multi-operand addition for all the generated partial products
and other operands (c and z), and produces two outputs
represented in carry-save form. Finally, the carry-save form

418

is converted to the corresponding binary output at CPA.
Type-I architecture has the simple datapath with the Arith-

metic Core, which receives three r-bit inputs (x, y, z) and
an r-bit carry c, and outputs a 2r-bit result. The upper r-
bit value is fed back to the Arithmetic Core as the carry
c in the next cycle, and the lower r-bit value z stored into
a register or a memory outside the core. This architecture
requires the least number of registers and intermediate wires
among the three architectures, and thus is suitable to for
compact implementation. However, the Arithmetic Core has
the longest critical path because of the 2r-bit CPA operation.

Type-II architecture enhances the hardware efficiency de-
fined as a product of the circuit delay and area. The Arith-
metic Core has an r-bit CPA for the lower r-bit output from
the PPA stage, and produces four outputs cs1, cs2, ec and z.
The carry signals cs1 and cs2 in carry-save form generated
by the PPA are fed back to the Arithmetic Core. On the other
hand, the sum signals z1 and z2 from the PPA are fed to the
following CPA and are converted to an r-bit output z and
1-bit carry ec. The size of the r-bit CPA is approximately
half of the 2r-bit CPA in Type-I architecture, and thus the
critical path is also halved. As a result, the entire critical
path is shortened by 25%, while the number of registers is
increased.

Type-III architecture has the fastest datapath without any
carry-propagation in Arithmetic Core. Both the carry and
sum signals by the PPA, that is, cs1, cs2, zs1 and zs2,
are fed back into the core in carry-save form. The CPA is
performed outside the core at the end of m iteration cycles.
The critical path is approximately halved compared with the
Type-I architecture, while the largest number of registers is
required to handle two pairs of carry-save signals.

III. RSA PROCCESOR

The RSA cryptosystem employs modular exponentiation
for encryption and decryption as Z = XE mod N. Basically,
there are two types of efficient exponentiation algorithms:
binary methods and k-ary methods [10]. Among them, we
focus on the left-to-right binary method that scans the bit
pattern of the exponent E from left to right. The method
is widely used in practical applications such as smartcards
and embedded devices, because of its simplicity and low
resource consumption. ALGORITHM 6 shows a left-to-
right binary method with the Montgomery multiplication
algorithm. Here, MontMult indicates the Montgomery mul-
tiplication XY R−1 mod N, and the operations shown in lines
1-2 (W := −N−1 mod R and Y := XR mod N) indicate the
precomputations for Montgomery multiplications, respec-
tively. This algorithm always performs a squaring at line 3,
regardless of the scanned bit value, but the multiply operation
at line 5 is only executed if the scanned bit is 1.

Fig.3 shows a block diagram of our RSA processor that
consists of five components: Multiplication Block, Sequencer
Block, Memory, Data Counter, and Key Shift. Multiplication
Block performs the multiply-addition operations repeatedly
according to the exponent bits. Multiplication Block is imple-
mented as one of the three multipliers in Fig.2. For example,

ALGORITHM 6
MODULAR EXPONENTIATION WITH MontMult

Input: X , N
E = (ek−1, ...,e1,e0)2,

Output: Z = XE mod N
1 : W := −N−1 mod R;
2 : Y := XR mod N;
3 : Z := R mod N;
4 : for i = k−1 downto 0
5 : Z := MontMult (Z, Z, N, W); – squaring
6 : if (ei = 1) then
7 : Z := MontMult (Z, Y , N, W); – multiplication
8 : end if
9 : end for
10: Z := MontMult (Z, 1, N, W);

Memory
Register Files)

Key Shift

Data Counter

Multiplication
Block

RSA operation

(modular exponentiation)

Montgomery multiplication

Inv / pre-processing

Sequencer Block

1

Address

r r r

r

r

r

enable

control

Data Input

Key Input

Fig. 3. RSA processor airchitecture.

the number of clock cycles for Type-I is given as follows:

t1 = km+ k +m+2r +2, (5)
t2 = 2m2 +4m+1, (6)

t3 = t1+(
3
2

k +1) · t2, (7)

where t1, t2, and t3 indicate cycles for the precomputation at
lines 1-2 of ALGORITHM 6, Montgomery multiplication,
and modular exponentiation (RSA operation), respectively.
If the key size is k = 1,024 bits and the data bus size is r
= 32, then the number of partitioned blocks is m = 32. The
Montgomery multiplication requires 2,177 cycles, and the
total number of clock cycles for the modular exponentiation
is approximately 3,400K. The number of cycles for the Type-
II and Type-III architectures increase a few percent over the
Type-I architecture for some extra addition operations.

