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ABSTRACT

Some observations and improvements on the conventional Kalman
filtering scheme to function properly are presented.  The improvements can be
achieved using the minimal principle evolutionary programming (EP) technique.
A new linearization methodology is presented to obtain the exact linear models
of a class of discrete-time nonlinear time-invariant systems at operating states
of interest, so that the conventional Kalman filter can work for the nonlinear
stochastic systems.  Furthermore, a Kalman innovation filtering algorithm and
such an algorithm based on the evolutionary programming optimal-search
technique are proposed in this paper for discrete-time time-invariant nonlinear
stochastic systems with unknown-but-bounded plant uncertainties and noise
uncertainties to find a practically implementable “best” Kalman filter.  The
worst-case realization of the discrete-time nonlinear stochastic uncertain
systems represented by the interval form with respect to the implemented
“best” nominal filter is also found in this paper for demonstrating the effective-
ness of the proposed filtering scheme.
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I. INTRODUCTION

Many uncertain issues related to system modeling,
such as parameter variation and modeling error, generally
result in uncertain mathematical models for most engi-
neering systems or processes, to which the classical Kalman
filter (KF) algorithm is generally not applicable.  Therefore,
one resorts to a variant of the conventional filtering scheme,
the named robust Kalman filtering algorithm, which be-
comes more and more important in practice.

Recently, several approaches to robust KF have been
discussed, based on, for instance, the criterion [22,29], un-

certain system analysis [28,30], or set-valued estimation
[4,12,21].  These modified versions of the KF computa-
tional scheme have an ability of handling uncertainties,
but at the price of sacrificing the original means of optimality
such as the linear unbiased property or the minimum
statistical covariance assumptions or cost function, thereby
actually reformulating and then solving a literally differ-
ent estimation problem, so as to bypass the inherent dif-
ficulty of the embedded system uncertainties of the origi-
nal KF algorithm.

An interval Kalman filtering (IKF) algorithm was
proposed for an uncertain system described by interval
matrices [3].  This IKF scheme, under exactly the same as-
sumptions, can achieve exactly the same optimality (linear,
unbiased, with minimum estimation error covariance).
Moreover, it has exactly the same prediction-correction
iterative structure.  Most important of all, it is rigorous
without additional conditions and approximations.  The
main problem with the IKF algorithm is its conservative
property, due however to the conservative property of the
interval mathematics and interval system modeling but not
to the algorithm itself.  Nevertheless, further improvement
of the IKF scheme is expected and desirable.

Evolutionary programming (EP) was evolved and
developed from the idea of genetic algorithms (GAs) [9,
14,15,19] and is a parallel optimization and computational
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technique.  As compared to the GAs, which use symbolic
strings to describe a problem, EP uses functional forms [7,
8] so is more flexible and more suitable for solving
complex engineering problems.  It also follows the same
competition principle like the GAs to eliminate unwanted
candidates while preserving good ones; it also uses the
same operations such as reproduction and mutation to
gradually approach the global optima [20,23].  Taking
advantage of EP for global optimization, the EP-based KF
does not require more mathematical analysis than the IKF,
and also preserves the same optimality and iterative com-
putational structure as the classical KF under the same
conditions.

In this paper some observations on the conventional
KF, such as effects of the eigenspectrum of the system ma-
trix and the excitation of output measurement, are given in
Sec. 2.  Then, the improvement of the Kalman filtering is
newly proposed in Sec. 3, so that the KF scheme can work
properly for linear time invariant stochastic systems.  For
further extensions of the above-mentioned improved KF
to work properly from linear time invariant systems to
some class of nominal nonlinear stochastic systems, an
optimal linearization methodology is first proposed in
Sec. 4 to obtain linear models of a class of nominal
nonlinear systems at operating states of interest, using the
newly proposed evolutionary programming (EP): the mini-
mal principle approach.  The proposed optimal lineariza-
tion methodology yields the exact local linear models at
operating states of interest and the optimal local linear
models in the neighborhood of operating states of interest.
Finally, based on another newly proposed minimal-maxi-
mal principle of EP, a novel EP-based Kalman filtering
scheme is proposed in Sec. 5 to construct the “best”
nominal Kalman filter for discrete-time time-invariant
nonlinear stochastic uncertain systems.  The worst-case
realization of the discrete-time time-invariant nonlinear
stochastic uncertain system with respect to the determined
“best” filter is also given in Sec. 5.  Kalman filtering has
been widely used in many areas of industrial and govern-
ment applications such as video and laser tracking systems,
satellite navigation, ballistic missile trajectory estimation,
radar, and fire control [5,17,25].  With the recent develop-
ment of high-speed computers, the Kalman filter has
become more useful even for very complicated real-time
applications.  The proposed design methodology enhances
real-time applications of the Kalman filtering.

II. SOME OBSERVATIONS ON THE
KALMAN FILTER

Consider a linear discrete multivariable system in
state-space form

  x(k +1) =Ax(k) +w(k), (1)

  y(k) =Cx(k) +v(k), (2)

where x(k) is an n × 1 state vector, and y(k) is an p × 1 output
vector with A and C being system matrices with appropri-
ate dimensions.  The vector w(k) is the process noise due
to disturbances and modeling inaccuracies and is assumed
to be Gaussian, zero-mean w(k) = E[w(k)] = 0 and white

with the covariance E   w(k)wT( j)  = Qδ(k – j), where δ(k –

j) = I (identity matrix) when k = j; otherwise, δ(k – j) = 0.
The vector v(k) is the measurement noise due to sensor
inaccuracy with the same properties as w(k) but has a
different covariance matrix E[v(k)vT(k)] = Rδ(k – j).  The
sequences w(k) and v(k) are also assumed stationary and
independent (orthogonal) of each other, i.e., E[w(k)vT(j)]
= 0 for any steps k and j.  It is assumed that x(0) is known
in the form of its mean value x (0) and covariance P(0).

Let the estimator have the form

  x(k +1 k ) =Ax(k k – 1) +K(k)[y(k) – Cx(k k – 1)].
(3)

The reconstruction error x  = x – x is governed by

  x(k +1) =Ax(k) +w(k) – K(k)[y(k) – Cx(k k – 1)]

  =(A – K(k)C)x(k) +w(k) – K(k)v(k). (4)

The criterion is to minimize the variance of the estimation
error, which is denoted by P(k).

  P(k) =E[(x(k) – E[x(k)])(x(k) – E[x(k)])T]. (5)

The mean value of x  is obtained from Eq. (4).

