
32� IEEE POTENTIALS0278-6648/14/$31.00©2014IEEE

hile not explicitly stated in the
U.S. Constitution, the rights of
privacy for many aspects of our

lives including religious beliefs, per-
sonal possession, and personal informa-
tion are protected under the Bill of
Rights. Nonetheless, news about differ-
ent forms of privacy invasion has
become a daily affair. From the sale of
personal information to identity theft,
from Google and YouTube surrender-
ing user data to the mining of phone
metadata  by  the  National  Security
Agency, the number of ways that our
privacy can be invaded seems to
increase at an alarming rate.

One of the reasons for such erosion is
the significant advancement in comput-
ing technologies for collecting, storing,
and sharing personal information among

individuals, private sectors, and govern-
ment agencies. Anyone can now carry
thousands of songs, hundreds of pictures,
and hours of videos in a small smart-
phone, ready to be exchanged, some-
times unknowingly, with anyone in the
world. The focus of privacy protection
often falls on medical or financial records,
but it is the multimedia signals—audio,
images, and videos—that are driving the
entire market of distributed computing
while their privacy implications remain
poorly understood.

The threats, however, are real. The
advance in pattern recognition algorithms
such as searchable surveillance or auto-
matic speech recognition systems have
turned the once labor-intensive processes
into powerful automated systems. They
can easily recognize objects of interest
like faces, voices, and other biometric sig-
nals with high fidelity. Correlating such
information with location data such as

geo-tags or radio-frequency identification
and other information on social networks
allow hackers to easily track the activities
and associations of any individuals. The
matter is further complicated by the
unprecedented effort of the government
in monitoring the activities of private citi-
zens to fight terrorism. It is thus impera-
tive to develop a comprehensive privacy
protection framework for personal multi-
media data without jeopardizing our
homeland security.

While new legislature and policy
changes are essential elements of such a
framework, technologies are playing an
equally pivotal role in safeguarding pri-
vate information. There are two main
technical challenges in protecting multi-
media data. First, as signal capturing
devices and wireless networks become
ubiquitous, diverse applications from
multimedia e-mails and blogging to
large-scale surveillance networks begin
to demand some form of privacy protec-
tion. A comprehensive framework is
needed to identify appropriate sensitive
information in different applications and
to provide different levels of protection
depending on the role of each user in
the system.

Second, from simple enhancement
to sophisticated pattern recognition,
multimedia data requires various signal
processing operations to become
useful. The current cloud and peer-to-
peer computing platforms have pro-
vided ubiquitous data storage for
multimedia data. In the future, soft-
ware developers will undoubtedly take
advantage of the enormous power of
various distributed computing plat-
forms in offering different types of
software services to process these data.
It is easy to see why privacy is needed
in any distributed multimedia process-
ing service platform—a user may want
to enhance or process a video that was
taken using a smartphone but lacks the Date of publication: 30 April 2014

Digital Object Identifier 10.1109/MPOT.2013.2295652

© can stock photo/maxkabakov

Protecting privacy
in signal processing

Zhaohong Wang and Sen-ching S. Cheung

W

MAy/June 2014� 33

required capability and algorithms. A
multimedia software vendor offers pro-
prietary software for the job and
charges the user based on the duration
of the video needed to be processed.
The two parties come to the cloud
server and take advantage of its enor-
mous power and storage. The user
clearly wants to protect any private
information in his/her video while the
software vendor needs to prevent the
theft of its proprietary algorithm. The
key challenge is to design an appropri-
ate privacy protection scheme so that it
will not compromise any legitimate
processing of the data.

In this article, we provide a short tutorial
on secure multiparty computation (SMC)
for providing privacy protec-
tion of sensitive information
in distributed processing of
multimedia signals. SMC is an
active  area  of  research  in
cryptology. In recent years, it
has been successfully applied
to solve many privacy protec-
tion problems in distributed
signal  processing  including
face  recognition,  iris  match-
ing,  image  denoising,  video
surveillance,  visualization,
and  information  retrieval.
Our goal is to introduce the
core building blocks of SMC
that can be used to build sophisticated
signal processing algorithms.

