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Abstract— In this paper we consider linear time-varying
passive systems. We state various theorems, which rely on
the state-space matrices of the system, that identify when
a linear-time varying system is purely passive, input strictly
passive, output strictly passive, or input-state strictly passive
which is a nonstandard notion of passivity defined in this
paper. Two of our theorems resemble the Kalman-Yakubovich-
Popov Lemma, one applicable to time-varying systems with
a feedthrough matrix and the other for linear time-varying

systems without one. The negative feedback interconnection of
various systems is considered. We show that an output strictly
passive system negatively interconnected with an input-state
strictly passive system is globally asymptotically stable. We
also show that both linear time-varying input-state and output
strictly passive systems when connected in negative feedback
with a sector bounded, memoryless nonlinearity are also globally
asymptotically stable. The optimal design of a time-varying
output strictly passive controller is also considered. We present
an example: the position and velocity control of a time-varying
mass controlled via a dynamic time-varying compensator and a
sector bounded, memoryless nonlinearity.

I. INTRODUCTION

Over the past several decades passive systems, their sta-

bility in feedback, and their synthesis have been rigorously

investigated. Passive systems have been analyzed, synthe-

sized, and controlled in very different fields of engineering:

electrical circuits, mechanical and aerospace systems, and

especially in robotics [1], [2]. Passivity has also played a

crucial role in adaptive control formulations [3], [4].

The Positive Real Lemma and the Kalman-Yakubovich-

Popov (KYP) Lemma are both well known [5]–[9]. Each

lemma specifies conditions that when met indicate a par-

ticular linear time-invariant (LTI) system with appropriate

state-space matrices is positive real (PR) or strictly positive

real (SPR). Identifying PR and SPR systems is significant

because a positive real system can be robustly stabilized when

connected in negative feedback with a SPR controller. With

this in mind, various authors have investigated designing opti-

mal SPR controllers, often employing numerical optimization

methods [10]–[13].

This work is concerned with linear time-varying (LTV)

systems which possess some sort of passive characteristic

such as pure passivity, input strict passivity, output strict

passivity, etc. We are concerned with the closed-loop stability
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of LTV systems and sector bounded, memoryless nonlinear-

ities interconnected in negative feedback. After stating some

preliminaries we present a series of theorems identifying

passivity, output strict passivity, input strict passivity, and a

new notion of passivity, input-state strict passivity. Although

theorems pertaining to passive LTV systems are presented

in the literature (see [14], [15]), the theorems pertaining to

input, output, and input-state strictly passive LTV systems are

unique to this paper. This work is partially motivated by the

desire to state a theorem for LTV systems that is equivalent to

the KYP Lemma for LTI systems. In addition to identifying

passive systems via state-space equations, we show that the

negative feedback interconnection of an input strictly passive

LTV system and an input-state strictly passive LTV system is

globally asymptotically stable. We also show that an input-

state strictly passive LTV system, as well as an output strictly

passive LTV system, connected in a negative feedback loop

with a sector bounded, memoryless nonlinearity is globally

asymptotically stable. Motivated by optimal control theory,

we will present a method to optimally design a LTV output

strictly passive feedback controller. Last, we give an example:

position and velocity control of a time-varying mass. We

control the system via a LTV controller optimally designed,

and via a sector bounded, memoryless nonlinearity.

II. PRELIMINARIES

To start, a function u ∈ L2 if ‖u‖2 =
√

∫ ∞

0 uT(t)u(t)dt < ∞ and u ∈ L2e if ‖u‖2T =
√

∫ T

0 uT(t)u(t)dt < ∞, 0 ≤ T < ∞ where uT(·) is the

transpose of the vector u(·).