  E[x(k +1)] =(A – K(k)C)E[x(k)] (6)

The mean value of the reconstruction error is zero for all
time k ≥ 0 independent of K(k) by assuming E[x(0)] = E[x
(0)].  However, it by no means implies that the estimation
error x (k) is white.  Any random process governed by a
known dynamics cannot be white, in general.  Equations
(4) and (5) now give

  P(k +1) =E[x(k +1)x T(k +1)]

  =(A – K(k)C)P(k)(A – K(k)C)T +Q +K(k)RKT(k).
(7)

After some mathematical manipulations [1], one has

  K(k) =AP(k)CT(R +CP(k)CT)– 1, (8)

  P(k +1) =AP(k)A T

  +Q – AP(k)CT(R +CP(k)CT)– 1CP(k)A T.
(9)

The reconstruction defined by Eqs. (3), (7), and (8) is
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called the Kalman filter.  Notice that the criterion for
choosing K(k) is also to minimize the expected value of
squared norm of x (k), i.e., the length of the estimation
error [13],

  J K(k) =E[x T(k)x(k)] = trace {E[x(k)x T(k)]}= trace [P(k)].
(10)

The predictor (3) has the property that the state at
time k is reconstructed from y(k – 1), y(k – 2), ⋅⋅⋅.  It is also
possible to derive the filter, which also uses y(k), to
estimate x(k).  The filter problem is solved by [1]

  x(k +1 k +1) =Ax(k k ) +K(k +1)[y(k +1) – CAx(k k )],
(11)

where

  K(k) =P(k k – 1)CT[R +CP(k k – 1)CT]– 1, (12)

  P(k k – 1) =AP(k – 1 k – 1)A T +Q, (13)

  P(k k ) =(I – K(k)C)P(k k – 1), (14)

  P(0 0 ) =P 0.

The notation   P(k k – 1) is used here instead of P(k) to
specify the available data;   P(k k ) can be interpreted as the
covariance of the estimation error at time k given Yk = {y
(i)    i ≤k }.

Some observations on the Kalman filter reconstructed
by Eqs. (11)-(14), which are intended to find the best (or
optimal) x(k) for the noisy stochastic (not deterministic)
state x(k) so that the variance of estimation error is as small
as possible, are shown in the following.

If all eigenvalues of the system matrix A are small
values, then the Kalman filtering scheme acts as a perfect
“filter”, which significantly filters out noise so that the
estimated system state x(k) approaches the noise-free sys-
tem state x (k) as close as possible.  Essentially, a properly
functioning Kalman filter is a low-pass filter with time-
varying gain K(k).  It therefore possesses both noise
rejection and smoothing properties [16].  The eigenvalue
distribution of A – K(k)C governs the “mean value” of the
reconstruction error (6), and the eigenvalue distribution of
I – K(k)C governs the convergence index of the variance
of the estimation error (14).  The eigenspectrum σ(I – K(k)
C) = {1, …, 1} indicates   P(k k ) converges to   P(k k – 1),
which means the Kalman filter scheme converges; however,
it by no means implies that the Kalman filter scheme con-
verges to a desired condition.  The criterion to minimize
the variance of the estimation error (5) by no means
implies that the best value of the state estimation error x (k)
= x(k) – x(k) is zero, due to the stochastic property.  Ho-
wever, it does mean that the smaller value of   P(k k ) is the
better one, under the pre-required assumption that the

Kalman filter functions properly.  The properly function-
ing Kalman filter, shown in Example 1, yields an accept-
able E[x (k)] and JK(k) ≈ trace[   P(k k )].  However, when-
ever the Kalman filter is not functioning properly, the
relation Eq. (10) does not hold anymore, due to the over-
excited or under-excited output measurements (to be shown
later).

To show how the magnitude of the eigenspectrum of
the system matrix A affects the function of the Kalman
filtering scheme, a system with a relatively large eigen-
spectrum is given in the following example.

Example 1. Let a linear discrete system be given as

  x1(k +1)
x2(k +1)

= 1.0 1.6
0 0.9

x1(k)
x2(k)

+
w1(k)
w2(k)

, (15a)

  
y(k) = 0.5 0

x1(k)
x2(k)

+v(k), (15b)

where Q = diag(0.01, 0.01), R = 0.1 and x(0) = [x1(0)
x2(0)]T has mean E[x(0)] = [0.2  0.2]T

This example and other similar higher-dimensional
systems illustrate that if eigenvalues of the system matrix
A have relatively large values, then the Kalman filter
scheme works as a “state estimator”, so that the estimated
state x(k) approaches the noisy system state x(k) as close
as possible.  Repeating the same process for this example
time after time shows that the variation ranges of x(k), x(k),
and JK(k), respectively, are much larger than the cases
when the system matrix A has relatively smaller eigen-
values.

To see how the output matrix C affects the Kalman
filtering scheme, let’s consider the same system shown in
Example 1, except for various different output matrices
C’s, respectively, as follows:

  y(k) =[1.0 0.0]x(k) +v(k), (16a)

  y(k) =[0.01 0.0]x(k) +v(k), (16b)

  y(k) =[0.0 0.0]x(k) +v(k). (16c)

Since there exists a trade-off between σ(A – K(k)C) and σ
(I – K(k)C), simulation results show that the Kalman
filtering scheme does not work properly as either filter or
state estimator, with the following steady-sate (started
from time step k = 5) values:

K(k) = [0.6315, 0.1529]T,   trace[   P(k k )] = 0.0824,

σ(A – K(k)C) = {0.6343 ± 0.4171 i},

and σ(I – K(k)C) = {1.0000, 0.3685}.
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Notice that the estimated system state  x1(k) diverges
from the system state x1(k).  Whenever, σ(A) is small and
K(k) is small, this is good for both Eqs. (6) and (14); never-
theless, whenever σ(A) is large and K(k) is small (large),
it is just good for Eq. (14) (Eq. (6)), but not for Eq. (6) (Eq.
(14)).

Based on the above observations, one may wonder if
we can appropriately weigh the measurable output signals;
i.e., weigh the output matrix C, so that the Kalman filter
can work properly as a filter/estimator? Of course, it can
be done, since weighting the measurable output signal
does not affect the given noisy system state x(k).  However,
the relationship between K(k) and C given in Eqs. (12)-
(14) is nonlinear, and there exists a trade-off between Eqs.
(6) and (14), which induces us to propose the minimal
principle Evolutionary Programming to obtain the optimal
weighting matrix for C so that the length of the estimation
error Jk(kf) is minimized, as in the next section.

Comparisons between   P(k k ) and JK(k) for cases
Eqs. (15b), (16a)-(16c), and another case

  y(k) =[2.0 0.0]x(k) +v(k) (16d)

are given, respectively, for k = 200 as

   J K(200) =1.0117 ×105, trace[P(200 200)]

  =0.0354 for C =[2.0 0.0],

  J K(200) =21.4432, trace[P(200 200)]

  =0.0824 for C =[1.0 0.0],

  J K(200) =0.3998, trace[P(200 200)]

  =0.2166 for C =[0.5 0.0],

  J K(200) =18.4752, trace [P(200 200)]

  =41.4474 for C =[0.01 0.0],

  J K(200) =60.8169, trace [P(200 200)]

  =221.8975 for C =[0.0 0.0],

The above results show that the trace[   P(k k )] can
not appropriately indicate a true time response whenever
the Kalman filter works under the over-excited (Eqs. (16a)
and (16d)) or under-excited (Eqs. (16b) and (16c)) output
measurements due to the inappropriate output matrix C.
As a result, the relationship trace[   P(k k )] = JK(k) does not
hold anymore under the above-mentioned cases.