Background
Following the example introduced in

the previous section, we consider a dis-
tributed computing task to have at least
two participants: 1) a user with a private
input requires a service from 2) a vendor
with a proprietary software algorithm.
For simplicity, we assume that the ven-
dor’s secrets are the key parameters used
in an otherwise well-known algorithm.
For example, the parameters could be
the tap values of a sophisticated filter or
thresholds and weights in a neural net-
work. The privacy objective is as fol-
lows: the user and the vendor do not
trust each other and would like to pre-
vent each other from knowing anything
about their own secret information.

The simplest form of an SMC is a two-
party SMC, as shown in Fig. 1(a), where
the information exchanged between the
two parties does not disclose any infor-
mation about the secrets. This is the
model used in encrypted-domain tech-
niques, with the most commonly used
one being the homomorphic encryption

(HE) described in the section “Homomor-
phic encryption.” An HE system allows
operations to be performed directly on
encrypted signals.

In mobile applications, either the
user or the vendor may have enough
computation power to carry out the task.
As such, some of the computation needs
to be outsourced to a centralized cloud
computer or a distributed peer-to-peer
network of computers. This is a three-
party SMC, as shown in Fig. 1(b). HE can
be used for the three-party case as well
but a more efficient technique called
Shamir’s secret sharing (SSS) can be
used. SSS will be introduced in the sec-
tion “Shamir’s secret sharing scheme.”
While the three-party SMC is more flexi-

ble in offloading complex computation,
it involves more participants in the com-
putation which pose additional require-
ments in securing the communication.

To clearly understand how these
techniques can provide security to pri-
vate data, we have to clarify what “secu-
rity” means. It is derived from Shannon’s
secure communication model as shown
in Fig. 2. This model consists of a sender

,A wanting to send a random message
m to a receiver ,B through an insecure
channel. The message m is called a
plaintext taken from a finite set, called
plaintext space M.

Since the channel is insecure, the
transmission between A and B may be
intercepted by an eavesdropper .E To
protect the message, A applies a map-
ping Ek on m to generate ,c i.e.,

() .E m c Ek k= is called an encryption
function. k is called the key, also treated
as a random quantity taken from the
key-space K. c is the ciphertext, which
is an element of the ciphertext space C.
B must be able to retrieve the plaintext
message m from the ciphertext c by
means of the decryption function

: () .D D c mk k = This is a symmetric cryp-

tosystem in which A and B share the
same secret key which is not available to

.E The cryptosystem system is called
information-theoretic secure if the
ciphertext c is statistically independent
of the plaintext .m For an information-
theoretic secure cryptosystem, it is
impossible for the adversary E to learn
any information about m from c , regard-
less of the capability of .E

In practice, symmetric cryptosystems
are not very useful for secret communi-
cation. First, a separate secure channel
must exist for the exchange of secret
keys. Second, the key must be randomly
selected for each message so as to main-
tain statistical independence. Instead,
asymmetric or public-key cryptosystems
are used, where the encrypting key is dif-
ferent from the decrypting key. The
encrypting key is made public so that
any sender can send secret message to
the receiver. Unfortunately, there is no
known public-key cryptosystem that is
information-theoretic secure. The best
schemes can only provide computational
security—the adversary cannot decrypt
the ciphertext provided that she only has
access to “limited” computational
resource. The security of computational-
secure cryptosystems strongly depends
on the length of the key and it is not
uncommon for practical systems to use
keys with hundreds or even thousands of
bits. Factoring in the progress of central
processing unit speeds, the security of a
computational-secure cryptosystem is
usually specified by an estimate of the
year when it can be hacked by the most
powerful computer. For example, it is
estimated that the 2048-b RSA system will
become insecure by the year 2030.

