
Anycast in Locality-Aware Peer-to-Peer Overlay

Networks

Rongmei Zhang and Y. Charlie Hu

Purdue University, West Lafayette IN 47907, USA
{rongmei, ychu}@purdue.edu

Abstract. This paper advocates implementing anycast in peer-to-peer
(p2p) overlay networks. We argue that anycast in p2p overlays (exem-
plified by Pastry, Tapestry, Chord, CAN) combines the advantages of
IP anycast and existing application-layer anycast services. We show that
anycast can leverage the locality-awareness embedded in existing p2p
overlays. The locality-awareness of the p2p routing substrates can be
extended to support anycast and anycast is achieved as the result of
the enhanced locality-aware routing. We have implemented anycast in
Pastry, and experiments confirm that with high probability, a message
addressed to an anycast group is routed to the closest node in the group
according to the proximity metric. We also evaluate the performance
of anycast using a realistic failure trace and the results show that our
implementation of anycast is resilient to node failures.

1 Introduction

Anycast for IP was first introduced in RFC 1546 [1]. A message addressed to
an anycast address is routed by the network to at least one of the servers that
accept messages for that anycast address (see Fig. 1). IP anycast can provide au-
tomatic service discovery in the Internet. By assigning the same anycast address
to replicated FTP servers, users can download from the closest server without
manually choosing from a list of mirrors. IP anycast can also support host auto-
configuration by assigning an anycast address to the DNS service; after moving
to a new network, a host can continue to contact the DNS anycast address
instead of being re-configured with the new local DNS server.

Application-layer anycast has also been proposed [2–4]. While IP anycast
relies on network routers to find the closest receiver, application-layer anycast
involves anycast address resolvers to obtain application specific measurements.

The drawbacks of both IP anycast and application-layer anycast have been
well known. Anycast does not comply with the hierarchy of the Internet and
thus IP anycast is difficult to scale. In [5], Katabi and Wroclawski show that
it is possible to provide scalable global IP anycast service. However, IP anycast
needs support from network routers and its wide usage relies on wide deployment
of supporting routers. Application-layer anycast requires the support of Internet
distance services and scalable network measurement is still under continuous
research efforts.

2 Rongmei Zhang and Y. Charlie Hu

Receiver Y

Sender A Sender B

Receiver X

Fig. 1. Illustration of anycast. Sender A and sender B are sending to the same anycast
group and their messages are routed to the closest group members receiver X and
receiver Y respectively.

In the last few years peer-to-peer systems have gained popularity, from the
pioneering Napster [6], Gnutella [7], and FreeNet [8] to the second-generation sys-
tems such as CAN [9], Chord [10], Pastry [11], and Tapestry [12]. These second-
generation systems all build self-organizing and decentralized overlay networks.
Unicast in these systems has been extensively studied. The unicast routing al-
gorithms are highly scalable and efficient; routing is typically finished within a
small number of overlay hops. Multicast on top of these p2p overlay have also
been studied [13–16]. This paper advocates integrating anycast into p2p overlay
networks to leverage their inherent scalability and efficiency.

Implementing anycast in p2p overlays has several advantages. First, each
node in the p2p network volunteers as a router and maintains a routing table.
Thus implementing anycast in p2p networks has the advantage of easy access
to the “routers” while IP routers are more difficult to access and manipulate.
Second, p2p overlay networks employ a flat address space by hiding the hier-
archical structure and other details of the underlying Internet, which simplifies
the implementations. Third, p2p overlays are highly scalable from their decen-
tralized organization. Routing in a p2p overlay is usually completed within logN
hops, and by taking into account network proximity during p2p routing (called
locality-aware routing), very low routing stretch and network stress are incurred.
Therefore p2p overlays are deployable in large networks. Fourth, as in previous
application-level anycast systems, p2p overlays can support multiple proximity
metrics for anycast such as routing delay or network bandwidth.

A major issue in implementing anycast is how to route to the closest group
member in an anycast group. We argue that a locality-aware p2p overlay provides
an ideal environment for implementing anycast. The key observation is that
locality-aware p2p overlays exploit locality in the underlying physical network
in performing routing in the overlays [17, 18], and this “locality-awareness” can
be naturally exploited in implementing anycast, which by definition routes each
message to the closest node among all candidate nodes.