A. Linear Time-Varying Systems

In this paper we will be concerned with square linear-time

varying systems of the form

ẋ(t) =A(t)x(t) + B(t)u(t) (1a)

y(t) =C(t)x(t) + D(t)u(t) (1b)

where x ∈ R
n, u,y ∈ R

m and the time-varying matrices

A(·), B(·), C(·), and D(·) are appropriately dimensioned

real matrices that are continuous and bounded over the time

interval of interest. The nominal input-output equations are

specified by (1a) and (1b), while an alternate output is

z(t) = L(t)x(t) + W(t)u(t) where z ∈ R
m. We will as-

sume complete controllability of (A(·),B(·)), and complete

observability of (C(·),A(·)) and (L(·),A(·)) [16], [17].
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In a mechanical context (1) may represent a system with

time-varying mass and damping, where the inputs are forces

and the outputs are velocities. In an electrical circuit context,

(1) may represent the interconnection of time-varying passive

circuit components, such as resistors, capacitors, inductors,

gyrators, and transformers, where the inputs are port currents

and the outputs are port voltages.

The solution to (1) is

y(t) = C(t)Φ(t, t0)x0 + C(t)

∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ

+ D(t)u(t)

= (Gu) (t) (2)

where Φ(·, ·) is the state transition matrix and x0 = x(t0) is

the initial system state. The state transition matrix satisfies

Φ̇(t, t0) = A(t)Φ(t, t0) , Φ(t0, t0) = 1 ,

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0) , Φ−1(t, τ) = Φ(τ, t).

B. Passive System Characteristics

An operator G : L2e → L2e is [18], [19]

• passive if ∃β such that (s.t.)
∫ T

0 yT(t)u(t)dt ≥ β, ∀u ∈
L2e, ∀T ≥ 0,

• input strictly passive if ∃δ > 0 and ∃β s.t.
∫ T

0
yT(t)u(t)dt ≥ δ

∫ T

0
uT(t)u(t)dt + β, ∀u ∈

L2e, ∀T ≥ 0,

• output strictly passive if ∃ǫ > 0 and ∃β s.t.
∫ T

0
yT(t)u(t)dt ≥ ǫ

∫ T

0
yT(t)y(t)dt + β, ∀u ∈

L2e, ∀T ≥ 0,

• input-output, or very strictly passive if ∃δ > 0, ∃ǫ >

0, and ∃β s.t.
∫ T

0 yT(t)u(t)dt ≥ ǫ
∫ T

0 yT(t)y(t)dt +

δ
∫ T

0
uT(t)u(t)dt + β, ∀u ∈ L2e, ∀T ≥ 0,

• state-strictly passive if ∃ψ(·) > 0 and ∃β s.t.
∫ T

0 yT(t)u(t)dt ≥
∫ T

0 ψ(x(t))dt + β, ∀u ∈ L2e, ∀T ≥
0,

• input-state strictly passive if ∃δ > 0, ∃ψ(·) >

0, and ∃β s.t.
∫ T

0 yT(t)u(t)dt ≥
∫ T

0 ψ(x(t))dt +

δ
∫ T

0
uT(t)u(t)dt + β, ∀u ∈ L2e, ∀T ≥ 0 .

The constant β is nonzero for nonzero initial conditions, and

zero for quiescent initial conditions. The units of δ are gain

and the units of ǫ are one over gain.

A state strictly passive system is not necessarily equivalent

to an output strictly passive system. Some references, for

example [20], call a state strictly passive system a strictly

passive system, which we feel is confusing when compared

with, for example, [18]. In [18] an input strictly passive

system is called a strictly passive system. Hence, we utilize

a more verbose nomenclature to distinguish between input,

output, very, state, and input-state strictly passive systems.

In the sections to follow we will discuss when a LTV

system of the form (1) is passive, input-state strictly passive,

etc. We will first consider the case when D(t) 
= 0 (Section

III), and second when D(t) = 0 (Section IV).

III. STATE-SPACE REALIZATION OF PASSIVE LINEAR

TIME-VARYING SYSTEMS POSSESSING A FEEDTHROUGH

MATRIX

We will first consider the case where D(t) 
= 0. Rather then

having to evaluate one of the passivity integrals presented in

Section II-B, it would be advantageous to be able to determine

if a system is passive or input strictly passive by evaluating an

expression related to the system’s state-space matrices A(·),
B(·), C(·), and D(·), much like the Positive Real Lemma

and the KYP Lemma.

A. State-Space Realization of Passive Linear Time-Varying

Systems

We will first consider passive LTV systems with a state-

space realization equivalent to (1). The following theorem

is similar to those presented in [14] and [15], and is of the

same flavor as the the Positive Real Lemma associated with

LTI systems. We prove the following theorem differently than

[14], [15].