IV. PERFORMANCE EVALUATION

The systematic design of RSA processors based on the
above-mentioned Montgomery multiplier architectures is de-
scribed in this section. The proposed approach can obtain
a wide variety of Montgomery multipliers combining three
datapath architectures with arithmetic algorithms from radix-
28 to radix-264. Table I shows a set of arithmetic algorithms
handled in the experimental system. For efficient PPA algo-
rithms, we used a (4;2) compressor and (7,3) counter trees in
addition to conventional algorithms based on (3,2) counters.
In addition, we used three parallel-prefix adders (Kogge-
Stone, Brent-Kung, and Han-Carlson adders) for high-speed

419

TABLE I
PPA AND CPA ALGORITHMS

PPA algorithms CPA algorithms
(3:2) counter tree Ripple carry adder

Array Carry look-ahead adder
Wallace tree Ripple-block CLA
Balanced delay tree Block CLA
Overturned-stairs tree Kogge-Stone adder
Dadda tree Brent-Kung adder

(4;2) compressor tree Han-Carlson adder
(7,3) counter tree Conditional sum adder

Fixed-block-size carry-skip adder
Variable-block-size carry-skip adder

designs, a conditional-sum adder for balanced designs, and
two carry-skip adders for compact designs, in addition to
the conventional CPA algorithms such as the ripple carry
and the carry look-ahead adder. In total, we synthesized and
evaluated 202 RSA processors for each radix.

All the RSA processors were designed in the Verilog-HDL
language and were synthesized by Synopsys Design Com-
piler with the STMicroelectronics 90-nm CMOS standard
cell library (1.2-volt version) [11]. The circuit area of the dat-
apath was evaluated based on a two-way NAND equivalent
gate. (Memories and sequencer modules were not included.)
The delay time was under the worst-case conditions.

Fig.4 shows the characteristics of 202 designs using radix-
232, where the horizontal and vertical axes are the delay time
and the gate count, respectively. The dots plotted lower and
further to the left show better performance. As shown in this
figure, the performances of obtained Montgomery multipliers
are heavily dependent on the architecture and arithmetic
components, and Type-I∼-III architectures have significant
advantages in size, balance, and delay, respectively. More
precisely, a Type-I processor with a (7,3) counter tree and
a variable-block-size carry-skip adder achieved the smallest
gate count of 8.5 Kgates. A Type-II processor with a (4;2)
compressor tree and the Brent-Kung adder then achieved the
smallest area-time product of 29.9 ns·Kgates. In contrast, a
Type-III processor with a (7,3) counter tree and a conditional-
sum adder achieved the shortest critical path of 1.6 ns.

Table II shows the performances variation with the radices
from 28 to 264, where Delay, Balance, and Area corre-
spond to the arithmetic components shown in Fig.4, and
the three rows in bold font indicate the best performances
among all the designs in terms of circuit delay, hardware
efficiency, and circuit area. The columns for MM time and
RSA time indicate the computation times of Montgomery
multiplication and RSA operation, respectively. Conventional
designs [2]–[6][8] are also shown at the bottom of Table II.
Our design approach provides a very wide variety from
the smallest area of 0.9 Kgates with the Type-I radix-28

processor to the shortest RSA operating time of 1.8 ms at
520 MHz with the Type-III radix-264 processor. When the
Chinese Remainder Theorem (CRT) technique is applied,
the RSA operating time can be reduced to 0.9 ms. The
highest hardware efficiency of 92.8 ms·Kgates was achieved
by the Type-II radix-216 processor. Thus, the top performance
obtained by the proposed system is higher as compared to the
conventional designs. As shown above, the wide variety of

performance data set obtained from the exhaustive synthesis
can provide the best RSA processor design to the meet
requirements of the target application. In this experiment,
only a cell-based design with a 90-nm CMOS standard cell
library was investigated, but the performance varies greatly
depending on the process technology, the library, and the
synthesis parameter. However, the proposed approach does
not depend on these conditions, and just synthesizes and
depends only on synthesis, and collects the performance
data to adopt in the new environment. Each design layer
of the proposed system can be optimized independently, and
thus the proposed system also allows easy adoption of new
architectures or arithmetic components.