The rest of the paper is organized as follows. Section 2 gives an overview of
one of the locality-aware structured p2p overlays, Pastry. Section 3 describes how
to integrate anycast into Pastry. Section 4 presents simulation results showing the
effectiveness of anycast in finding the closest group member. Section 5 discusses
related work and Section 6 concludes the paper.

Anycast in Locality-Aware Peer-to-Peer Overlay Networks 3

2 Background

In this section, we give a slightly detailed description of Pastry [11, 19], since we
propose to support anycast by extending Pastry’s unicast substrate. Pastry is a
scalable, fault-tolerant, peer-to-peer substrate. Each Pastry node has a unique,
uniformly randomly assigned nodeId (node identifier) in a circular 128-bit iden-
tifier space. Given a 128-bit key, Pastry routes the associated message towards
the live node whose nodeId is numerically closest to the key.

Routing state For the purpose of routing, nodeIds and keys are thought of as
a sequence of digits in base 2b. A node’s routing table is organized into 128/b
rows and 2b columns. The 2b entries in row n of the routing table contain the IP
addresses of nodes whose nodeIds share the first n digits with the present node’s
nodeId; the (n + 1)th nodeId digit of the node in column m of row n equals m.
A routing table entry is left empty if no node with the appropriate nodeId prefix
is known.

Each node also maintains a leaf set. The leaf set is the set of l nodes with
nodeIds that are numerically closest to the present node’s nodeId, with l/2 larger
and l/2 smaller nodeIds than the current node’s nodeId. The leaf set ensures
reliable message delivery and is used to store replicas of application objects.

Routing At each routing step, a node seeks to forward the message to a node
whose nodeId shares with the key a prefix that is at least one digit (or b bits)
longer than the current node’s shared prefix. If no such node can be found in the
routing table, the message is forwarded to a node whose nodeId shares a prefix
with the key as long as the current node, but is numerically closer to the key
than the present node’s nodeId.

Node joining A new node with nodeId X joins the network by asking an
existing, nearby Pastry node A to route a join message using X as the key. The
message is routed to the existing node Z with the nodeId numerically closest
to X. Node X then obtains the leaf set from Z and appropriate routing table
entries from nodes encountered along the path from A to Z. After initializing its
state, node X notifies other nodes that need to know of its arrival and thereby
updates their routing states accordingly.

Routing table maintenance To prevent the deterioration of the locality of
routing table entries when the underlying network changes over time, Pastry
employs a routing table maintenance mechanism. Periodically, each node selects a
random entry from each row of its routing table, and requests from the associated
node a copy of that node’s corresponding routing table row. Each entry from
the returned routing table row is then compared to the corresponding entry in
the local routing table row. If they differ, the closer node is installed based on
the proximity metric.

When a routing table entry is replaced during the maintenance, it can be
stored in the routing table as a backup for the primary node. When the primary

4 Rongmei Zhang and Y. Charlie Hu

node fails, the closest live backup node is used. Storing backup nodes effectively
extends the routing table to three-dimensional [19]. In this paper, the routing
table entry size is set to 10.

2.1 Locality-aware routing

Through its locality-aware node join process and routing table maintenance
mechanism, Pastry maintains a proximity-aware overlay by minimizing the dis-
tance, according to a proximity metric such as network delay, to each of the
nodes that appear in a node’s routing table. More precisely, Pastry ensures the
following invariant for each node’s routing table:
Proximity invariant: Each entry in a node X’s routing table refers to a node

that is near X, according to the proximity metric, among all the live Pastry

nodes with the appropriate nodeId prefix.

Because of the above proximity invariant and prefix-based routing, Pastry
routing exhibits low delay stretch – the total delay experienced by Pastry routing
relative to the delay between the source and destination via the underlying IP
routing is usually below two [11, 19].

3 Anycast in locality-aware p2p overlays

In this section, we discuss how to implement anycast in structured p2p overlays.
We use Pastry [11] as a concrete example in our description. In principle, anycast
can be implemented in any other structured p2p substrate that supports locality-
aware routing [18], such as CAN [9], Chord [10], or Tapestry [12].

3.1 Overview

Our design of anycast-enabled Pastry extends the original Pastry in two ma-
jor ways: (1) An (anycast) nodeId can correspond to multiple physical nodes
(anycast group members). The anycast group members are required to maintain
consistent leaf sets. (2) Leaf sets are maintained based on locality and may be
two-dimensional by configuration. As a result, each anycast entry in the leaf set
points to nodes close to the local node in the proximity space.