Before we go to the next section, an observation on
the eigenspectum of the Kalman filtering scheme to the
state-space self-tuning control for stochastic systems is
briefly described as follows.

From a design point of view, a linear multivariable
stochastic system with unknown system parameters and
unknown noise statistics is first reformulated in a state-
space innovation form, or an auto-regressive moving
average model with exogerous input (ARMAX) form,
suitable for parameter identification and state estimation
[24].  Then the standard recursive extended least-squares
estimation algorithm [18] is used to identify the unknown
parameters.  As a result, the Kalman gain matrix and so the
system state can be estimated without solving a Riccati
matrix equation.  Therea-fter, an advantage control law
can be employed as the desired self-tuner, which is finally
implemented using the estimated system states in the
observer coordinates for state-feedback control of the
original multivariable stochastic system [24].  Con-
sequently, the Kalman filter is implemented along with a
controller in the form

  u(k) =– F 0(k)x0(k) +H 0(k)r(k),

where {  x0(k)} is the realization of a Kalman filtering state
sequence and {r(k)} is the reference orbit, with time-
varying coefficient matrices F0(k) and H0(k), respectively.
Therefore, the closed-loop eigenvalues can be well as-
signed to be suitably small to have the dead-beat tracking
property.

III. IMPROVED KALMAN FILTER:
AN EVOLUTIONARY PROGRAMMING

APPROACH

It is rather unexpected to realize that for the Kalman
filter to work properly the process noise w(k) should excite
all the states and the measurement noise v(k) should
corrupt all of the measurements (i.e. R > 0).  However, it
is not easy to quantify it due to the trade-off nonlinear
relationship between K(k) and C, and so it is between Eq.
(6) and Eq. (14).  For the Kalman filtering scheme to
function properly, i.e., to be well-excited by the weighted
innovation error

   e(k) =(ξC)x(k) – (ξC)x(k k ) +v(k) (17)

where

   ξ = ξij ξij ∈ ℜ P ×P, i =1, 2,…, P ,

and j = 1, 2, …, P, (18)

which represents a linear combination of low-bound and
upper-bound percentage changes of measurable output
signals, an evolutionary programming technique is first
proposed to minimize the Objective Function (OF) score

   
OF:=E[x(k f)

Tx(k f)] ≈ 1
k f

x i
2Σ

k =1

k f

Σ
i =1

n

(k), (19)
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where kf is the final time step of interest, and the Kalman
filter is constructed based on Eqs. (11)-(14), except that C
is weighted as ξC, as shown in the following.

Suppose that the natural numbers are expressed in
the scale of notation with radix R, so that

   n =a 0 +a 1R +a 2R
2 + +a mR m, 0 ≤a i ≤R . (20)

Write the digits of these numbers in reverse order, pre-
ceded by a decimal point.  This gives the number

   φR(n) =a 0R
– 1 +a 1R

– 2 + +a mR – m – 1. (21)

Holton [10] extended the two-dimensional result of Ban
Der Corput [27] to κ-dimensions, when R1, R2, …, Rκ are
mutually coprime [11].

Since φR(n) < 1, to satisfy this range, scaling any
varying parameter (e.g., a real number ε from its range

  ε ε  to  0 1  is required.  Let the interval real (ℑℜ )
matrix X ∈ ℑℜ n × m be a set of degenerate real matrices
defined by

   X =[L, U] ={[xij] l ij ≤xij ≤u ij;1 ≤ i ≤n, 1 ≤ j ≤m},
(22)

where L and U are constant real matrices.  We introduce
the variable εij, 0 ≤ εij ≤ 1 such that

   x ij = l ij +ε ij(u ij – l ij) (23)

and use the notation

   ε =[ε11, ,ε1m,ε21, ,ε2m,εn1, ,εnm].

Then the interval matrix X can be denoted as X(ε).  Let
ε11 = φ2(n), ε12 = φ3(n), ε13 = φ3(n), and so on, to construct
the desired initial population of size N (e.g., N = 50).

Define the minimal and maximal principles,
respectively, as follows:

Minimal principle: Search some x* in the solution set x, so
that the objective function (denoted by “OF”) value OF(x)
is minimal.
Maximal principle: Search some x* in the solution set x, so
that the objective function (denoted by “OF”) value OF(x)
is maximal.

The developed EP algorithm for the minimal or
maximal principle is described as follows:

1) Based on the quasi-random sequence (QRS) [11], form
an initial population P0 = [P1, P2, …, PN] of size N by
initializing each κ-dimensional solution vector Pi (used
as individual) in S.  Here, population means a set of
parameters we are looking for.

2) Assign each Pi, i = 1, …, N, an objective function score.
Arrange Pi, i = 1, …, N, in descending order, starting
from the best one generated from the objective function
score.

3) Assign each sorted Pi, i = 1, …, N, a fitness function
(denoted “FF”) score to weigh those high-quality indi-
viduals in the pool of individuals based on the obtained
objective function scores: For the maximal principle,
use

    
FF(OF(P i))=

β – β
OF(P i) – OF(P i)

(OF(P i) – OF(P i)) + β;

(24)

for the minimal principle, use

    

FF(OF(P i)) =
β – β

OF(P i) – OF(P i)
(OF(P i) – OF(P i)) + β

– 1

(25)

This function linearly maps the real-valued space
   [OF(P i), OF(P i)] to any appropriate specified space,
  [β, β] (e.g., [1, 10]), where β > 0, for weighting the

objective function scores.  Hence, the better an indi-
vidual is , the higher the objective function score that it
will have.

4) Calculate the probability function (PF) score of each Pi,
i = 1, …, N, using the fitness function score:

    
PF(FF(P i)) :=PF(P i) =

FF(P i)

FF(P i)Σi =1

N
. (26)

5) Mutate each Pi, i = 1, …, N, based on statistics to double
the population size from N to 2N; assign Pi + N the fol-
lowing value:

    P i +N, j :=P i, j(1 +sgn(N(0, 1))γ(1 – FP(P i)), (27)

where Pi, j is the jth element in the ith individual, N(µ,
σ2) is the Gaussian random variable with mean µ and
variance σ2, γ is a weighting factor for the percentage
change of Pi, j, and sgn(⋅) is the standard sign function.
Whenever Pi + N, j ∉  [   P j, P j ], some modification is
required:

   
P i +N, j :=

P j if P i +N, j < P j

P j if P i +N, j > P j

. (28)

Properly adjusting the weighting factor γ can possibly
avoid the undesired situation Pi + N, j ∉  [   P j, P j].  It is no-
table that γ heavily dominates the convergence rate of
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the EP.
6) Calculate the objective function score of each Pi + N, i =

1, …, N.  Rank the objective function scores of Pi, i = 1,
…, 2N.  Record Pi, i = 1, …, 2N, in descending order,
starting from the best individual in the pool of the
population.  The first N individuals are selected for the
next generation, in which the top one of each generation,
denoted    P g, i

* , always survives and is selected for the
next generation.  Whenever    P g, i

*  is no longer the best
during the evolutionary process, update it by the newly
generated best one.