Another dimension of security is the
modeling of adversarial actions. If all E
does is to eavesdrop without disturbing
the flow of information, such adversarial
behaviors are described as semihonest.
On the other hand, a malicious adversary
may inject wrong information or hack
into the sender/receiver to terminate the
transmission or computation prematurely.
Such malicious behaviors are difficult to
combat. We will only focus on the semi-
honest adversaries.

The SMC paradigm extends the afore-
mentioned secure communication model
to include computation. SMC specifies the
computation and communication proce-
dure for each of the participants involved.
Like the communication model, all infor-
mation exchanged among parties is
encrypted to protect against eavesdrop-
ping. Unlike the communication model,

From the sale of personal information to
identity theft, from Google and YouTube

surrendering user data to the mining
of phone metadata by the National

Security Agency, the number of ways
that our privacy can be invaded seems

to increase at an alarming rate.

34� IEEE POTENTIALS

the goal of SMC is not to com-
municate but to process the
input signal and produce an
output signal for the user. As
such, the receivers are treated
as adversaries and do not pos-
sess the key to decrypt the
ciphertext. Instead, the spe-
cially designed cryptosystems
used in SMC possess a special
property called homomor-
phism that allows the receivers
to operate directly on the
ciphertext.

For example, the user wants
the receivers to compute a func-
tion (,)f x x1 2 on the two plain-
text numbers x1 and x2 but the
receivers only have access to the
corresponding  cipher text
c E x1 1= ^ h and .c E x2 2= ^ h A
homomorphic  cryptosystem
supports a ciphertext function

(,)g c c1 2 such that

	 , , .g c c E f x x1 2 1 2=^ ^^h hh �

By executing (,)g c c1 2 and
then sending the result back to
the user for decryption, the receivers
achieve the computation goal without
learning anything about the inputs.

Next, we discuss how homomorphism
is realized in both HE and SSS. For sim-
plicity, we only consider how addition
and multiplication on fixed-point num-
bers can be realized in an encrypted
domain. More sophisticated algorithms,
however, can be realized by using these
operations as building blocks.

Homomorphic encryption
HE is a family of public-key crypto-

systems that can be used in two-party
SMC. The security is computational, and
its strength depends on the key length
and the hardness of the underlying
mathematical   construct ion.  Unt i l
recently, most HE systems were homo-
morphic with respect to either addition
or multiplication but not both. The first
result of a fully HE (FHE) was demon-
strated by Craig Gentry in 2009. This
discovery has sparked a flurry of
research activities but a practical FHE
implementation remains elusive. As
such, we will focus on a popular HE
called the Paillier system, which is
homomorphic with respect to addition.
We will describe the mathematical prin-
ciples behind Paillier, its additive homo-
morphism, and how it can be extended
to handle multiplication.

Like many other cryptosystems, Pail-
lier is defined using modular arithmetic.
In modular-N arithmetic, any integer a
is equivalent to its remainder b in

, , N0 1f -" , after dividing by ,N i.e.,
a kN b= + for some integer .k We use
the following notation to denote this
equivalence relation:

.moda b N/

A special function ()N{ in modular
arithmetic, called the Euler’s totient func-
tion, plays a very important role in the Pail-
lier system. It represents the number of
positive integers smaller than N that are
relatively prime to .N One of its key prop-
erties, stated here without proof, is that

	 modr N1N /{^ h � (1)

for any positive integer r relative prime
to .N When N is a product of two very
large primes (A secure Paillier system
requires the key to be between 1,024
and 2,048 b, resulting in N between
10308 and 10617), computing its Euler’s
totient function is very difficult. It is the
difficulty of this problem that provides
the computational security of the Pail-
lier system.