The above extensions effectively leverage Pastry’s locality-aware routing to
support anycast. In Pastry routing, each overlay hop is either taken from the leaf
set or the routing table. Since both are maintained based on the proximity metric
in anycast-enabled Pastry, each hop is always close to the current node. As a
result, anycast-enabled Pastry always routes a message destined to an anycast
group to an anycast group member that is near the source.

3.2 Anycast nodeIds

In structured p2p overlays, nodeIds are identifiers of nodes in the overlay network
and are assumed to be unique. Furthermore, the mapping between nodeIds and

Anycast in Locality-Aware Peer-to-Peer Overlay Networks 5

...... Y
0L/2 0 L/2

......

X

Node Y updates its own leaf set

New node X broadcasts
itself to all the nodes in
its leaf set (e.g. node Y)

(a) Case 1: Node Y has seen the nodeId of
node X before and it simply updates its
own leaf set according to the proximity
metric.

...... Y
0L/2 0 L/2

......

X New node X broadcasts
itself to all the nodes in
its leaf set (e.g. node Y)

Node Y updates its own leaf set
and notifies all the other nodes
in it anycast group about node X

(b) Case 2: Node Y is seeing the nodeId
of node X for the first time and updates
its own leaf set. If node Y is an anycast
node, it also informs all the other nodes
in the same anycast group of the arrival
of node X.

Fig. 2. The leaf set update process during node join.

IP addresses is assumed to be one-to-one. To incorporate anycast, the above
assumption is extended to allow multiple nodes to share the same anycast nodeId.
These nodes form an anycast group.

3.3 Node joining

In anycast-enabled Pastry, the routing of a join message and the initialization
of the new node’s routing state is the same as in the original Pastry. However,
the leaf set update process after the node joining is distinctive in two aspects,
as shown in Fig. 2.

Locality-aware leaf set update As in the original Pastry, at the end of the
join process, the joining node broadcasts its arrival to the nodes in the inherited
leaf set so that those nodes can update their leaf sets. In anycast-enabled Pastry,
this update takes locality into account. For example, in Fig. 2(a) as the new node
X notifies node Y in its inherited leaf set, if node X does not represent a new
nodeId but is closer in the proximity space to node Y than the corresponding
entry in node Y ’s current leaf set, node Y replaces that old entry with node X.
The replaced node is kept as a backup in case failures should happen.

Maintaining leaf set consistency When anycast is incorporated into Pastry,
there are multiple nodes in the overlay network corresponding to an anycast
nodeId. By definition, the leaf sets of these nodes should contain the same set
of nodeIds. Leaf set consistency is a necessary condition for the correct routing
behavior of a Pastry overlay network; it guarantees that a message is always
routed to the node whose nodeId is numerically closest to the message key.

Leaf set inconsistency can potentially occur at the end of a node join process
when the newly joined node X announces its existence to an anycast node Y
in its inherited leaf set and node Y sees the nodeId of X for the first time, as
shown in Fig. 2(b). If node Y does not notify other nodes in the same anycast

6 Rongmei Zhang and Y. Charlie Hu

group, those nodes will not be aware of the existence of the new nodeId of node
X. To avoid this inconsistency, upon receiving from node X, node Y informs all
the other anycast group members about node X, using a group communication
mechanism.

Anycast group communication We use multicast to support group com-
munication within each anycast group. Any prefix-based p2p multicast proto-
col [13–15] can be used. The multicast address (multicast nodeId) of an anycast
group is obtained by a deterministic mapping from the anycast nodeId, for ex-
ample, by adding 2127 to the anycast nodeId (modulo 2128). An update message
is propagated from any node to all the other nodes by traversing the multicast
tree.

3.4 Locality-aware routing in anycast-enabled Pastry

Anycast-enabled Pastry inherits locality in routing tables from the original Pas-
try. In addition, it also extends locality to leaf sets.
Extended proximity invariant: Each entry in a node X’s routing table refers

to a node that is near X, according to the proximity metric, among all the live

Pastry nodes with the appropriate nodeId prefix. Each entry in a node X’s leaf

set refers to a node that is near X, according to the proximity metric, among all

the live Pastry nodes that share the same nodeId.