7) Tune γ in the following way, to further avoid the search
be trapped into a local extreme:

   

γ:=

γ if OF(Pg – 1, i
* ) – OF(Pg, i

* ) > η

1.5γ if OF(Pg – 2, i
* ) – OF(Pg, i

* ) ≤ η

0.5γ if OF(Pg – 2, i
* ) – OF(Pg, i

* ) ≤ η and OF(Pg – 1, i
* ) – OF(Pg, i

* ) ≤ η

(29)

where η is some tolerable error bound and g is the
generation index.  Then, go to Step 2) and continue until
the desired extreme value OF(    P g, i

* ) cannot be further
improved and/or the allowable generation is obtained.
Then terminate the search process.

IV. OPTIMAL LINEARIZATION

Linearization such as Jacobian analysis is one of
many useful techniques for analysis and design of nonlin-
ear systems for local dynamic behavior [6].  The optimal
linearization was first proposed by Teixeira and Zak [26]
for continuous-time nonlinear systems followed by stabi-
lizing controller design for uncertain nonlinear systems
using fuzzy models.  The proposed optimal linearization at
the operating state, not necessarily the equilibrium state,
yields the exact linear (not affine) model.  Also it yields the
optimal linear model defined by some convex constraint
optimization criterion in the vicinity of the operating state.
For linearization, Taylor expansion is also a common
approach to use; however, a truncated Taylor expansion
usually results in an affine rather than linear model due to
the generally non-vanishing constant term.  One exception
is the trivial case where the equilibrium is zero, which,
however, cannot be ensured throughout a nonlinear process.
The objective of this section is to propose a new optional
linearization method for nonlinear systems given in the
discrete state-space form.  Basically, the derivation in this
section is similar to the one in Teixeira and Zak [26];
however, a further discussion on some relative topic of the
linearized model, such as the observability, is also given in
this section.

Consider the class of nonlinear systems described
by

  x(k +1) = f(x(k)), (30)

  y(k) =h(x(k)), (31)

where f : Rn → ℜ n and h : ℜ n → ℜ n are nonlinear with
continuous partial derivatives with respect to each of their
variables at all steps k, where x(k) ∈  ℜ n is the state vector
at time index k, and y(k) ∈  ℜ p is the measurable output
vector at time index k.  It is desired to have an exact local
linear model (A(k), C(k)) at an operating state of interest,
x(k) ∈  ℜ n, in the form of

  x(k +1) =A(k)x(k), (32a)

  y(k) =C(k)x(k), (32b)

where A(k) and B(k) are constant matrices of appropriate
dimensions.  The linearization of the nonlinear system
(30)-(31) is commonly represented by the truncated Tay-
lor expansion as

  x(k +1) – xeq(k +1) = f(xeq(k)) +A(k)[x(k) – xeq(k)]
(33a)

or

  x(k +1) =A(k)x(k) – A(k)xeq(k), (33b)

where xeq(k) is an equilibrium point.  Clearly, this is an
affine rather than linear model due to the generally non-
vanished constant term in Eq. (33b).  One exception is the
trivial case where the equilibrium is zero, xeq(k) = 0, which,
however, cannot be ensured throughout a nonlinear con-
trol process.  Suppose that we are given an operating state
x(k) ≠ 0; i.e., xi(k) ≠ 0 for i = 1, 2, …, n, which is not
necessarily an equilibrium of the given system (30)-(31).
The constraint x(k) ≠ 0 will be released after the discussion
on observability of the nonlinear system.  The goal is also
to construct an optimal local linear model, linear in x, such
that in a neighborhood of x(k), one has

f(x) ≈ A(k)x, (34)

h(x) ≈ C(k)x (35)

and

f(x) = A(k)x(k), (36)

h(x) = C(k)x(k). (37)

To satisfy these, let  a i
T denote the ith row of the matrix A

(k), and represent Eq. (36) as

   f i(x) ≈a i
Tx, i =1, 2,…, n (38)
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and

   f i(x(k)) ≈a i
Tx(k), i =1, 2,…, n, (39)

where fi : ℜ n → ℜ  is the ith component of f.  Then,
expanding the left-hand side of Eq. (38) about x(k) and
neglecting the second and higher order terms, one has

   f i(x(k))+[∇ f i(x(k))]T(x – x(k)) ≈a i
Tx, (40)

where ∇ fi(x(k)) : ℜ n → ℜ n is the gradient column vector of
fi evaluated at x(k).  Due to Eq. (43), Equation (40)
becomes

   [∇ f i(x(k))]T(x – x(k)) ≈a i
T(x – x(k)), (41)

in which x is arbitrary but should be “close” to x(k) so that
the approximation is good.  To determine a constant vec-
tor,  a i

T, such that it is “as close as possible” to [∇ fi(x(k))]
T and also satisfies  a i

Tx(k) = fi(x(k)), we may consider the
following constrained minimization problem:

   minE:= 1
2

∇ f i(x(k)) – a i 2

2
subject to a i

Tx(k) = f i(x(k)).

(42)

Notice that this is a convex constrained optimization
problem; therefore, the first order necessary condition for
a minimum of E is also sufficient, which is

   ∇ a i
E + λ∇ a i

(a i
Tx(k) – f i(x(k))) =0, (43)

  a i
Tx(k) = f i(x(k)), (44)

where λ is the Lagrange multiplier and the subscript ai in
∇ ai

 indicates the gradient is taken with respect to ai.  It
follows from Eq. (43) that

   a i – ∇ f i(x(k)) + λx(k) =0. (45)

Recall that we are studying the case where x(k) ≠ 0, so by
solving Eq. (45), we obtain

   λ =
xT(k)∇ f i(x(k)) – f i(x(k))

x(k)
2

2
. (46)

Substituting this into Eq. (45) gives

   
a i = ∇ f i(x(k)) +

f i(x(k)) – xT(k)∇ f i(x(k))

x(k)
2

2
x(k) (47)

where x(k) ≠ 0.  Similar derivation can be applied to Eq.
(35) to yield a similar result as

   
c i = ∇ h i(x(k)) +

h i(x(k)) – xT(k)∇ h i(x(k))

x(k)
2

2
x(k), (48)

where ci designates the ith row of the matrix C(k).  Note
that, at an operating state of interest x = x(k), the optimally
linearized model (f(x), h(x)) in Eqs. (36)-(37), which
contains the optimal parameter matrices (A(k), C(k)) ob-
tained from the respective optimal parameter vector (ai, ci)
in Eqs. (47)-(48), is identical to the exact nonlinear model
(f(x(k)), h(x(k))) in Eqs. (30)-(31).

