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hile not explicitly stated in the 
U.S. Constitution, the rights of 
privacy for many aspects of our 

lives including religious beliefs, per-
sonal possession, and personal informa-
tion are protected under the Bill of 
Rights. Nonetheless, news about differ-
ent forms of privacy invasion has 
become a daily affair. From the sale of 
personal information to identity theft, 
from Google and YouTube surrender-
ing user data to the mining of phone 
metadata  by  the  National  Security 
Agency, the number of ways that our 
privacy can be invaded seems to 
increase at an alarming rate. 

One of the reasons for such erosion is 
the significant advancement in comput-
ing technologies for collecting, storing, 
and sharing personal information among 

individuals, private sectors, and govern-
ment agencies. Anyone can now carry 
thousands of songs, hundreds of pictures, 
and hours of videos in a small smart-
phone, ready to be exchanged, some-
times unknowingly, with anyone in the 
world. The focus of privacy protection 
often falls on medical or financial records, 
but it is the multimedia signals—audio, 
images, and videos—that are driving the 
entire market of distributed computing 
while their privacy implications remain 
poorly understood.

The threats, however, are real. The 
advance in pattern recognition algorithms 
such as searchable surveillance or auto-
matic speech recognition systems have 
turned the once labor-intensive processes 
into powerful automated systems. They 
can easily recognize objects of interest 
like faces, voices, and other biometric sig-
nals with high fidelity. Correlating such 
information with location data such as 

geo-tags or radio-frequency identification 
and other information on social networks 
allow hackers to easily track the activities 
and associations of any individuals. The 
matter is further complicated by the 
unprecedented effort of the government 
in monitoring the activities of private citi-
zens to fight terrorism. It is thus impera-
tive to develop a comprehensive privacy 
protection framework for personal multi-
media data without jeopardizing our 
homeland security.

While new legislature and policy 
changes are essential elements of such a 
framework, technologies are playing an 
equally pivotal role in safeguarding pri-
vate information. There are two main 
technical challenges in protecting multi-
media data. First, as signal capturing 
devices and wireless networks become 
ubiquitous, diverse applications from 
multimedia e-mails and blogging to 
large-scale surveillance networks begin 
to demand some form of privacy protec-
tion. A comprehensive framework is 
needed to identify appropriate sensitive 
information in different applications and 
to provide different levels of protection 
depending on the role of each user in 
the system. 

Second, from simple enhancement 
to sophisticated pattern recognition, 
multimedia data requires various signal 
processing operations to become 
useful. The current cloud and peer-to-
peer computing platforms have pro-
vided ubiquitous data storage for 
multimedia data. In the future, soft-
ware developers will undoubtedly take 
advantage of the enormous power of 
various distributed computing plat-
forms in offering different types of 
software services to process these data. 
It is easy to see why privacy is needed 
in any distributed multimedia process-
ing service platform—a user may want 
to enhance or process a video that was 
taken using a smartphone but lacks the Date of publication: 30 April 2014 
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required capability and algorithms. A 
multimedia software vendor offers pro-
prietary software for the job and 
charges the user based on the duration 
of the video needed to be processed. 
The two parties come to the cloud 
server and take advantage of its enor-
mous power and storage. The user 
clearly wants to protect any private 
information in his/her video while the 
software vendor needs to prevent the 
theft of its proprietary algorithm. The 
key challenge is to design an appropri-
ate privacy protection scheme so that it 
will not compromise any legitimate 
processing of the data.

In this article, we provide a short tutorial 
on secure multiparty computation (SMC)  
for providing privacy protec-
tion of sensitive information 
in distributed processing of 
multimedia signals. SMC is an 
active  area  of  research  in 
cryptology. In recent years, it 
has been successfully applied 
to solve many privacy protec-
tion problems in distributed 
signal  processing  including 
face  recognition,  iris  match-
ing,  image  denoising,  video 
surveillance,  visualization, 
and  information  retrieval.  
Our goal is to introduce the 
core building blocks of SMC 
that can be used to build sophisticated 
signal processing algorithms.

Background
Following the example introduced in 

the previous section, we consider a dis-
tributed computing task to have at least 
two participants: 1) a user with a private 
input requires a service from 2) a vendor 
with a proprietary software algorithm. 
For simplicity, we assume that the ven-
dor’s secrets are the key parameters used 
in an otherwise well-known algorithm. 
For example, the parameters could be 
the tap values of a sophisticated filter or 
thresholds and weights in a neural net-
work. The privacy objective is as fol-
lows: the user and the vendor do not 
trust each other and would like to pre-
vent each other from knowing anything 
about their own secret information. 