When a new node X joins the network, it will be routed to a node Z with the
numerically closest nodeId. If node Z belongs to an anycast group (e.g., when
node X and Z are from the same anycast group), then node Z is also among the
closest to node X in the proximity space among all the existing anycast group
members. Assuming the triangle inequality holds in the proximity space, if the
nodes in node Z’s leaf set are close to node Z, they are also close to node X
after node X inherits them as its own leaf set. On the other hand, if node Z
has a unique nodeId, the anycast nodes in its inherited leaf set may not be close
to node X. In this case, the locality of the inherited leaf sets will be improved
over time by the leaf set update procedures including leaf set maintenance (see
Section 3.5).

At the end of the join process, nodes from node X’s inherited leaf set are
notified of its arrival. These nodes are close to node X in the proximity space
and may update their own leaf sets based on proximity comparison (Section 3.3).
On the other hand, those nodes whose nodeIds fall inside the range of but are
not included in node X’s leaf set are likely to be distant in the proximity space.
Therefore they are not notified of the new node X since they are unlikely to
benefit from the update. The exception to this is that when node X represents
a new nodeId in the p2p network, all anycast members of each anycast node in
the inherited leaf set will be notified (Section 3.3).

In summary, as a result of the node join protocol and the leaf set updating
procedures, the proximity invariant of Pastry routing is automatically extended
to include the leaf set of each node when anycast is integrated into the overlay
network. Since the locality in routing tables are initialized and maintained as in

Anycast in Locality-Aware Peer-to-Peer Overlay Networks 7

the original Pastry, an anycast nodeId in the routing table also points to a close
node in the corresponding anycast group according to the proximity metric.

3.5 Handling node failures

Node failures in routing tables The anycast-enabled Pastry uses the same
reactive procedure as in the original Pastry to lazily repair failed entries in the
routing table. The routing algorithm chooses an alternative node to forward
the message if the best choice from the routing table is found to have failed. If
the down stream node has a routing table entry that matches the next digit of
the message key, it automatically informs the upstream node of that entry. In
addition, as in the original Pastry, the periodic routing table maintenance also
repairs failed entries.

Node failures in leaf sets Anycast-enabled Pastry uses a mechanism called
leaf set maintenance to repair failed leaf set entries: each live leaf set entry is
asked to return its own leaf set and the returned leaf set is merged with the local
leaf set. In addition to repairing failed entries, the local leaf set is also updated
based on the proximity metric: if both the local entry and the returned entry are
alive, the closer one in the proximity space is installed. Similar to routing table
maintenance, those nodes that fail in the proximity comparison can be stored in
the leaf set as backups to the primary node 1. Storing backup nodes effectively
extends the leaf set to two-dimensional. In this paper, the leaf set entry size is
set to 10.

The backups can be used to help routing as well as leaf set maintenance.
When the primary node fails, the closest live backup node can be used for routing
or requesting leaf set during leaf set maintenance. The above leaf set maintenance
can also be invoked periodically to prevent locality deterioration in leaf sets when
the network is dynamic. Therefore, the impacts of leaf set maintenance are two
fold: first, it effectively recovers leaf sets from node failures; second, it also helps
to maintain the locality of leaf sets.

Node failures in multicast trees Node failures in multicast trees used for
maintaining consistency among leaf sets of anycast group members are handled
by the corresponding multicast protocol. For example, when the Scribe [13] mul-
ticast protocol is used, each node probes its parent periodically and re-joins the
multicast tree if the current parent is found to have failed. The prefix-based
routing guarantees that a valid, i.e., loop free, tree is always formed.

4 Evaluation

We have implemented anycast in FreePastry [20], following the descriptions in
the previous section. This section presents the simulation results using a realistic
network topology model and a node failure trace.

1 Backup nodes are also produced during the leaf set update after a new node joins
the p2p network (Section 3.3)

8 Rongmei Zhang and Y. Charlie Hu

4.1 Experiment setup

The experiments are performed on a network with 1050 routers (50 in transit
domains and 1000 in stub domains). The router network is generated by GT-
ITM using the transit-stub model [21]. End nodes are assigned randomly to the
1000 stub routers with uniform probability. The routing policy weights generated
by the GT-ITM generator are used to calculate the shortest path between any
two nodes.