The observability matrix for the nonlinear system
(30)-(31) is derived from the linearized model (A(k), C(k))
(36)-(37), resulting in

  

O =

C(k)

C(k)A(k)

C(k)A
2
(k)

C(k)A
n – 1

(k)

(49)

where  A (k) and C(k) are constructed via the following
rule: the ith columns of A(k) and C(k) are set to be zero
whenever the ith component of x(k) is zero.

The following example illustrates the aforemen-
tioned viewpoint.

Example 2. Based on the optimal linearization formula
(47)-(48), the linear model of the following system [2]

   
x1(k +1)
x2(k +1)
x3(k +1)

=

α1e
α 2x 1(k) +α3x2(k)x3(k)

α4x1(k) +α3x2(k)

0.5x3(k)

, (50a)

   y(k) =α5 x1
2(k) (50b)

at any operating state x(k) of interest is given by

   x1(k +1)
x2(k +1)
x3(k +1)

=
a 11(k) a 12(k) a 13(k)

α4 α3 0
0 0 0.5

x1(k)
x2(k)
x3(k)

, (51a)

where

   a 11(k) =α1α2e
α 2x 1(k) +[α1(1 – α2x1(k)) eα 2x 1(k)

– α3x2(k)x3(k)]x1(k) / x(k)
2

2
,

   a 12(k) =α3x3(k) +[α1(1 – α2x1(k)) eα 2x 1(k)

– α3x2(k)x3(k)]x2(k) / x(k)
2

2
,



Asian Journal of Control, Vol. 3, No. 4, December 2001 326

   a 13(k) =α3x2(k) +[α1(1 – α2x1(k)) eα 2x 1(k)

– α3x2(k)x3(k)]x3(k) / x(k)
2

2
,

and

   
y(k) = 2α5x1(k) – α5x1

3(k) / x(k)
2

2
– α5x1

2(k)x2(k)/ x(k)
2

2
–

– α5x1
2(k)x3(k) / x(k)

2

2
x(k), (51b)

where α i’s, i = 1, 2, 3, 4 are some reasonable non-zero
constant values.  Let xi(k) ≠ 0 for i = 1, 2, 3.  It is easy to
show the rank of the observability matrix is full whenever
xi(k) ≠ 0 for i = 1, 2, 3; i.e. rank(O) = n = 3, so it is
observable.  However, after few time steps,

   x3(k) =(0.5)kx3(0) →0.

When x(k) is specified to be x(k) = [x1(k)   x2(k)   0]T, it
results in

   x1(k +1)
x2(k +1)
x3(k +1)

=
a 11(k) a 12(k) α3x2(k)

α4 α3 0
0 0 0.5

x1(k)
x2(k)
x3(k)

:=A(k)x(k),

where

   a 11(k) =α1α2e
α 2x 1(k) +[α1(1 – α2x1(k)) eα 2x 1(k) ]x1(k) / x(k)

2

2

   a 12(k) =[α1(1 – α2x1(k))eα 2x 1(k)]x2(k) / x(k)
2

2

   
y(k) = 2α5x1(k) – α5x1

3(k) / x(k)
2

2
, – α5x1

2(k)x2(k) / x(k)
2

2
, 0

×   x(k) :=C(k)x(k).

It is then straightforward to verify that the linearized
system is observable since the rank (CT(k), AT(k)CT(k), (AT

(k))2CT(k))T  = n = 3.  However, directly substituting x3(k)
= 0 into the given system (50) yields

   
x1(k +1)
x2(k +1)
x3(k +1)

=

α1e
α 2x 1(k)

α4x1(k) +α3x2(k)

0

=
a 11(k) a 12(k) 0

α4 α3 0
0 0 0

× 

  x1(k)
x2(k)
x3(k)

:= A(k)x(k),

   
y(k) = 2α5x1(k) – α5x1

3(k) / x(k)
2

2
, –

, – α5x1
2(k)x2(k) / x(k)

2

2
, 0 x(k) :=C(k)x(k),

for convenience in checking the observability condition
(wherever x3(k) = 0).  Here,  A (k) and  C (k) are constructed
by replacing the third columns of A(k) and C(k) by zeros,
respectively.  Using (  A (k),  C (k)), it is easy to further
verify that the given system does not belong to the class of
observable systems.

Consequently, the constraint xi(k) ≠ 0 for i = 1, 2, …,
n can be released provided that the matrices (A(k), C(k))
are replaced by (  A (k),  C (k)) for a Kalman filtering scheme
and other design purposes, along with some decomposi-
tion technique in MatLab that can decompose the observ-
able and unobservable portions.

V.  EP-BASED KALMAN FILTERING
SCHEME FOR UNCERTAIN NONLINEAR

TIME-INVARIANT SYSTEMS

Consider the class of nominal discrete-time nonlin-
ear time-invariant systems

  x(k +1) = f(x(k)) +w(k)
y(k) =h(x(k))+v(k)

k = 0, 1, 2, …, (52)

where f(x(k)) and h(x(k)) are n × 1 and p × 1 nonlinear
vectors, and the noise sequences {w(k)} and {v(k)} satisfy
the same assumptions as in model (1)-(2).  Assume that
both f(x(k)) and h(x(k)) are continuously differentiable
with respect to each of their variables for all k.  Then, when
the system state x(k) is available, we can apply the pro-
posed optimal linearization method to obtain the follow-
ing linear model

  x(k +1) =A(k)x(k) +w(k)
y(k) =C(k)x(k) +v(k)

k = 0, 1, 2, …, (53)

where x(k) ∈ ℜ n is the system state, y(k) ∈ ℜ p is the
measurement data, A(k) ∈ ℜ n × n and C(k) ∈ ℜ p × n are
constant matrices obtained via the optimal linearization
of nonlinear terms (36)-(37).  Although A(k) and C(k) are
time varying, it does not imply the given nonlinear
system is time varying.  In addition, assume that the system
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initial state x(0) is a random vector independent of both
{w(k)} and {v(k)}, with E{x(0)} = x (0) and cov{x(0)} =
P(0) > 0.