Theorem III.1. A LTV system described by (1) and (2) that is

completely controllable and completely observable is passive

if there exists continuous, bounded P(t) = PT(t) > 0, L(·),
and W(·) s.t.

Ṗ(t) + P(t)A(t) + AT(t)P(t) = −LT(t)L(t) (3a)

CT(t) − P(t)B(t) = LT(t)W(t) (3b)

D(t) + DT(t) = WT(t)W(t). (3c)

Proof: (Sufficiency) To be concise we will neglect writ-

ing the temporal argument of the input and output signals,

and time-varying matrices. Consider the following Lyapunov

function and its temporal derivative:

V = 1
2x

TPx ,

V̇ = 1
2x

TPẋ + 1
2 ẋ

TPx + 1
2x

TṖx

= 1
2x

T

(

Ṗ + PA + ATP
)

x + xTPBu.

Integrating V̇ from 0 to T gives

∫ T

0

V̇ dt = V (T )

β
︷ ︸︸ ︷

−V (0) ≥ β,

∫ T

0

[
1
2x

T

(

Ṗ + PA + ATP
)

x + xTPBu
]

dt

=

∫ T

0

[
− 1

2x
TLTLx + xT

(
CT − LTW

)
u
]
dt ≥ β,

∫ T

0

xTCTudt ≥

∫ T

0

(
1
2x

TLTLx + xTLTWu
)
dt + β.

Recall that D is square, and can be broken up into symmetric

and skew-symmetric parts: D = 1
2

(
D + DT

)
+ 1

2

(
D− DT

)

where uT
(
D − DT

)
u = 0. Given that y = Cx + Du and
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yTu = xTCTu + 1
2u

T
(
DT + D

)
u we arrive at

∫ T

0

yTudt

≥

∫ T

0

(
1
2x

TLTLx + xTLTWu + 1
2u

TWTWu
)
dt + β

=

∫ T

0

1
2 (Lx + Wu)

T
(Lx + Wu) dt + β ≥ β

which completes the proof.

Often (3a) is replaced by Ṗ(t)+P(t)A(t)+AT(t)P(t) =
−Q(t) where LT(t)L(t) = Q(t) = QT(t) ≥ 0. Equation

(3a) is a first order, ordinary matrix differential equation in

P(·). To be solved, a boundary condition must be known.

From [14] and [15] we know P(T ) = PT(T ) > 0 must be

specified. Equation (3a) could be solved either numerically

or analytically for P(·).
What is useful about Theorem III.1 is that passivity of a

system can be tested by checking that (3) is satisfied, rather

than evaluating the passivity integral presented in Section II-

B.

B. State-Space Realization of Input Strictly Passive Linear

Time-Varying Systems

We will now consider input strictly passive LTV systems.

Theorem III.2. A LTV system described by (1) and (2) that

is completely controllable and completely observable with

D(t) = D̃(t) + δ1 where δ > 0 is input strictly passive

if there exists continuous, bounded P(t) = PT(t) > 0, L(·)
and W(·) s.t.

Ṗ(t) + P(t)A(t) + AT(t)P(t) = −LT(t)L(t) (4a)

CT(t) − P(t)B(t) = LT(t)W(t) (4b)

D̃(t) + D̃T(t) = WT(t)W(t). (4c)

Proof: (Sufficiency) Following the proof of Theorem III.1

we have
∫ T

0

xTCTudt ≥

∫ T

0

(
1
2x

TLTLx + xTLTWu
)
dt + β.

With yTu = xTCTu + 1
2u

T

(

D̃T + D̃
)

u + δuTu =

xTCTu + 1
2u

TWTWu + δuTu we arrive at

∫ T

0

yTudt

≥

∫ T

0

(
1
2x

TLTLx + xTLTWu + 1
2u

TWTWu + δuTu
)
dt

+β

=

∫ T

0

1
2 (Lx + Wu)T (Lx + Wu) dt + δ

∫ T

0

uTudt + β

≥ δ

∫ T

0

uTudt + β

which completes the proof.

C. State-Space Realization of Input-State Strictly Passive

Linear Time-Varying Systems

Next, we will consider input-state strictly passive LTV

systems.