The p2p network is formed by 32000 end nodes with unique nodeIds and
an additional number of anycast nodes, each belonging to an anycast group.
The anycast groups are modeled by the Zipf distribution: Sub(r) = bN(r +
1)−1.25 + 0.5c, where r is the group rank and Sub(r) stands for the group size.
The group rank ranges from 0 to 15 in the simulations. The largest group has 256
members and the smallest has 8. For each group rank, 12 groups with distinct
anycast nodeIds are created, and there are 192 anycast groups in total. Group
members are randomly selected with uniform probability from the end nodes in
the underlying physical network. Overall, there are a total of 7992 anycast nodes
in the simulation.

To evaluate the performance of anycast in the presence of failure and recov-
ery of anycast nodes in the p2p network, we use a trace of node arrivals and
departures from a study measuring the availability of desktop computers in a
corporate network [22]. The original trace contains the liveness states of 65000
nodes over a period of 840 hours. We use 7792 of the nodes during a period of
60 hours. There are an average about 6538 live anycast nodes in the entire p2p
network at each hour in the simulation. We assume that nodes fail silently and
the failed node is not discovered by another node until that node tries to route
through it a message, either a data packet, or a control message as part of the
maintenance procedures. We also assume that an anycast node always comes
back with the same anycast nodeId.

At each hour in the simulations, 256 messages are sent from random sources
among the 32000 non-anycast nodes to each of the 192 anycast groups. We
measure the success rate of anycast routing and the routing performance of
anycast, such as the relative delay penalty and the number of routing hops.
The success rate for each message addressed to an anycast group is defined as
the percentage rank, according to the proximity to the message source node, of
the actual receiving member out of all the members in that anycast group. For
example, the closest and second closest group members to the source node out
of 5 group members have a rank of 100% and 80%, respectively. The relative

delay penalty (RDP) is defined as the ratio between the distance traversed in
the overlay network and the distance traversed if it were routed directly by the
underlying IP network. If the message is forwarded to a node that has failed in
the simulation, the round trip delay to the failed node is added to the total delay
experienced by the message to account for the effects of node failure.

In our implementation, Scribe [13] is used to implement anycast group com-
munication. Multicast tree maintenance are invoked at each hour to repair mul-
ticast trees for anycast groups. Failures in leaf sets are repaired on demand by

Anycast in Locality-Aware Peer-to-Peer Overlay Networks 9

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 2 4 6 8 10 12 14

su
cc

es
s

ra
te

anycast group rank

f = 1
f = 4

f = 16

Fig. 3. Success rate of anycast for groups
of varying sizes.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 10 20 30 40 50

su
cc

es
s

ra
te

hour

f = 1
f = 4

f = 16

Fig. 4. Success rate of anycast for groups
of size 256.

triggering leaf set maintenance. Routing table maintenance is invoked periodi-
cally at varying intervals (every 1, 4, and 16 hours, as represented by the symbol
f in the figures shown below) to study the correlation between the success rate
of anycast and the locality of the p2p network. The nodeId base of Pastry (b) is
configured to 2 and the size of the leaf set (l) is set to 16.

4.2 Success rate

Fig. 3 shows the average success rate of anycast for groups of varying sizes (group
ranks). It shows the more frequent the routing table maintenance, the higher
the success rate. This confirms that the locality of anycast is improved when the
locality of routing table entries is improved by routing table maintenance. It also
shows that the success rate decreases as the anycast group becomes smaller. This
is because the smaller the anycast group, the larger the gap between adjacent
ranks of anycast group members.

Fig. 4 shows the distribution of average success rate of anycast routing over
the 60 hours of simulation time for groups of 256 nodes (group rank 0). For
a fixed maintenance frequency, the success rate improves in the beginning of
the simulation and then converges to a steady value. This suggests that the
initial locality of the p2p overlay is improved by the maintenance procedures
(Section 3.4).

Fig. 5 and Fig. 6 show the cumulative distribution of the success rate of
anycast routing for each message and of the average success rate for messages
destined to each anycast group, respectively. Under any routing table mainte-
nance frequency, about 80% of all messages have a success rate of about 90%.
The average success rates for almost all the anycast groups are above 80%.