In the Paillier system, the
public key for encryption is

,N and the private key for
decryption is () .N{ Given a
p l a i n t e x t   numbe r   x   i n

, , ,N0 1f -" ,   the  encryption
is defined as follows:

	 , () modE x r N r N1 x N 2$/ +^ h ,

where ,r relatively prime with
,N is randomly selected for

each invocation of the encryp-
tion function. The encryption
formula is the key to under-
standing Paillier. First, notice
that the modulus changes from
N to .N2 This allows for easy
decryption as we will later
explain. Second, the secret
number x is hidden in the
power of the constant .N1+
This enables additive homo-
morphism because the cipher-
text of the sum of two plaintext
numbers is precisely the prod-
uct of the two corresponding
ciphertext:

, , ()

()

, .

mod

E x r E x r N r

N r N

N r r

E x x r r

1

1

1

x

x

x x N

1 1 2 2 1

2
2

1 2

1 2 1 2

N

N

1

2

1 2

$ $

$ $

$

/

/

+

+

+

= +

+

^ ^
^

^
^

h h
h

h
h

Third, the use of the random number
r in the encryption process is particularly
crucial. This number is selected by the
sender and is not shared with anyone. It
essentially randomizes the ciphertext to
an extent that the ciphertext for the same
plaintext x would be different every time
the encryption function is called. This
prevents the so-called chosen plaintext
attack in which the eavesdropper attempts
to hack the system by building a lookup
table between known plaintext and the
corresponding ciphertext.

On the other hand, the randomness
injected to the plaintext must be removed
during the decryption process. This is
where the private key ()N{ comes in.
The first step of the decryption is to raise
the ciphertext by a power of ():N{

	 , .modE x r N r N1()N x N N N 2:/ +{ { {^ ^ ^ ^h h h h �

There are two terms in the product on
the right-hand side of the equation. Let us
consider the second term rN N{^ h first.
From (1), we know thatr kN1N = +{^ h for
some positive integer .k Thus,

Fig. 1 (a) Two-party and (b) three-party SMCs.

User Vendor

(b)

User Vendor

Cloud P2P

or

(a)

MAy/June 2014� 35

	

multiples of

with
.mod

r kN
kN N

k
N

1
1

2
1

>

N N N

k2

2/

=

=

+

+ +

{ ^^ hh

The second equation is based on the
binomial expansion. As all but the first
term have N2 as a factor, taking modulo-
N2 eliminates them, reducing the result
to 1. In other words, raising the cipher-
text by the power of the private key
annihilates the randomness injected into
the ciphertext. Coming back to the first
term ,N1 x N+ {^ ^h h we can again use the
binomial expansion to simplify

() multiples

of with k

.mod

N xN N

N

xN N N

1 1

2

1

x N

k

2

$

/

{

{

+ = + +

+

{ ^

^

^ h

h

h

Combining the simplification of these
two terms together, we obtain

	 , .modE x r xN N N1()N 2/ {+{^ ^h h

Now, the decryption of ,E x r^ h can
be easily realized as follows:

	
,

.
mod

modx
N N

E x r N
N

1()N 2
2/

{

-{

^
^

h
h

The fraction on the right-hand side is
computed in the integer domain as N
does not have a multiplicative inverse in
modular-N2 arithmetic. This completes
the decryption process.

The additive homomorphic property
is very useful in performing joint compu-
tation. As mentioned before, given two
ciphertext numbers (to simplify our nota-
tion, we have dropped the random com-
ponent in the encryption as it does not
affect the result) E x1^ h and ,E x2^ h the
receiver can implement plaintext addition
as .E x E x E x x1 2 1 1$ = +^ ^ ^h h h If the
receiver also has a private input a itself, it
can be added to x1 by first encrypting it
as E a^ h and then computing E x1 $^ h

.E a E x a1= +^ ^h h The receiver can also

compute ax1 in the encrypted domain by
computing .E x E axa

1 1=^ ^h h The only
problem is that there is no straightfor-
ward operation to directly compute the
product x x1 2 in the encrypted domain.

The only solution is to send the
encrypted data back to the sender who
possesses the private key for decryption.
However, E x1^ h and E x2^ h cannot be
sent back directly to the sender as they
might have already accumulated private
inputs from the receiver. Instead, the
receiver needs to first perturb them by
adding random noise s1 and s2 to create
E x s1 1+^ h and E x s2 2+^ h respectively
before sending them back to the sender.
The sender decrypts them, computes the
product ,x s x s1 1 2 2+ +^ ^h h encrypts the
result, and then sends it back to the
receiver. In the final step, the receiver
computes E x x1 2^ h using

	

.