The simplest form of an SMC is a two-
party SMC, as shown in Fig. 1(a), where 
the information exchanged between the 
two parties does not disclose any infor-
mation about the secrets. This is the 
model used in encrypted-domain tech-
niques, with the most commonly used 
one being the homomorphic encryption 

(HE) described in the section “Homomor-
phic encryption.” An HE system allows 
operations to be performed directly on 
encrypted signals. 

In mobile applications, either the 
user or the vendor may have enough 
computation power to carry out the task. 
As such, some of the computation needs 
to be outsourced to a centralized cloud 
computer or a distributed peer-to-peer 
network of computers. This is a three-
party SMC, as shown in Fig. 1(b). HE can 
be used for the three-party case as well 
but a more efficient technique called 
Shamir’s secret sharing (SSS) can be 
used. SSS will be introduced in the sec-
tion “Shamir’s secret sharing scheme.” 
While the three-party SMC is more flexi-

ble in offloading complex computation, 
it involves more participants in the com-
putation which pose additional require-
ments in securing the communication. 

To clearly understand how these 
techniques can provide security to pri-
vate data, we have to clarify what “secu-
rity” means. It is derived from Shannon’s 
secure communication model as shown 
in Fig. 2. This model consists of a sender 

,A  wanting to send a random message 
m to a receiver ,B  through an insecure 
channel. The message m is called a 
plaintext taken from a finite set, called 
plaintext space M.

Since the channel is insecure, the 
transmission between A and B may be 
intercepted by an eavesdropper .E  To 
protect the message, A applies a map-
ping Ek  on m  to generate ,c  i.e., 

( ) .E m c Ek k=  is called an encryption 
function. k  is called the key, also treated 
as a random quantity taken from the 
key-space K. c  is the ciphertext, which 
is an element of the ciphertext space C. 
B  must be able to retrieve the plaintext 
message m  from the ciphertext c  by 
means of the decryption function 

: ( ) .D D c mk k =  This is a symmetric cryp-

tosystem in which A and B  share the 
same secret key which is not available to 

.E  The cryptosystem system is called 
information-theoretic secure if the 
ciphertext c  is statistically independent 
of the plaintext .m  For an information-
theoretic secure cryptosystem, it is 
impossible for the adversary E  to learn 
any information about m  from c , regard-
less of the capability of .E  

In practice, symmetric cryptosystems 
are not very useful for secret communi-
cation. First, a separate secure channel 
must exist for the exchange of secret 
keys. Second, the key must be randomly 
selected for each message so as to main-
tain statistical independence. Instead, 
asymmetric or public-key cryptosystems 
are used, where the encrypting key is dif-
ferent from the decrypting key. The 
encrypting key is made public so that 
any sender can send secret message to 
the receiver. Unfortunately, there is no 
known public-key cryptosystem that is 
information-theoretic secure. The best 
schemes can only provide computational 
security—the adversary cannot decrypt 
the ciphertext provided that she only has 
access to “limited” computational 
resource. The security of computational-
secure cryptosystems strongly depends 
on the length of the key and it is not 
uncommon for practical systems to use 
keys with hundreds or even thousands of 
bits. Factoring in the progress of central 
processing unit speeds, the security of a 
computational-secure cryptosystem is 
usually specified by an estimate of the 
year when it can be hacked by the most 
powerful computer. For example, it is 
estimated that the 2048-b RSA system will 
become insecure by the year 2030. 

Another dimension of security is the 
modeling of adversarial actions. If all E
does is to eavesdrop without disturbing 
the flow of information, such adversarial 
behaviors are described as semihonest. 
On the other hand, a malicious adversary 
may inject wrong information or hack 
into the sender/receiver to terminate the 
transmission or computation prematurely. 
Such malicious behaviors are difficult to 
combat. We will only focus on the semi-
honest adversaries. 

The SMC paradigm extends the afore-
mentioned secure communication model 
to include computation. SMC specifies the 
computation and communication proce-
dure for each of the participants involved. 
Like the communication model, all infor-
mation exchanged among parties is 
encrypted to protect against eavesdrop-
ping. Unlike the communication model, 
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the goal of SMC is not to com-
municate but to process the 
input signal and produce an 
output signal for the user. As 
such, the receivers are treated 
as adversaries and do not pos-
sess the key to decrypt the 
ciphertext. Instead, the spe-
cially designed cryptosystems 
used in SMC possess a special 
property called homomor-
phism that allows the receivers 
to operate directly on the 
ciphertext. 