Theorem III.3. A LTV system described by (1) and (2) that

is completely controllable and completely observable with

D(t) = D̃(t)+δ1 where δ > 0 is input-state strictly passive if

there exists ν > 0 and continuous, bounded P(t) = PT(t) >
0, L(·) and W(·) s.t.

Ṗ(t) + P(t)A(t) + AT(t)P(t) = −LT(t)L(t) − 2νP (5a)

CT(t) − P(t)B(t) = LT(t)W(t) (5b)

D̃(t) + D̃T(t) = WT(t)W(t). (5c)

Proof: (Sufficiency) Modifying the proof of Theorem III.2

slightly gives
∫ T

0

yTudt ≥

∫ T

0

1
2 (Lx + Wu)

T
(Lx + Wu) dt

+ δ

∫ T

0

uTudt + ν

∫ T

0

xTPxdt + β

≥ δ

∫ T

0

uTudt + ν

∫ T

0

xTPxdt + β

which completes the proof.

Comparing (3a) and (4a), −2νP(·) has been added to the

right hand side so that in terms of (5a) we could equivalently

write Ṗ(t)+P(t)A(t)+AT(t)P(t) = −Q(t) where Q(t) =
QT(t) > 0.

D. Comments

One might ask why there is no output strictly passive

theorem for LTV systems, nor an input-output strictly passive

theorem. It seems that showing that a system is output strictly

passive is prohibited by the presence of a D(·) matrix.

IV. STATE-SPACE REALIZATION OF PASSIVE LINEAR

TIME-VARYING SYSTEMS WITHOUT A FEEDTHROUGH

MATRIX

We will now consider systems with D(t) = 0. Doing so is

important because the vast majority of real, physical systems

(in particular mechanical, aerospace, and electrical systems)

do not have a feedthrough matrix.

A. State-Space Realization of Passive Linear Time-Varying

Systems

Given a system with state-space matrices A(·), B(·), and

C(·) where D(t) = 0, we will now derive conditions that

indicate if a system is passive. Much like Theorem III.1,

the following corollary is in the spirit of the Positive Real

Lemma.

Corollary IV.1. A LTV system described by (1) and (2) that

is completely controllable and completely observable with
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D(t) = 0 is passive if there exists continuous, bounded

P(t) = PT(t) > 0 and L(·) s.t.

Ṗ(t) + P(t)A(t) + AT(t)P(t) = −LT(t)L(t) (6a)

P(t)B(t) = CT(t). (6b)

Proof: (Sufficiency) Using the Lyapunov function pre-

sented in the proof of Theorem III.1 and the fact that y = Cx

we have
∫ T

0

[
1
2x

T

(

Ṗ + PA + ATP
)

x + xTPBu
]

dt ≥ β,

∫ T

0

xTCTudt ≥ 1
2

∫ T

0

xTLT(t)L(t)xdt + β,

∫ T

0

yTudt ≥ β.

B. State-Space Realization of Output Strictly Passive Linear

Time-Varying Systems

We will now derive a state-space expression based on a

systems time-varying matrices A(·), B(·), and C(·) where

D(t) = 0 which when satisfied informs us that the system

in question is output strictly passive, much like the Kalman-

Yakubovich-Popov Lemma for strictly positive real systems

presented in [19].

Corollary IV.2. A LTV system described by (1) and (2) that

is completely controllable and completely observable with

D(t) = 0 is output strictly passive if there exists continuous,

bounded P(t) = PT(t) > 0 and Q(t) = QT(t) > 0 s.t.

Ṗ(t) + P(t)A(t) + AT(t)P(t) = −Q(t) (7a)

P(t)B(t) = CT(t). (7b)

Proof: (Sufficiency) Following the proof of Corollary IV.1

and the fact that y = Cx we have
∫ T

0

yTudt =

∫ T

0

xTCTudt ≥ 1
2

∫ T

0

xTQxdt + β.

Under the assumption that C and Q are bounded we can

write

CTC ≤ c1 < ∞ , 0 < q1 ≤ Q ≤ q1 < ∞.