E x x E x s x s

x s x s s s

E x s x s

E x s E x s E s s

1 2 1 1 2 2

1 2 2 1 1 2

1 1 2 2

1 2
1

2 1
1

1 2
1$ $ $

= + +

- - -

= + +
- - -

^ ^ ^

^ ^
^ ^ ^

h h h

h h
h h h

6

6
@
@

In the last expression, the first term of
the product comes from the sender
while the remaining three terms are all
locally  computed  in  the  encrypted
domain by the receiver. This somewhat
complicated approach of realizing multi-
plication in the encrypted domain is one
of the reasons behind the high computa-
tional cost of using Paillier system for
two-party SMC.

Shamir’s secret
sharing scheme

To ensure computational security, the
modulus N2 used in the Paillier system
can go as high as 24,096. In other words,
we will need 4,096 b to hold just a single
number for computation. This is signifi-
cantly higher than the 32- or 64-b archi-
tecture supported by most of the current
microprocessors. Signal processing algo-

rithms often require real-time processing
of a large amount of data and the high
computation cost of Paillier is thus a sig-
nificant hurdle for practical applications.

If there exists an additional partici-
pant who promises not to collude with
either the user or the vendor in stealing
the other’s secret, there exists a more
efficient alternative: SSS. Secret sharing is
different from encryption/decryption in
that it breaks a secret number into many
numerical shares. Any party can recon-
struct the secret if it has enough number
of shares but otherwise knows nothing
about the secret.

In SSS, the secret number x in
, ,N0 1f -" , is hidden as a constant

term of a random t 1-^ h- degree poly-
nomial

,mod

g s r s r s

r s x N

t
t

t
t

1
1

2
2

1g

/ +

+ + +

-
-

-
-^ h

where ri for , ,i t1 1f= - are random
numbers chosen by the secret owner.
Such a polynomial is fully specified by
its evaluations at different points: ,g 0^ h

, , .g g N1 1f -^ ^h h Besides ,g x0 =^ h the
rest of these evaluations are called secret
shares of .x If N is a prime number, x
can be reconstructed using any collec-
tion of k t$ shares , , ,g s g s g sk1 2 f^ ^ ^h h h
based on the following formula:

	 ,modx g s g s Nk k1 1 g/ c c+ +^ ^h h � (2)

where

mod

s

s

s

s

s s

s s

s s

s s

Ni
i

i

k

i

i i

i i

i k

1

1

1

1

1

1

f

f

f

f
/c

-

-

-

-

-

-

-

-

-

+

-

+

J

L

K
K
K
KK

J

L

K
K
K
KK

^
^
^
^

^
^
^
^

N

P

O
O
O
OO

N

P

O
O
O
OO

h
h
h
h

h
h
h
h

for , , .i k1 f= This is called the Lagrang-
ian interpolation formula.

On the other hand, any collection of
less than t secret shares provide no

Secure Channel

Insecure Channel

Kev:kKev:k

Receiver BDecryptionEncryption

Eavesdropper

Sender A
m

Ek(m) = c Dk(c) = m

Fig. 2 Shannon’s model for defining communication security.

36� IEEE POTENTIALS

information about x whatsoever, i.e., for
any secret number, one can find a
random polynomial with that secret
number as the constant term that is com-
patible with the given collection of
shares. Such lack of knowledge about
the secret is a mathematical fact and has
nothing to do with the computational
capability of the adversary. As such, SSS
is information-theoretic secure. Now let
us see how SSS can be used in a three-
party SMC.