For example, the user wants 
the receivers to compute a func-
tion ( , )f x x1 2  on the two plain-
text numbers x1  and  x2  but the 
receivers only have access to the 
corresponding  cipher text 
c E x1 1= ^ h and .c E x2 2= ^ h  A 
homomorphic  cryptosystem 
supports a ciphertext function 

( , )g c c1 2  such that 

	 , , .g c c E f x x1 2 1 2=^ ^^h hh �

By executing ( , )g c c1 2  and 
then sending the result back to 
the user for decryption, the receivers 
achieve the computation goal without 
learning anything about the inputs. 

Next, we discuss how homomorphism 
is realized in both HE and SSS. For sim-
plicity, we only consider how addition 
and multiplication on fixed-point num-
bers can be realized in an encrypted 
domain. More sophisticated algorithms, 
however, can be realized by using these 
operations as building blocks.

Homomorphic encryption
HE is a family of public-key crypto-

systems that can be used in two-party 
SMC. The security is computational, and 
its strength depends on the key length 
and the hardness of the underlying 
mathematical   construct ion.  Unt i l 
recently, most HE systems were homo-
morphic with respect to either addition 
or multiplication but not both. The first 
result of a fully HE (FHE) was demon-
strated by Craig Gentry in 2009. This 
discovery has sparked a flurry of 
research activities but a practical FHE 
implementation remains elusive. As 
such, we will focus on a popular HE 
called the Paillier system, which is 
homomorphic with respect to addition. 
We will describe the mathematical prin-
ciples behind Paillier, its additive homo-
morphism, and how it can be extended 
to handle multiplication.

Like many other cryptosystems, Pail-
lier is defined using modular arithmetic. 
In modular-N  arithmetic, any integer a  
is equivalent to its remainder b  in 

, , N0 1f -" , after dividing by ,N  i.e.,  
a kN b= +  for some integer .k  We use 
the following notation to denote this 
equivalence relation:

.moda b N/

A special function ( )N{  in modular 
arithmetic, called the Euler’s totient func-
tion, plays a very important role in the Pail-
lier system. It represents the number of 
positive integers smaller than N  that are 
relatively prime to .N  One of its key prop-
erties, stated here without proof, is that

	 modr N1N /{^ h � (1)

for any positive integer r  relative prime 
to .N  When N  is a product of two very 
large primes (A secure Paillier system 
requires the key to be between 1,024 
and 2,048 b, resulting in N between 
10308 and 10617), computing its Euler’s 
totient function is very difficult. It is the 
difficulty of this problem that provides 
the computational security of the Pail-
lier system.

In the Paillier system, the 
public key for encryption is 

,N  and the private key for 
decryption is ( ) .N{  Given a 
p l a i n t e x t   numbe r   x   i n 

, , ,N0 1f -" ,   the  encryption 
is defined as follows:

	 , ( ) modE x r N r N1 x N 2$/ +^ h ,

where ,r  relatively prime with 
,N  is randomly selected for 

each invocation of the encryp-
tion function. The encryption 
formula is the key to under-
standing Paillier. First, notice 
that the modulus changes from 
N  to .N2  This allows for easy 
decryption as we will later 
explain. Second, the secret 
number x  is hidden in the 
power of the constant .N1+  
This enables additive homo-
morphism because the cipher-
text of the sum of two plaintext 
numbers is precisely the prod-
uct of the two corresponding 
ciphertext: 
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Third, the use of the random number 
r  in the encryption process is particularly 
crucial. This number is selected by the 
sender and is not shared with anyone. It 
essentially randomizes the ciphertext to 
an extent that the ciphertext for the same 
plaintext x  would be different every time 
the encryption function is called. This 
prevents the so-called chosen plaintext 
attack in which the eavesdropper attempts 
to hack the system by building a lookup 
table between known plaintext and the 
corresponding ciphertext. 