The above simulation results suggest that the performance of anycast rout-
ing is improved as the locality of the Pastry routing is improved via periodical
routing table maintenance. In principle, periodically leaf set maintenance should
have similar impacts. However, due to the extremely sparse distribution (less
than 1%) of anycast nodeIds within the entire Pastry nodeId space in our simu-
lations, periodical leaf set maintenance does not affect the results as noticeably
as routing table maintenance.

10 Rongmei Zhang and Y. Charlie Hu

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pe
rc

en
ta

ge
 o

f m
es

sa
ge

s

success rate

f = 1
f = 4

f = 16

Fig. 5. Cumulative distribution of the
success rate of anycast for all messages.

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pe
rc

en
ta

ge
 o

f g
ro

up
s

success rate

f = 1
f = 4

f = 16

Fig. 6. Cumulative distribution of the av-
erage success rate of anycast for each any-
cast group.

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14

re
la

tiv
e

de
la

y
pe

na
lty

anycast group rank

f = 1
f = 4

f = 16

Fig. 7. Relative delay penalty of anycast
for groups of varying sizes.

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12 14

nu
m

be
r

of
 h

op
s

anycast group rank

f = 1
f = 4

f = 16

Fig. 8. Number of routing hops of anycast
for groups of varying sizes.

Note that our implementation does not always route to the closest node in
the proximity space with the appropriate anycast nodeId. This can be explained
by the fact that the locality-aware mechanism in Pastry is based on heuristics
and thus does not produce perfect routing tables and leaf sets in anycast-enabled
Pastry. Building optimal routing tables and leaf sets requires a global view of the
p2p network at each node, which is very costly in practice because of the com-
munication overhead. Nevertheless, our implementation of anycast achieves close
to optimal performance without incurring excessive communication overhead.

4.3 Routing delay and routing hops

Fig. 7 and Fig. 8 show the average RDP and the average number of p2p routing
hops by anycast. First, both metrics are improved by routing table maintenance
which improves the locality in routing table entries. Second, the higher the group
rank, the fewer the routing hops. This is because the larger the anycast group,
the closer the closest member, and the fewer hops it takes to reach that member.
Third, RDP largely remains the same for anycast groups of different ranks for
f = 1 and f = 4. This is because RDP is relative to the distance by direct
IP routing between the source and the destination. The graduate decrease for

Anycast in Locality-Aware Peer-to-Peer Overlay Networks 11

f = 16 indicates that the initial locality from node joining is improved gradually
at this maintenance frequency.

5 Related work

Anycast was first introduced in RFC 1546 [1] as a means for automatic service
discovery and host configuration. IP-anycast has also been proposed to improve
IP multicast routing efficiency [23, 24]. Global IP-Anycast (GIA) [5] is an ar-
chitecture for scalable global IP-anycast in which inter-domain IP-anycast is
implemented by edge domains maintaining efficient routes to popular anycast
groups and supporting inexpensive routes to unpopular groups. Recent work re-
lated to anycast also includes global distance measurement services [25, 26] and
server selection techniques based on distance estimation [27].

Application-layer anycast [2] is designed to support server replication and
selection without network-layer support, and is provided by anycast domain
name resolvers that measure and maintain server performance metrics [3, 4].

Recently, anycast has been proposed as a communication primitive in the
Internet Indirection Infrastructure [28]. An anycast group is identified by a k-bit
prefix and the remaining bits are used for encoding application-specific prefer-
ences. Two possible techniques of encoding location are proposed: zip code or
latency based as in [26]. As pointed out in [28], zip code can not always represent
network distance accurately. Latency based encoding requires the support of a
measurement infrastructure, such as landmark nodes.

6 Conclusions

In this paper, we have shown that anycast can be easily integrated into locality-
aware p2p overlays, using Pastry as an example. The resulting anycast-enabled
p2p overlay is a more general paradigm for p2p routing since it degenerates into
the original “unicast”-only overlay if nodeIds are unique. Our implementation of
anycast is effective in locating the closest anycast group member in the proximity
space, and retains the low routing penalty of locality-aware p2p overlays. The
performance of anycast is closely related to the locality of the p2p networks, and
node failures can be tolerated using simple overlay maintenance mechanisms.

Acknowledgment

We thank Peter Druschel and the anonymous reviewers for their helpful com-
ments. This work was supported by an NSF CAREER award (ACI-0238379).