It follows that

yTy = xTCTCx ≤ cxTx , xTQx ≥ qxTx

⇒ xTQx ≥
q

c
yTy.

Using the above we arrive at
∫ T

0

yTudt ≥
q

2c
︸︷︷︸

ǫ

∫ T

0

yTydt + β

which completes the proof.

Note that for systems with no feedthrough matrix, if the

system is state strictly passive it is implied that the system

is output strictly passive. Also recall that an output strictly

passive system has finite gain,
‖y‖

2

‖u‖
2

≤ γ where γ > 0 is

the system gain. When D(t) = 0 and the system is output

strictly passive γ = 1
ǫ
.

V. STABILITY THEORY

Consider the negative feedback interconnection of two

systems, G1 : L2e → L2e and G2 : L2e → L2e, as

presented in Fig. 1. Each system Gi has associated with

it an input strictly passive parameter, δi, an output strictly

passive parameter, ǫi, or a positive definite function ψi(·) as

defined in Section II-B where i = 1, 2. Both the weak and

strong versions of the passivity theorem are well known [18].

The weak version of the passivity theorem states that when

u2 = 0 if G1 is passive while G2 is input strictly passive

then u1 ∈ L2 implies y1 ∈ L2. The strong version states that

if δ1 + ǫ2 > 0 and δ2 + ǫ1 > 0 then u1,u2 ∈ L2 implies

y1,y2 ∈ L2.

G1

G2

u1

y2

y1

u2
e2

e1

+

+

+

−

Fig. 1. Negative feedback interconnection.

A. Stability Involving Input-State Strictly Passive Systems

In this work we have defined input-state strictly passive

LTV systems. We will now show that the negative feedback

interconnection of an output strictly passive LTV system with-

out a feedthrough matrix and an input-state strictly passive

LTV system is globally asymptotically stable in the sense of

Lyapunov.

Theorem V.1. Assuming no external inputs, the negative

feedback interconnection of an output strictly passive LTV

system with D1(t) = 0 and an input-state strictly passive

LTV system is globally asymptotically stable.

Proof: Consider the following Lyapunov function and its

temporal derivative:

V = 1
2x

T

1P1x1 + 1
2x

T

2 P2x2 ,

V̇ = 1
2x

T

1

(

Ṗ1 + P1A1 + AT

1 P1

)

x1 + xT

1P1B1e1

+ 1
2x

T

2

(

Ṗ2 + P2A2 + AT

2P2

)

x2 + xT

2 P2B2e2.

Using Theorem III.3 and Corollary IV.2 (see (5) and (7))

and the fact that y1 = C1x1 and xT

2CT

2 e2 = yT

2 e2 −
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1
2e

T

2

(

D̃T

2 + D̃2

)

e2 − δ2e
T

2e2 we arrive at

V̇ = − 1
2x

T

1 Q1x1 +

yT

1

︷ ︸︸ ︷

xT

1 CT

1 e1 − νxT

2 P2x2 −
1
2x

T

2 LT

2L2x2

+ xT

2

(
CT

2 − LT

2W2

)
e2

≤ − 1
2x

T

1 Q1x1 + yT

1 e1 − νxT

2 P2x2 −
1
2x

T

2 LT

2 L2x2

− xT

2 LT

2 W2e2 −
1
2x

T

2 WT

2 W2x2 − δ2e
T

2 e2 + yT

2 e2.

The yT

1 e1 and yT

2 e2 terms sum to zero owing to the fact that

e1 = −y2 and e2 = y1 when external inputs are zero. We

then have

V̇ ≤ − 1
2x

T

1 Q1x1 − νxT

2 P2x2

− 1
2 (L2x2 + W2e2)

T
(L2x2 + W2e2) − δ2y

T

2 y2

≤ − 1
2x

T

1 Q1x1 − νxT

2 P2x2 − δ2x
T

1CT

1 C1x1

≤ − 1
2x

T

1 Q1x1 − νxT

2 P2x2

≤ − 1
2

(
q1x

T

1 x1 + νp2x
T

2x2

)

< 0

where

0 < q11 ≤ Q1 ≤ q11 < ∞, 0 < p21 ≤ P2 ≤ p21 < ∞.

Thus the system is globally asymptotically stable.