If all constant matrices A(k) and C(k) as well as all Q,
R, x(0), and P(0) are known, then the classical Kalman
filter algorithm is given by [2]

  x(k +1 k +1) =A(k)x(k k ) +K(k +1)[y(k +1)

  – C(k)A(k)x(k k )]

  K(k) =P(k k – 1)CT(k)[R +C(k)P(k k – 1)CT(k)]– 1

  P(k k – 1) =A(k)P(k – 1 k – 1)A T(k) +Q

  P(k k ) =[I – K(k)C(k)]P(k k – 1)

  P(0 0 ) =P 0 (54)

When system (52) has unknown-but-bounded
uncertainties, it is described by an interval system of the
form [3,4,30]

   
xI(k +1) =(A 0(k) + ∆A(k))xI(k) +wI(k)

yI(k) =(C 0(k) + ∆C(k))xI(k) +vI(k)

k = 0, 1, 2, …, (55)

where A0(k) and C0(k) are matrices obtained via the
proposed optimal linearization of the nominal nonlinear
system, and ∆A(k) and ∆C(k) represent the bounded
parameter uncertainties, while the noise {wI(k)} and
{vI(k)} are the same mutually independent sequences as
before, except that they now have interval covariance
matrices

   Q =Q 0 + ∆Q ≥0 amd R =R 0 + ∆R >0.

In the following, for each realization of the interval
system (55), i.e., a degenerate (i.e., real) nonlinear system
actually appearing within the interval system (55), we use
the following notation:

   A r(k) ∈ A I(k) :=A 0(k) + ∆A(k), Cr(k) ∈ CI(k)

   :=C 0(k) + ∆C(k),

   Q r ∈ Q I :=Q 0 + ∆Q, R r ∈ R I :=R 0 + ∆R ,

   Kr(k) ∈ KI(k), xr(k) ∈ xI(k), yr(k) ∈ yI(k), xr(k) ∈ xI(k).

Thus, every realization satisfies the classical Kalman
filter:

  
xr(k +1 k +1) =A r(k)xr(k k ) +Kr(k +1)[yr(k +1) – Cr(k)A r(k)xr(k k )]

Kr(k) =P r(k k – 1)Cr
T(k)[R r +Cr(k)P r(k k – 1)Cr

T(k)]– 1

P r(k k – 1) =A r(k)P r(k – 1 k – 1)A r
T(k) +Q r

P r(k k ) =[I – Kr(k)Cr(k)]P r(k k – 1)

P r(0 0 ) =P 0

,

(56)

where yr(k) is the measured output of the following realiza-
tion

  
xr(k +1) =A r(k)xr(k) +wr(k)
yr(k) =Cr(k)xr(k) +vr(k)

k = 0, 1, 2, … .

This framework will be used for the EP-based Kalman
innovation filter to be further developed below, which
requires the same conditions as the classical KF algorithm
(54).

Let the interval Kalman filter be

  xI(k +1 k +1) =A I(k)xI(k k ) +KI(k +1)[yI(k +1)

  – CI(k)A I(k)xI(k k )], (57)

which contains every realization of Eq. (56) as the degen-
erate case.  The main objective of this paper is to find the
“best” nominal filter determined by some nominal nonlin-
ear system represented by (   A r

*(k),   Cr
*(k),   Kr

*(k)), not nec-
essarily the nominal filter determined by the nominal
nonlinear system represented by (A0(k), C0(k), K0(k)), such
that the maximum filtering error Jk(kf) is minimized;
namely,   J K r

*(kf) = min – max Jk(kf),
where

  J k(k f) =J k
(1)(k f) :=E{(x r(k f) – E[x r(k f)])

T(x r(k) – E[x r(k f)])}

   if E[x r(k f)] /→ 0 (58)

or

   J k(k f) =J k
(2)(k f) :=E[x r

T(k f)x r(k f)] if E[x r(k f)] →0
(59a)

   ≈ 1
k f

x i
2(k)Σ

k =1

k f

Σ
i =1

n

, (59b)

where x r(kf) = [  x 1(k), …,  x n (kf)]
T and kf is the final time step

of interest.  Here

  x r(k) =xr(k) – xr, K r
*(k k )

xr(k +1) = f r(xr(k)) +wr(k)
yr(k) =h r(xr(k)) +vr(k)

(60a)
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and

  xr, K r
*(k +1 k +1) =A r

*(k)xr, K r
*(k k ) +Kr

*(k +1)[yr(k +1)

  – Cr
*(k)A r

*(k)xr, K r
*(k k )], (60b)

in which   xr, K r
*(k k ) is the optimal estimate of the realiza-

tion xr(k) when the practically implementable optimal
Kalman filter (   A r

*(k),   Cr
*(k),   Kr

*(k)) is used based on the
filtering algorithm (56).  Notice that same {   A r

*(k),   Cr
*(k)}

are used through Eq. (56) for the design phase of KF (see
Level 1: Design Level); however, the respective {Ar(k), Cr

(k)} in Eq. (60a) are not equal to {   A r
*(k),   Cr

*(k)} in Eq. (56)
for the test phase of the designed KF (see Level 2: Test
Level), respec-tively, in general.  Theoretically, when the
Kalman filter (60) is replaced by Eq. (3), the explicit
representation of   J k

(2)(k + 1) is given by

  E[x(k +1)x T(k +1)] =E{[(A r
*(k) – Kr

*(k)Cr
*(k))x(k)

   +(∆A r(k) – Kr
*(k)∆Cr(k))x(k)]

   ×[(A r
*(k) – Kr

*(k)Cr
*(k))x(k)

   +(∆A r(k) – Kr
*(k)∆Cr(k))]T}

  +Kr
*E[v(k)vT(k)]Kr

* T +E[w(k)wT(k)]

  =E{[(A r
*(k) – Kr

*(k)Cr
*(k))x(k)

   +(∆A r(k) – Kr
*(k)∆Cr(k))x(k)]

   ×[A r
*(k) – Kr

*(k)Cr
*(k)]x(k)

   +(∆A r(k) – Kr
*(k)∆Cr(k))xT(k)}

   +Kr
*(R r + ∆R r)Kr

* T +Q r + ∆Q r, (61)

where ∆Ar(k) = Ar(k) –   A r
*(k) and ∆Cr(k) = Cr(k) –   Cr

*(k).
Nevertheless, it is a really difficult task to solve Eq. (61).
A more complex explicit form can also be derived for the
case of filter (60).  Due to the complication for solving the
above-mentioned explicit formulas, it is desired to replace
Eq. (59a) by Eq. (59b).  Some interpretation on the objec-
tive of this paper is further given as follows.

When system (52) has uncertainties described by an
interval model, it takes on the form

  
xI(k +1) = f I(xI(k)) +wI(k)

yI(k) =h I(xI(k))+vI(k)

k = 0, 1, 2, …, (62)

where f I(xI(k)) and hI(xI(k)) are interval nonlinear vectors

as defined before, with continuous partial derivatives with
respect to each of their variables at all steps k.  Suppose that
the uncertainties and the dominant parts of the system
nonlinearities can be confined into (and only into) the
interval matrices AI(k) and CI(k).  Under the assumption
that   xr(k k ) = xr(k), it yields  A r(k) = Ar(k) and  Cr(k) = Cr

(k), where {  A r(k),  Cr(k)} and {Ar(k), Cr(k)} are matrices
obtained via the   xr(k k )-based and xr(k)-based optional
linearizations of Eq. (62), respectively.  Nevertheless, due
to the fact that   xr(k k ) ≠ xr(k), in general, there always
exist some perturbations between {  A r(k),  Cr(k)} and {Ar

(k), Cr(k)}, denoted by ∆  A r(k) = Ar(k) –  A r(k) and ∆  Cr(k)
= Cr(k) –  Cr(k), which also yield a similar representation
to Eq. (55).  Therefore, the aforementioned objective in
this paper can be further extended to work for systems
represented by Eqs. (55) to (62).