Suppose the user U has a secret
number x and the vendor V has a secret
number .y For a three-party SMC, there is
also a third participant C involved in the
computation who promises not to collude
with either U or .V To create secret shares,
U randomly generates a first-order poly-
nomial  ()f s r s x1= +   and  computes
secret shares (), (),f f1 2 and () .f 3 U
keeps ()f 1 , and sends ()f 2 to ,V ()f 3 to

.C As long as V and C are not colluding,
they can learn nothing about .x Similarly,
V randomly generates a first-order poly-
nomial  s r sg y2= +^ h   and  computes
secret shares , ,g g1 2^ ^h h and () .g 3 To
allow computation on the secret shares, it
is important that the secret shares held by
a particular participant are all evaluated at
the same point. Thus, V will send g 1^ h to
U and g 3^ h to .C The additive homomor-
phism in secret shares can be easily real-
ized by having each participant add up
the i r   sha r e s ,   i . e . ,   U   compu te s

() (),f g V1 1+   computes  () (),f g2 2+
and C computes () () .f g3 3+ These are
the three secret shares of the function

	
,mod

f s g s r r s

x y N

1 2/+ +

+ +

^ ^ ^h h h
� (3)

which hides the desired x y+ as the
constant term.

SSS is multiplicative homomorphic as
well. Each participant can multiply their
own shares, which become ,f g1 1^ ^h h

,f g2 2^ ^h h and .f g3 3^ ^h h They are the
secret shares of the function

	
,mod

f s g s r r s r x r y s

xy N

1 2
2

2 1/ + +

+

^ ^ ^ ^h h h h
� (4)

which hides the desired xy as the con-
stant term. The key difference between
SSS’s additive and multiplicative homo-
morphism is the degree of the resulting

polynomial. The degree of the additive
polynomial in (3) is still one while the
degree of the multiplicative polynomial
in (4) becomes two. This has an impor-
tant consequence: U can always recon-
struct the final answer regardless of the
number of additions by collecting one
additional share from either V or .C
However, only one multiplication can be
performed as further multiplication will
increase the degree beyond two, render-
ing the final result unreconstructible
with only three secret shares.

To support more than one round of
multiplication, we need to reduce the
degree of the multiplicative polynomial
using a two-step process called renor-
malization. First, each participant treats
the share product () ()f i g i as a secret
and generates three secret shares for
that.  Specifically,  U   creates  h sU ^ h

r s f g1 1U= + ^ ^h h and generates secret
shares h 2U ^ h and h 3U ^ h for V and C
respectively. Similarly, V creates
h s r s f g2 2V V= +^ ^ ^h h h and generates
secret shares h 1V ^ h and h 3V ^ h for U
and ,C and C creates h s r sC C=^ h

f g3 3+ ^ ^h h and generates secret shares
h 1C ^ h and h 2C ^ h for U and .V No
secret information is exchanged as none
of the participant receives more than
one share from the same function.

Second, ,U V , and C compute the
final secret shares as

	
:

mod

h i h i h i

h i N

U V

C

1 2

3

c c

c

= +

+

^ ^ ^
^

h h h
h

for , , .i 1 2 3= sic are the coefficients
used in the reconstruction formula in
(2). These secret shares correspond to a
function ()h s , which can be derived in
the boxed equation at the bottom of the
page. The second line is based on the
definitions of , ,h s h sU V^ ^h h and .h sC ^ h
The third line is based on the reconstruc-
tion formula in (2). The renormalization
procedure produces a polynomial with
degree one and the product of the two
secret numbers as the constant term. As
such, more multiplication operations can
be applied.

Compared with HE, SSS is significantly
faster because the calculations can be
done directly on the signal samples. Rather
than using operands with thousands of

bits to provide computational security, the
computations of SSS can all be done using,
say 16-b numbers if the signal samples are
of 8-b precision. The extra 8 b can be used
to prevent possible overflow during the
computation process.

Collusion deterrance
The security of the three-party SSS

example hinges on the assumption that
C does not collude with either U or .V
In practice, it is very difficult to enforce
this assumption –C may be colluding
with U to steal ’V s secret using a com-
munication channel different from that
used in the SMC. The communication
messages and the results within the SMC
remain completely unchanged and as
such, the act of collusion is completely
undetectable. This is the Achilles’ heel of
SSS and a number of approaches have
been proposed to mitigate this problem.
In this article, we briefly describe our
approach on using a game theoretic
design in deterring collusion behaviors.