The symmetry of the traditional strong passivity theorem

is maintained. It doesn’t matter which system, G1 or G2, is

output strictly passive as long as the other system is input-

state strictly passive. It can easily be shown that the negative

feedback interconnection of two input-state strictly passive

systems is also globally asymptotically stable using a similar

proof.

In a LTI context it can be shown that a passive (i.e., PR)

system can be stabilized by a system that is SPR. To do so, a

Lyapunov function similar to the one presented above is used

along with the Positive Real Lemma and the KYP Lemma, but

the Krasovskii-LaSalle theorem must be used to prove global

asymptotic stability. The negative feedback interconnection

of a passive LTV system (Corollary IV.1) and an input-

state strictly passive system can only be shown to be stable

because the associated V̇ expression is negative semidefinite,

not negative definite, and one can not use the Krasovskii-

LaSalle theorem while dealing with nonautonomous systems.

B. Stability Involving Sector Bounded, Memoryless Nonlin-

earities

Consider the negative feedback interconnection of a dy-

namic linear time-varying system and a sector bounded,

memoryless nonlinearity as shown in Fig. 2. The sector

bounded, memoryless nonlinearities we are considering are

those that satisfy

φ(0, t) = 0, ∀t ≥ 0, (8a)

yT(t)φ(y(t), t) ≥ 0, ∀y ∈ R
m ∀t ≥ 0. (8b)

We will now show that the negative feedback interconnection

of an input-state strictly passive LTV system and a sector

bounded, memoryless nonlinearity is globally asymptotically

stable.

G

φ(y, t)

y
u

−
0

+

Fig. 2. Negative feedback interconnection of a dynamic, linear time-varying
system and a sector bounded, memoryless nonlinearity

Theorem V.2. Assuming no external inputs, the negative

feedback interconnection of an input-state strictly passive

LTV system and a sector bounded, memoryless nonlinearity

satisfying the properties of (8) is globally asymptotically

stable.

Proof: We will make use of (5) from Theorem III.3. The

control is simply u(t) = −φ(y, t). Consider the following

Lyapunov function and its temporal derivative:

V = 1
2x

TPx,

V̇ = 1
2x

T

(

Ṗ + PA + ATP
)

x + xTPBu

= − 1
2x

T
(
LTL + 2νP

)
x + xT

(
CT − LTW

)
u

= − 1
2x

T
(
LTL + 2νP

)
x +

(
yT − 1

2u
T

(
DT + D

))
u

−xTLTWu

= −νxTPx + yTu− 1
2 (Lx + Wu)

T
(Lx + Wu)

−δuTu

≤ −νxTPx − yTφ(y, t)

≤ −νpxTx (Note : 0 < p1 ≤ P ≤ p1 < ∞)

< 0.

Thus, the system is globally asymptotically stable.

Next we will show that the negative feedback intercon-

nection of an input strictly passive LTV system and a sector

bounded, memoryless nonlinearity is globally asymptotically

stable.

Theorem V.3. Assuming no external inputs, the negative

feedback interconnection of an output strictly passive LTV

system with D(t) = 0 and a sector bounded, memoryless

nonlinearity satisfying the properties of (8) is globally asymp-

totically stable.

Proof: We are assuming no feedthrough matrix is present,

thus we will make use of (7) from Corollary IV.2. Consider
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the following Lyapunov function and its temporal derivative:

V = 1
2x

TPx,

V̇ = 1
2x

T

(

Ṗ + PA + ATP
)

x + xTPBu

= − 1
2x

TQx− xTCTφ(y, t)

= − 1
2x

TQx− yTφ(y, t)

≤ − 1
2qxTx (Note : 0 < q1 ≤ Q ≤ q1 < ∞)

< 0.

Thus, the system is globally asymptotically stable.