The proposed EP-based optimization process for
finding the “best” nominal filter, among virtually infi-
nitely many others in an interval system, is summarized
and described as follows.

Consider the uncertain discrete-time nonlinear time-
invariant system (62).  The objective here is to find the
practically implementable “best” nominal Kalman filter
(60) yielding the desired min-max   J K r

*(kf).  The procedure
of the desired EP-based design-test scheme is as follows.

Level 1. Design Level-Design the Filter
1) Generate a κ-dimensional initial population P of size N,

denoted by IP = {Pd, 0, i; i = 1, 2, …, N}, and a spare
population of size N′ (need not be equal to N), denoted
by SP = {Pd, 0, i: i = N + 1, N + 2, …, N + N′}.  Here, the
index 0 is the initial generation index g = 0 and d
indicates that the quantity is at the design level.  This
task is done by using QRS to initialize each individual
Pd, 0, i ∈  IP ∪  SP, for i = 1, …, N, N + 1, …, N + N′.

2)  Use the proposed optimal linearization formulas (47)-
(48); except for the replacement of the unmeasurable xr

(k) by the measurable   xr(k k ), to form the linear model
of Eq. (62), and apply the classical KF scheme (56) to
obtain the KF gain Kr(k), so that the realized Kalman
filter of each individual Pd, 0, i is constructed based on
Eq. (56).

3) Assign to each Pd, 0, i an objective function (OF) score:

    maxJ KF( ⋅ )(k f) =OF(Pt, g, i′
* ;Pd , g, i, Kd , g, i

* ),

where the index t indicates that the quantity is at the test
level (see Level 2 below).  This OF can be the one
defined in Eq. (58) or (59).  By going through the test
level (Level 2 described below), we can find the above
maximal objective function value.

4) Receive the message from the test level about the
degenerate Kalman filter KF (Pd, g, i,  Kd, g, i) so obtained,
if it satisfies the stability requirement.  If not, this matrix
has to be replaced by one from the spare population SP,
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until stability is achieved.
5) Apply the minimal principle operator of EP to create a

new population of higher quality.  Go to Step 2) at this
level and change the step index from generation g = 0
to g = 1.  Continue the programming until the minimum
value of max JKF(⋅)(kf) is reached.  This resulting stage
will provide the associated “best’’ nominal Kalman
innovation filter KF(    P d , g, i

* ,   Kd , g, i
* ).  At this stage, the

corresponding min – max JKF(⋅)(kf) cannot be further
improved or the allowable tolerance is met).

Level 2. Test Level - Test the Designed Filter
1) Generate a κ-dimensional initial population of size M

(need not be equal to N or N′), by using QRS to initialize
each individual Pt, g′, i′ ∈  S, for i′ = 1, 2, …, M.

2) Assign to each Pt, g′ , i′, i′  = 1, 2, …, M, an objective
function (OF) score.  This OF can be the one defined in
Eq. (58) or Eq. (59).  If some OF score is much higher
than others, it means the Kalman filter being tested is
infeasible.  In this case, the stability is consequently not
guaranteed, so send a message to Level 1 about this
situation and then terminate the process at this level;
otherwise, continue the process.

3) Apply the maximal principle operator of the EP to
create a new population of higher quality.

4) Go to Step 2) at this level and repeat the steps, until the
maximal value of JKF(⋅)(kf) is reached.  This resulting
stage will provide the max JKF(⋅)(kf) under the realization
of the interval system in terms of     P t, g ′, i′

* , which cannot
be further improved (or the allowable tolerance is met).

5) Inform Level 1 about the finding of an individual with
the highest quality at this level,     P t, g ′, i′

*  (which is actually
the worst-case of estimation error and will be mini-
mized at Level 1, as discussed above).

VI. ILLUSTRATIVE EXAMPLE

Example 3. Consider the nominal discrete-time nonlinear
time-invariant system [2]

  x(k +1) = f(x(k)) +w(k)
y(k) =h(x(k)) +v(k)

(63)

where

   
f(x(k)) =

α10e
α 20x 1(k) – 0.5x2(k)

– 0.5x1(k) – α30x3(k)
=

0.02e– 2.2x 1(k) – 0.5x2(k)

– 0.5x1(k) – 0.5x3(k)

   h(x(k))=α40x1
2(k) :=1.0x1

2(k),

Q0 = diag(q11, q22) = diag(0.01, 0.01), and R0 = r11 = 0.1.
The optimal linear model of f(x(k)) and h(x(k)) is given,
respectively, by

  
f(x(k k )) =A(k)x(k k ) :=

a 11(k) a 12(k)
a 21(k) a 22(k)

x1(k k )

x2(k k )

where

   a 11(k) =α10α20e
α 20x 1(k k )

   +α10[1 – α20x1(k k )]eα 20x 1(k k )x1(k k) / x(k k )
2

2

   a 12(k) =α10[1 – α20x1(k k )]eα 20x 1(k k )x2(k k) / x(k k )
2

2

   a 21(k) =– 0.5x1(k k ), a 22(k) =α30,

and

  h(x(k k ))=C(k)x(k k )

where

   
C(k) = 2α40x1(k k ) – α40x1

3(k k ) / x(k k )
2

2

, –

, – α40x1
2(k k )x2(k k ) / x(k k )

2

2

.

Here,   x(k k ) is the estimated system state based on the
following Kalman filter scheme

  x(k +1 k +1) =A(k)x(k k ) +K(k +1)[y(k +1)

  – C(k)A(k)x(k k )]

  K(k) =P(k k – 1)CT(k)[R +C(k)P(k k –1)CT(k)]– 1

  P(k k – 1) =A(k)P(k – 1 k – 1)A T(k) +Q

  P(k k ) =[I – K(k)C(k)]P(k k – 1)

  P(0 0 ) =P 0. (64)

Let x(0) = [0.2, 0.2]T,   x(0 0 ) = [0.45  0.25]T, and

  P(0 0 ) = diag(0.01, 0.01).  Simulation results based on
the Kalman filtering scheme (63)-(64) are given by parts
shown in Fig. 1, where E[x (kf)] = E[x(kf) –   x(k f k f )] = [–
0.0096, 0.0031]T, and Jk(kf) = 0.0508.  Figure 1 shows that
the above KF scheme provides the characteristics of over-
excited innovation error, due to the inapposite output
measurement h(x(k)).  To overcome the above drawback,
the EP-based improved KF scheme, newly proposed in
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Sec. 3, is employed to yield the optimal output measure-
ment h*(x(k)) = 0.0158  x1

2(k) with satisfied state responses
where E[x (kf)] = [0.0004, –0.0071]T and Jk(kf) = 0.0312,
given by parts shown in Fig. 2, in which the output measu-
rement h(x(k)) is weighted by hI(xI(k)) := (ξIα40)  x1

2(k) =
 α4

I
 x1

2(k), where the interval range of  α4
I  is given by  α4

I  = [1/
200  1] α40 = [0.0050  1.0000].