The key to our design is that while
colluding to steal another’s secret may
have a good payoff, there needs to be a
venue for the victim to “retaliate.” Let us
assume that all participants are ratio-
nal—they choose among the two possi-
ble strategies, honest or cheating, to
optimize their own payoff. A possible
venue that supports SSS-based computa-
tion can go as follows. As the key objec-
tive for any SMC is to protect privacy, U
and V must first agree to abide by a
legal-binding contract to pay for dam-
ages if caught colluding with .C Suppose
that after executing the computation, V
accuses U of trying to steal his secret. U
is likely to defend himself with different
tactics and may even accuse V back for
stealing his secret. A judgment will ulti-
mately be rendered by an appropriate
authority after possibly a long proceed-
ing to evaluate all the available evidence.
The extra cost and effort of collecting
evidence and going through the pro-
ceeding makes retaliation the most
undesirable outcome for everyone.

This disastrous outcome is not the
only scenario. To fully understand the
tradeoffs between choosing the two
strategies, each participant must rank all
possible outcomes so as to choose the
strategy that results in the best payoff. A
reasonable ranking of different out-
comes is shown in Table 1. As postu-
lated before, the lowest ranked outcome
is retaliation brought on by the cheating
strategy of either U or .V The second
lowest-ranked outcome is when both

.

mod
mod

mod

h s h s h s h s N
r r r s f g f g f g N

r r r s xy N
1 1 2 2 3 3

U V C

U V C

U V C

1 2 3

1 2 3 1 2 3

1 2 3

/

/

/

c c c

c c c c c c

c c c

+ +

+ + + + +

+ + +

^ ^ ^ ^
^ ^ ^ ^ ^ ^ ^^

^

h h h h
h h h h h h hh

h

MAy/June 2014� 37

have cheated but neither retaliates—
even though both U and V steal each
other’s secrets without getting caught,
the fact that they both cheat would imply
that they have wasted resources collud-
ing with C in stealing something that is
of little value. If only U cheats and gets
away with it, U will have the highest-
ranked outcome. As for ,V we give a
rank of 3 for two reasons: 1) V success-
fully carries out the task and gets com-
pensated and 2) V does not retaliate
because either a) he is unaware of the
theft as he does not put in a significant
effort in tracking any leakage of his
secret or b) the cost of retaliation is
higher than the cost of his secret. Either
reason implies that the loss of the secret
may not be too significant to .V The situ-
ation is reverse if we switch U and .V
Finally, we assign the second highest
rank of 3 to both U and V when they
complete the task faithfully.

While we believe that these rankings
are general for most applications, map-
ping them to numerical payoff values
depends on the values of the secrets and
the computational task. For simplicity, we
assume that the same payoffs are used for
both U and V and denote the payoff
values as p p p p p0 1< < < <1 2 3 4 5= =
for the five different ranks. Notice that we
normalize all the payoff values within 0
and 1 as only the relative values matter in
determining the optimal strategies.

Since the outcome depends on the
decision to retaliate, which in turn
depends on how a player values his/her
secret compared to the cost of retalia-
tion, we define a “nonretaliate” probabil-
ity q for both U and ,V conditioned on
the discovery of others’ cheating behav-
ior. For example, q 1= means that no
one retaliates or cares about the secret,
while q 0= means that a player will
always retaliate if his/her secret is stolen.
For a typical SMC application, q should
be close to 0 as all secrets are highly

valued and any leakage of secret is easily
identifiable.