V. CONCLUSION

The present paper proposed a systematic approach to
designing high-radix Montgomery multipliers for RSA pro-
cessors. A number of RSA hardware architectures optimized
for a few design parameters have been proposed, but it is
not feasible to design all architectures independently to find
the best design that meets the performance requirements for
practical use. In contrast, the proposed approach provides the
optimal Montgomery multiplier satisfying the requirements
by combining three new datapath architectures using differ-
ent intermediate-data forms ((i) single form, (ii) semi carry-
save form, and (iii) carry-save form), a wide variety of arith-
metic components, and radices (28 ∼ 264). A wide variety of
1,024-bit RSA processors ranging from 0.9 Kgates@137.8
ms/RSA to the 74.8 Kgates@1.8 ms/RSA in a 90-nm CMOS
standard cell library were obtained by exhaustive synthesis
for all the combinations. Other than these two designs, a
user can freely select the best design to fit their application
from the combinations and can also choose other process
technologies. In addition to the present approach from the
datapath-architecture level to the arithmetic-component level,
the performance of RSA processors can be improved at the
cryptographic algorithm level, for example by the use of
Chinese Remainder Theorem (CRT) and window methods.
The Type-III processor with a 264 radix can perform the RSA
operation in less than 1.0 ms using the CRT. Further research
to merge the algorithm level with the proposed system and
to support other public-key cryptographic algorithms, such
as elliptic curve cryptography, will be conducted.

REFERENCES

[1] P. L. Montgomery, “Modular multiplication without trial division,”
Math. Comp., vol. 44, no. 170, pp. 519–521, 1985.

[2] A. Satoh and K. Takano, “A scalable dual-field elliptic curve crypto-
graphic processor,” IEEE Trans. Comput., vol. 52, no. 4, pp. 449–460,
2003.

[3] A. F. Tenca and C. K. Koc, “A scalable architecture for modular mul-
tiplication based on Montgomery’s algorithm,” IEEE Trans. Comput.,
vol. 52, no. 9, pp. 1215–1221, 2003.

[4] E. Savas, A. F. Tenca, and C. K. Koc, “A scalable and unified multiplier
architecture for finite fields GF(p) and GF(2m),” in Proc. the 2nd
Int. Workshop on Cryptographic Hardware and Embedded Systems
(CHES). Springer-Verlag, 2000, pp. 277–292.

[5] D. Harris, R. Krishnamurthy, S. Mathew, and S. Hsu, “An improved
unified scalable radix-2 Montgomery multiplier,” in Proc. the 17th
IEEE Symp. Computer Arithmetic (ARITH). IEEE Computer Society,
2005, pp. 172–178.

420

1 2 3 4 5 6 7 8 9

8

10

12

14

16

18

20

22

24

26

28

Delay [ns]

A
re

a
 [
K

g
a
te

s
]

DesignWare
Array
Wallace tree
Overturned-stairs tree
Blanced delay tree
(4;2) compressor tree
(7,3) counter tree
Dadda tree

Area
(7,3) counter tree

Variable-block carry skip adder

Balance
(7,3) counter tree

Conditional sum adder

Delay
(4;2) compressor tree

Han-Carlson adder

(a) Type-I

1 2 3 4 5 6 7 8 9

8

10

12

14

16

18

20

22

24

26

28

Delay [ns]

A
re

a
 [

K
g

a
te

s
]

Array
Wallace tree
Overturned-stairs tree
Blanced delay tree
(4;2) compressor tree
(7,3) counter tree
Dadda tree

Area
(7,3) counter tree

Variable-block carry skip adder

Balance
(7,3) counter tree

Conditional sum adder

Delay
(4;2) compressor tree

Han-Carlson adder

(b) Type-II

1 2 3 4 5 6 7 8 9

8

10

12

14

16

18

20

22

24

26

28

Delay [ns]

A
re

a
 [

K
g

a
te

s
]

Array
Wallace tree
Overturned-stairs tree
Blanced delay tree
(4;2) compressor tree
(7,3) counter tree
Dadda tree

Area
(7,3) counter tree

Variable-block carry skip adder

Balance
Dadda tree

Kogge-Stone adder

Delay
(4;2) compressor tree

Brent-Kung adder

(c) Type-III

Fig. 4. Synthesis results classified by PPA algorithms.