References

1. Partridge, C., Mendez, T., Milliken, W.: Host Anycast Service. RFC 1546. (1993)
2. Bhattacharjee, S., Ammar, M.H., Zegura, E.W., Shah, V., Fei, Z.: Application

Layer Anycasting. In Proc. IEEE INFOCOM. (1997)
3. Fei, Z., Bhattacharjee, S., Zegura, E.W., Ammar, M.H.: A Novel Server Selection

Technique for Improving the Response Time of a Replicated Service. In Proc.
IEEE INFOCOM. (1998)

4. Zegura, E.W., Ammar, M.H., Fei, Z., Bhattacharjee, S.: Application-layer Any-
casting: a Server Selection Architecture and Use in a Replicated Web Service.
IEEE/ACM Transactions on Networking (2000)

12 Rongmei Zhang and Y. Charlie Hu

5. Katabi, D., Wroclawski, J.: A Framework for Scalable Global IP-Anycast (GIA).
In Proc. ACM SIGCOMM. (2000)

6. Napster. http://www.napster.com/.
7. The Gnutella protocol specification. http://dss.clip2.com/GnutellaProtocol04.pdf.

(2000)
8. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A Distributed Anony-

mous Information Storage and Retrieval System. In Workshop on Design Issues in
Anonymity and Unobservability. (2000)

9. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A Scalable
Content-Addressable Network. In Proc. ACM SIGCOMM. (2001)

10. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications. In Proc. ACM
SIGCOMM. (2001)

11. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In Proc. Middleware. (2001)

12. Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An Infrastructure for
Fault-Resilient Wide-area Location and Routing. Technical Report UCB//CSD-
01-1141, U. C. Berkeley (2001)

13. Rowstron, A., Kermarrec, A.M., Castro, M., Druschel, P.: Scribe: The design of a
large-scale event notification infrastructure. In Proc. NGC’01. (2001)

14. Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H., Kubiatowicz, J.: Bayeux: An
Architecture for Scalable and Fault-tolerant Wide-Area Data Dissemination. In
Proc. NOSSDAV’01. (2001)

15. Zhang, R., Hu, Y.C.: Borg: A hybrid protocol for scalable application-level multi-
cast in peer-to-peer systems. In Proc. NOSSDAV’03. (2003)

16. Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Application-level Multicast
using Content-Addressable Networks. In Proc. NGC’01. (2001)

17. Ratnasamy, S., Shenker, S., Stoica, I.: Routing Algorithms for DHTs: Some Open
Questions. In Proc. IPTPS’02. (2002)

18. Castro, M., Druschel, P., Hu, Y.C., Rowstron, A.: Exploiting Network Proximity
in Distributed Hash Tables. In Proc. FuDiCo. (2002)

19. Castro, M., Druschel, P., Hu, Y.C., Rowstron, A.: Exploiting network proximity
in peer-to-peer overlay networks. Technical report MSR-TR-2002-82 (2002)

20. FreePastry. http://www.cs.rice.edu/CS/Systems/Pastry/FreePastry/.
21. Zegura, E., Calvert, K., Bhattacharjee, S.: How to Model an Internetwork. In

Proc. IEEE INFOCOM. (1996)
22. Bolosky, W.J., Douceur, J.R., Ely, D., Theimer, M.: Feasibility of a Serverless

Distributed File System Deployed on an Existing Set of Desktop PCs. In Proc.
SIGMETRICS. (2000)

23. Katabi, D.: The Use of IP-anycast for Building Efficient Multicast Trees. In Proc.
Global Internet Symposium. (1999)

24. Kim, D., Meyer, D., Kilmer, H.: Anycast RP mechanism using PIM and MSDP.
RFC 3446. (2001)

25. Francis, P., Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., Zhang, L.: IDMaps:
A Global Internet Host Distance Estimation Service. IEEE/ACM Transactions on
Networking. (2001)

26. Ng, T.S.E., Zhang, H.: Predicting Internet Network Distance with Coordinates-
Based Approaches. In Proc. IEEE INFOCOM. (2002)

27. Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Topologically-Aware Overlay
Construction and ServerSelection. In Proc. IEEE INFOCOM. (2002)

28. Stoica, I., Adkins, D., Zhaung, S., Shenker, S., Surana, S.: Internet Indirection
Infrastructure. In Proc. ACM SIGCOMM. (2002)