Using a standard representation in game
theory, we compute the payoff matrix for
this game in Table 2. The two-tuple in each
entry indicates the average payoffs of U
and V when adopting the row and column
strategies respectively. For example, the
lower left outcome corresponds to the case
when U is cheating and V is honest. With
probability ,q1-^ h V will retaliate result-
ing in the worst payoff , .p p1 1^ h With prob-
ability ,q V does not retaliate and U gets
away with the theft, resulting in the payoff
of p5 for U and p3 for .V

With this payoff matrix, we can com-
pute the celebrated Nash equilibrium
(NE) for this game. The significance of
the NE is that it represents the best strat-
egy taken by a participant regardless of
the choice of the other. Interested readers
should refer to any game theory books
on how to find the NE. For this game, one
can show that the NE would be for both
U and V to stay honest, provided that

.p q3 $ As we have argued that q is small
for SMC applications, this result indicates
that both participants will stay honest
given the threat of retaliation. The situa-
tion becomes more complicated if p q3 1
and is beyond the scope of this article.

Conclusions
We have motivated the importance of

privacy protection in processing multimedia
signals in distributed networks. The compu-
tational framework to enable such protec-
tion is secure multiparty computation. For
two-party SMC, HE is often used and we
have discussed the mathematics behind one
of the most popular HE called the Paillier
cryptosystem. If more noncolluding partici-
pants are available, Shamir’s secret sharing
can deliver better performance and can
guarantee information-theoretic security. To
deter possible collusion attacks, we have
presented a game-theoretic construction and
showed that staying honest is the NE. While
our discussions remain at a rather theoretical
level, exciting practical applications have
begun to emerge in the past few years. It is
our hope that these technologies can make
our world safer without sacrificing our pre-
cious right to privacy.

Acknowledgment
 Part of this material is based upon

work supported by the National Sci-
ence Foundation under grant num-
ber 1018241. Any opinions, findings,
and conclusions or recommendations
expressed in this material are those
of the authors and do not necessarily
reflect the views of the National Sci-
ence Foundation.

Read more about it
The March 2013 issue (vol. 30, no. 2)

of IEEE Signal Processing Magazine is
dedicated to the latest research in the
field of signal processing in the encrypted
domain and contains many articles rele-
vant to this article.

For an excellent introduction of the
fundamental concepts in cryptography
including a discussion on Paillier crypto-
system, we recommend

	•	 J. Katz and Y. Lindell, Introduc-
tion to Modern Cryptography: Principles
and Protocols. London, U.K.: Chapman
and Hall, 2007.

For an introduction of the secure
multiparty computation and SSS, we rec-
ommend

	•	 R. Cramer and I. Damgard, “In-
troduction to secure multi-party com-
putations,” in Contemporary Cryptology
(Advanced Courses in Mathematics CRM
Barcelona). Switzerland: Birkhauser,
2005, pp. 41–87.

For a classical introduction to game
theory, we recommend

	•	 J. N. Webb, Game Theory: Deci-
sions, Interaction and Evolution. Lon-
don: Springer-Verlag, 2006.

About the authors
Zhaohong Wang (zhaohng.wang@

uky.edu) is currently a Ph.D. candidate in
electrical engineering at the University of
Kentucky. His research interests include
cybersecurity, secure computation, and
cloud computing.

Sen-ching S. Cheung (sccheung@ieee.
org) is an associate professor in the De-
partment of Electrical Engineering at the
University of Kentucky. He earned his
Ph.D. from the University of California,
Berkeley, in 2002.

Table 1. The ranking of
different outcomes.

Strategies Retaliate? U Rank V Rank

Either or
both
cheats

Y 1 1

Both cheat N 2 2

U cheats
only

N 5 3

V cheats
only

N 3 5

No one
cheats

N 4 4

Table 2. The pay-off matrix.

Vendor V

 Honest Cheating

User U Honest ,p p4 4^ h , ,,q p p q p p qp q1 1 1 3 5 3- + =^ ^ ^ ^h h h h
Cheating , , ,q p p q p p q qp1 1 1 5 3 3- + =^ ^ ^ ^h h h h , , ,q p p q p p q p q p1 2

1 1
2

2 2
2

2
2

2- + =^ ^ ^ ^h h h h