VI. CONTROL OF A TIME-VARYING MECHANICAL

SYSTEM

A. The Differential Equations and Output Strictly Passive

Nature of the Plant

Consider the following simple control problem: regulate

the position and velocity of a mass to zero, where the mass

decreases with respect to time. This problem is not unlike

so called “rocket problems” where a rocket initially has a

finite mass, yet the mass decrease as a function of time as

fuel is expelled during launch. Let the time-varying mass be

described by

m(t) = mfe−αt + mi

where mi is the mass with “no fuel”, mf is the mass of the

“fuel”, and α governs the decay rate of the mass. Let the

position of the mass be z(·), and the velocity be ż(·). Using

Newton’s second law, the system differential equation can be

determined:

d

dt
(m(t)ż(t)) = u(t)−cż ⇔ m(t)z̈(t)+(ṁ(t)+c)ż(t) = u(t)

where c is the viscous friction coefficient (which is assumed to

be very small). First, we prewrap the system with proportional

control to be able to regulate to the zero position:

m(t)z̈(t) + (ṁ(t) + c)ż(t) + kz(t) = u(t).

The above system can be placed into a first-order form with

the velocity as the system output:

[
ẋ1(t)
ẋ2(t)

]

=

A(t)
︷ ︸︸ ︷
[

0 1
−k

m(t)
ṁ(t)+c

m(t)

] [
x1(t)
x2(t)

]

+

B(t)
︷ ︸︸ ︷
[

0
1

m(t)

]

u(t)

y(t) = ż(t) =
[

0 1
]

︸ ︷︷ ︸

C

[
x1(t)
x2(t)

]

We wish to stabilize the system via the passivity theorem

using an LTV controller. We will now show that the plant is

output strictly passive. Consider the system Hamiltonian and

its temporal derivative:

H(t) = 1
2m(t)ż2(t) + 1

2kz2(t),

Ḣ(t) = m(t)ż(t)z̈(t) + 1
2ṁ(t)ż2(t) + kz(t)ż(t)

= u(t)ż(t) − 1
2ṁ(t)ż2(t) − cż2(t).

Assuming quiescent initial conditions, integrating Ḣ(·) over

t ∈ [0, T ] yields:

∫ T

0

Ḣ(t)dt = H(T ) − H(0) ≥ 0,

∫ T

0

u(t)ż(t)dt ≥

∫ T

0

(
1
2ṁ(t)ż2(t) + cż2(t)

)
dt

⇒

∫ T

0

u(t)ż(t)dt ≥ c

∫ T

0

ż2(t)dt.

Thus, the system is output strictly passive owing to the small

amount of damping present.

B. Controller Design Inspired by Optimal Control

Because the plant is output strictly passive an ǫ1 exists,

which also means the plant has finite gain. Recall the strong

version of the passivity theorem states that for the closed-

loop system to be L2 stable, δ1 + ǫ2 > 0 and δ2 + ǫ1 > 0.

We will specify a priori that the controller will not possess a

feedthrough matrix. Thus, we must design a LTV controller

such that ǫ2 > 0, that is the controller is output strictly passive

and satisfies Corollary IV.2. Alternatively, we could specify

that the controller does possess a feedthrough matrix, and

then design a controller such that Theorem III.3 is satisfied,

which would ensure via Theorem V.1 the closed-loop system

would be globally asymptotically stable. We elect to follow

the former approach, designing the controller to be output

strictly passive.

Consider the following controller:

ẋc(t) = Ac(t)xc(t) + Bc(t)y(t)

u(t) = −Cc(t)xc(t)

where xc ∈ R
nc , u,y ∈ R

m and the time-varying matrices

Ac(·), Bc(·), and Cc(·) are appropriately dimensioned real

matrices that are continuous and bounded over the time

interval of interest. As with the plant, complete controllability

and complete observability are assumed. We could arbitrarily

assign the state-space matrices associated with the control,

and then iteratively change parameters until the controller

satisfies (7), and a reasonable system response is achieved.

This, however, is not an intelligent approach.