Next, consider the discrete-time nonlinear time-
invariant system with unknown-but-bounded plant uncer-
tainties and noise uncertainties

  
xI(k +1) = f I(xI(k)) +wI(k)

yI(k) =h I(xI(k)) +vI(k)
(65)

where

   

f I(xI(k)) =
α1 α1 e α 1 α 2 x 1(k) – 0.5x2(k)

– 0.5x1(k) + α3 α3 x2(k)
,

  α1 =0.9α10,α1 =1.1α10,α2 =0.9α20,α2 =1.1α20,

  α3 =0.9α30,α3 =1.1α30;

   h I(xI(k)) = α4 α4 x1
2(k),α4 =0.9(0.0158),α4 =1.1(0.0158);

   Q I =diag ([α5 α5 ] [α6 α6 ]),α5 =α6 =0.8q 11,

   α5 =α6 =1.2q 11;

   R I = α7 α7 ,α7 =0.8r11,α7 =1.2r11.

It is desired to find a practically implementable
“best” KF (60b) for any possible parameter set (fr(xr(k)), hr

(xr(k)), wr(k), vr(k)) of the uncertain system (65), so that the
worst-case mean-square of the state estimation Eq. (58) or
Eq. (59) is minimized.  Also, the worst-case possible set (fr
(fr(xr(k)), hr(xr(k)), wr(k), vr(k)) of the uncertain system
with respect to the implemented “best” nominal filter is
designed to be determined for demonstrating the effective-
ness of the proposed filtering scheme.

Following the design-test procedure described in the

previous section, in which κ = 7, N = N′ = M = 50,   β, β
= [1, 10], γ′s for the minimal principle and the maximal
principle are –1.2 and 0.8, respectively, the “best” Kalman
filter is constructed based on the following scheme:

  xr, K r
*(k +1 k +1) =A r

*(k)xr, K r
*(k k ) +Kr

*(k +1)[yr(k +1)

  – Cr
*(k)A r

*(k)xr, K r
*(k k )], (66)

where   A r
*(k),   Cr

*(k), and   Kr
*(k) are pre-computed (i.e. in an

off-line way) based on the following realized nominal
nonlinear system for the filter, denoted by xf(k + 1) and
filter pair:

system: 

  
x f(k +1) =

0.0202e– 2.2136x f, 1(k) – 0.5xf, 2(k)

– 0.5xf, 1(k) – 0.5468xf, 2(k)
+wf(k)

(67)

  y f(k) =0.0142xf, 1
2 (k) +vf(k),

where Qf = diag(0.0100, 0.0111), Rf = 0.1156, and xf(0) =
[0.2, 0.2]T;

filter:   x f, K r
*(k +1 k +1) =A r

*(k)xf, K r
*(k k )

  +Kr
*(k +1)[yf(k +1) – Cr

*(k)A r
*(k)xf, K r

*(k k )] (68)

Fig. 1. State responses for α4 = 1.0 – x1(k): system state, x 1(k): esti-
mated system state, and  x 1(k): noise-free systems state.
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Fig. 2. State responses for α4 = 0.0158 – x1(k): system state, x 1(k):
estimated system state, and  x 1(k): noise-free systems state.
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where

   

A r
*(k) =

α1α2e
α 2x f, K r

*, 1(k k ) +α1[1 – α2xf, K r
*, 1(k k )eα 2x f, K r

*, 1(k k )xf, K r
*, 1(k k ) / xf, K r

*(k k )
2

2

,

– 0.5xf, K r
*, 1(k k ),

   
α1[1 – α2xf, K r

*, 1(k k )eα 2x f, K r
*, 1(k k )xf, K r

*, 2(k k ) / xf, K r
*(k k )

2

2

α3

α1 = 0.0202, α2 = –2.2136, α3 = –0.5468;

   

Cr
*(k) =

2α4xf, K r
*, 1(k k ) – α4xf, K r

*, 1
3 (k k ) / xf, K r

*(k k )
2

2

– α4xf, K r
*, 1

2 (k k )xf, K r
*, 2(k k )/ xf, K r

*(k k )
2

2

T

,

α4 = 0.0142;

  Kr
*(k) =P r

*(k k – 1)Cr
* T(k)[R r

* +Cr
*(k)P r

*(k k – 1)Cr
* T(k)]– 1,

(69)

  P r
*(k k – 1) =A r

*(k)P r
*(k – 1 k – 1)A r

* T(k) +Q r
*,

  P r
*(k k ) =[I – Kr

*(k)Cr
*(k)]P r

*(k k – 1),

  P r
*(0 0 ) =P 0

* =diag (0.01, 0.01), x(0 0 ) =[0.45, 0.25]T.

The yf(k + 1) in Eq. (68) is any measured output of the
realized interval nonlinear system (67).  The worst-case
realization yr(k) of Eq. (65) is also given by

  
x(k +1) =

0.0198e– 2.3385x 1(k) – 0.5x2(k)

– 0.5x1(k) – 0.5380x2(k)
+w(k), (70)

  y(k) =0.0143x1
2(k) +v(k),

where

Q = diag(0.0091, 0.0083) and R = 0.1129.

Based on the proposed design-test procedure, some quite
satisfactory simulation results on the realized worst-case
system (70) to the obtained “best” Kalman filter (66)-(69)
are shown by parts in Fig. 3.

VII. CONCLUSIONS

For the Kalman filtering scheme to work properly
for both discrete-time linear and nonlinear systems, it is

required to have well-excited innovation error.  An evolu-
tionary programming technique is first proposed in this
paper to minimize the mean of squared state estimation
errors at the final time step of interest.  A new optimal
linearization methodology is also presented in this paper
for the above-mentioned design goal.  Based on the ana-
lytically linearization model at each sampling time, the
observability of the specific class of discrete-time nonlin-
ear nominal systems is discussed in this paper.  Furthermore,
the evolutionary-programming-based Kalman filtering
scheme for uncertain discrete-time nonlinear systems is
newly proposed in this paper.  The design-test procedure
based KF scheme utilizes the global-search capability of
EP to find the practically implementable “best” nominal
filter for the discrete-time nonlinear uncertain system.
The worst-case realization of the discrete-time nonlinear
uncertain system represented by the interval form with re-
spect to the “best” nominal filter is also given in this paper.
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