TABLE II
PERFORMANCE COMPARISON OF RSA PROCESSORS

Reference Technology Implementation Max. freq. Area 1,024bit 1,024bit RSA time
Type Radix MAC design [MHz] [Kgates] MM time RSA time × Area

This work 90 nm

I

28
Delay 704.2 2.426 47.25 µs 72.77 ms 176.62

CMOS

Area 371.7 0.901 89.52 µs 137.86 ms 124.22
Balance 568.1 1.230 58.57 µs 90.20 ms 110.96

216
Delay 546.4 7.096 15.46 µs 23.87 ms 169.41
Area 203.6 2.523 41.48 µs 64.04 ms 161.63

Balance 429.1 3.717 19.68 µs 30.39 ms 112.98

232
Delay 446.4 23.640 4.87 µs 7.56 ms 178.86
Area 104.9 8.453 20.74 µs 32.19 ms 272.10

Balance 322.5 12.058 6.74 µs 10.47 ms 126.26

264
Delay 364.9 78.447 1.58 µs 2.47 ms 194.27
Area 55.2 30.837 10.44 µs 16.36 ms 504.75

Balance 246.9 38.953 2.33 µs 3.66 ms 142.58

II

28
Delay 751.8 1.755 44.43 µs 68.42 ms 120.09
Area 581.3 1.054 57.46 µs 88.49 ms 93.32

Balance 657.8 1.256 50.78 µs 78.20 ms 98.26

216
Delay 549.4 5.092 15.49 µs 23.91 ms 121.81
Area 337.8 2.689 25.19 µs 38.90 ms 104.61

Balance 505.0 3.568 16.85 µs 26.02 ms 92.84

232
Delay 462.9 19.083 4.77 µs 7.40 ms 141.25
Area 190.8 8.777 11.57 µs 17.95 ms 157.62

Balance 373.1 11.164 5.92 µs 9.18 ms 102.53

264
Delay 398.4 68.690 1.48 µs 2.33 ms 160.06
Area 103.5 31.420 5.72 µs 8.96 ms 281.80

Balance 283.2 37.207 2.09 µs 3.27 ms 121.93

III

28
Delay 900.9 2.317 37.22 µs 57.32 ms 132.84
Area 735.2 1.491 45.61 µs 70.23 ms 104.77

Balance 961.5 2.106 34.87 µs 53.71 ms 113.15

216
Delay 729.9 7.377 11.75 µs 18.14 ms 133.84
Area 390.6 3.103 21.95 µs 33.90 ms 105.22

Balance 775.1 6.128 11.06 µs 17.08 ms 104.69

232
Delay 617.2 22.106 3.63 µs 5.63 ms 124.54
Area 212.3 9.561 10.55 µs 16.37 ms 156.60

Balance 578.0 16.628 3.87 µs 6.01 ms 100.04

264
Delay 520.8 74.765 1.17 µs 1.83 ms 137.03
Area 107.6 32.963 5.66 µs 8.86 ms 292.33

Balance 512.8 73.199 1.18 µs 1.86 ms 136.26

[2] 0.13 µm CMOS Radix 264, 64-bit multiplier 137.7 96.224 4.57 µs - -
[3] 0.5 µm CMOS Radix 2, 40PEs x 8bit 80 28 43 µs 88.2 ms 2469.6
[4] 1.2 µm CMOS Radix 2, 7PEs x 32bit 80 - 61 µs - -
[5] Xilinx Virtex Pro Radix 2, 64PEs x 16bit 144 5598 LUTs - 16 ms -
[6] Xilinx XC40150XV Radix 2, Systolic array 52 4865 CLBs - 40.5 ms -
[8] Xilinx XC40250XV Radix 24, Systolic array 45 6633 CLBs - 11.95 ms -

[6] T. Blum and C. Paar, “Montgomery modular exponentiation on
reconfigurable hardware,” in Proc. the 14th IEEE Symp. Computer
Arithmetic (ARITH). IEEE Computer Society, 1999, pp. 70–78.

[7] A. Daly and W. Marnane, “Efficient architectures for implementing
Montgomery modular multiplication and RSA modular exponentiation
on reconfigurable logic,”in Proc. the 2002 ACM/SIGDA 10th Int. Symp.
Field-Programmable Gate Arrays. ACM Press, 2002, pp.40–49.

[8] T. Blum and C. Paar, “High-radix montgomery modular exponentiation
on reconfigurable hardware,” IEEE Trans. Comput., vol. 50, no. 7, pp.

759–764, 2001.
[9] C. K. Koc, T. Acar, and B. S. Kaliski, “Analyzing and comparing

Montgomery multiplication algorithms,” IEEE Micro, vol. 16, no. 3,
pp. 26–33, 1996.

[10] J. A. Menezes, C. P. Oorschot, and A. S. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1997.

[11] Circuits Multi-Projets (CMP), CMOS 90nm (CMOS090) from STMi-
croelectronics, http://cmp.imag.fr/products/ic/?p=STCMOS090.

421