It is well known that given the performance index [21]

J = xT(T )Sx(T ) +

∫ T

0

(
xT(t)Mx(t) + uT(t)Nu(t)

)
dt,

where S = ST > 0, M ≥ 0, and N > 0, one can derive an

optimal state feedback Cc(t) = N−1BT(t)X(t). The matrix

X(·) is positive definite and can be found by solving the

matrix Riccati equation

−Ẋ(t) = M + AT(t)X(t) + X(t)A(t)

−X(t)B(t)N−1BT(t)X(t), X(T ) = S

backward in time from t = T to t = 0 s. This is the well

known Linear Quadratic Regulator (LQR) solution for time-

varying systems.
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Given that we have designed Cc(·) via a LQR formula-

tion, we must now design Ac(·) and Bc(·) such that the

controller is output strictly passive. To do so, we will let

Ac(t) = A(t) − B(t)Cc(t). It now remains to find Bc(·).
By employing Corollary IV.2 we have Bc(t) = P−1(t)CT

c (t)
where P(·) is found by solving

Ṗ(t) + P(t)Ac(t) + AT

c (t)P(t) = −Q(t)

backwards in time from t = T to t = 0 s given the boundary

condition P(T ).
We will solve for P(·) numerically. To do so, pick Q(T )

and P(T ) and then iteratively solve

P(tk−1) = P(tk)

+ (tk − tk−1)
(
P(tk)Ac(tk) + AT

c (tk)P(tk) + Q(tk)
)

backward from t = T = 15 s to t = 0 s (which, in this

case, is our time interval of interest). We will set Q(t) =
(10e−αt + mi)1. In a similar fashion, X(·) can be solved

backward in time.

We will numerically execute the above control scheme

using the parameters presented in Table I. The maximum

TABLE I

SYSTEM PARAMETERS USED IN SIMULATION.

mi 1.5 kg

mf 1 kg

α 1

2
t−1

c 10−5 Ns/m
k 5 N/m

and minimum eigenvalues of X(·) are shown in Fig. 3, as

are those of P(·) in Fig. 4. All eigenvalues are positive as

expected (although they are very small at t = 15 s, they

are positive). The position and velocity of the closed-loop
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λ m
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X

)

Time (s)

0 5 10 15
0

20

40

60

80
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x
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X
)
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Fig. 3. Maximum and minimum eigenvalues of X(·) vs. time.

system versus time as released from initial conditions of 1 m
and 1 m/s are shown in Figs. 5 and 6.

C. Memoryless Nonlinear Control

Rather then using a dynamic compensator, we will now

employ Theorem V.3 and stabilize the plant with a sector

bounded, memoryless nonlinear control of the form

u(t) = −φ(ż(t), t) = −φ(y(t), t) = − tanh(y(t))(1+4e−αt).
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Fig. 4. Maximum and minimum eigenvalues of P(·) vs. time.
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Fig. 5. Position vs. time response using dynamic, OSP time-varying control.

This memoryless nonlinearity is confined to the first and third

quadrant of the (y(t), φ(y(t), t)) plane for all positive time,

and φ(0, t) = 0, ∀t ≥ 0 as well. Fig. 7 shows the profile of

the nonlinearity at times t = 0, 2.5, 5, 7.5, 10 s.

The position and velocity of the system versus time as

released from initial conditions of 1 m and 1 m/s are shown

in Figs. 8 and 9.

VII. CLOSING REMARKS

This paper is concerned with identifying passive, input

strictly passive, output strictly passive, and state strictly

passive LTV systems, and determining stability of various

negative feedback interconnections. In particular, Theorem

III.2 associated with input strictly passive LTV systems, as

well as Theorem III.3 associated with input-state strictly

passive LTV systems which include D(·), and Corollary IV.2
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Fig. 6. Velocity vs. time response using dynamic, OSP time-varying control.
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Fig. 7. Profile of memoryless nonlinearity.
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Fig. 8. Position vs. time response using memoryless nonlinear control.

associated with output strictly passive LTV systems which

exclude D(·) are (we believe) unique to this paper. Theorem

III.3 and Corollary IV.2 can be thought of as KYP Lemmas

for time-varying systems. We show that the negative feedback

interconnection of an output strictly passive system and an

input-state strictly passive system is globally asymptotically

stable in the sense of Lyapunov. Similarly, we show that an

input-state strictly passive system and an output strictly pas-

sive system negatively interconnected with a sector bounded,

memoryless nonlinearity are both globally asymptotically

stable. We present a numerical example, the control of a

time-varying mass, where the position and velocity of the

mass is controlled via a dynamic, output strictly passive LTV

controller, and a sector bounded, memoryless nonlinearity.
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Fig. 9. Velocity vs. time response using memoryless nonlinear control.
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