On the other hand, the randomness 
injected to the plaintext must be removed 
during the decryption process. This is 
where the private key ( )N{  comes in. 
The first step of the decryption is to raise 
the ciphertext by a power of ( ):N{

	 , .modE x r N r N1( )N x N N N 2:/ +{ { {^ ^ ^ ^h h h h �

There are two terms in the product on 
the right-hand side of the equation. Let us 
consider the second term rN N{^ h first. 
From (1), we know thatr kN1N = +{^ h  for 
some positive integer .k  Thus, 

Fig. 1 (a) Two-party and (b) three-party SMCs.
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The second equation is based on the 
binomial expansion. As all but the first 
term have N2  as a factor, taking modulo-
N2  eliminates them, reducing the result 
to 1. In other words, raising the cipher-
text by the power of the private key 
annihilates the randomness injected into 
the ciphertext. Coming back to the first 
term ,N1 x N+ {^ ^h h  we can again use the 
binomial expansion to simplify

( ) multiples

of with k
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Combining the simplification of these 
two terms together, we obtain

	 , .modE x r xN N N1( )N 2/ {+{^ ^h h

Now, the decryption of ,E x r^ h can 
be easily realized as follows: 

	
,

.
mod

modx
N N

E x r N
N

1( )N 2
2/

{

-{

^
^

h
h

The fraction on the right-hand side is 
computed in the integer domain as N 
does not have a multiplicative inverse in 
modular-N2 arithmetic. This completes 
the decryption process.

The additive homomorphic property 
is very useful in performing joint compu-
tation. As mentioned before, given two 
ciphertext numbers (to simplify our nota-
tion, we have dropped the random com-
ponent in the encryption as it does not 
affect the result) E x1^ h and ,E x2^ h  the 
receiver can implement plaintext addition 
as .E x E x E x x1 2 1 1$ = +^ ^ ^h h h  If the 
receiver also has a private input a itself, it 
can be added to x1  by first encrypting it 
as E a^ h and then computing E x1 $^ h  

.E a E x a1= +^ ^h h  The receiver can also 

compute ax1  in the encrypted domain by 
computing .E x E axa

1 1=^ ^h h  The only 
problem is that there is no straightfor-
ward operation to directly compute the 
product x x1 2  in the encrypted domain.

The only solution is to send the 
encrypted data back to the sender who 
possesses the private key for decryption. 
However, E x1^ h and E x2^ h cannot be 
sent back directly to the sender as they 
might have already accumulated private 
inputs from the receiver. Instead, the 
receiver needs to first perturb them by 
adding random noise s1  and s2  to create 
E x s1 1+^ h and E x s2 2+^ h respectively 
before sending them back to the sender. 
The sender decrypts them, computes the 
product ,x s x s1 1 2 2+ +^ ^h h  encrypts the 
result, and then sends it back to the 
receiver. In the final step, the receiver 
computes E x x1 2^ h using 
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In the last expression, the first term of 
the product comes from the sender 
while the remaining three terms are all 
locally  computed  in  the  encrypted 
domain by the receiver. This somewhat 
complicated approach of realizing multi-
plication in the encrypted domain is one 
of the reasons behind the high computa-
tional cost of using Paillier system for 
two-party SMC.

Shamir’s secret  
sharing scheme

To ensure computational security, the 
modulus N2  used in the Paillier system 
can go as high as 24,096. In other words, 
we will need 4,096 b to hold just a single 
number for computation. This is signifi-
cantly higher than the 32- or 64-b archi-
tecture supported by most of the current 
microprocessors. Signal processing algo-

rithms often require real-time processing 
of a large amount of data and the high 
computation cost of Paillier is thus a sig-
nificant hurdle for practical applications.

If there exists an additional partici-
pant who promises not to collude with 
either the user or the vendor in stealing 
the other’s secret, there exists a more 
efficient alternative: SSS. Secret sharing is 
different from encryption/decryption in 
that it breaks a secret number into many 
numerical shares. Any party can recon-
struct the secret if it has enough number 
of shares but otherwise knows nothing 
about the secret.

In SSS, the secret number x  in 
, ,N0 1f -" , is hidden as a constant 

term of a random t 1-^ h- degree poly-
nomial
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where ri  for , ,i t1 1f= -  are random 
numbers chosen by the secret owner. 
Such a polynomial is fully specified by 
its evaluations at different points: ,g 0^ h  

, , .g g N1 1f -^ ^h h  Besides ,g x0 =^ h  the 
rest of these evaluations are called secret 
shares of .x  If N  is a prime number, x  
can be reconstructed using any collec-
tion of k t$  shares , , ,g s g s g sk1 2 f^ ^ ^h h h 
based on the following formula:

	 ,modx g s g s Nk k1 1 g/ c c+ +^ ^h h � (2)
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for , , .i k1 f=  This is called the Lagrang-
ian interpolation formula.

On the other hand, any collection of 
less than t  secret shares provide no 
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Ek(m) = c Dk(c) = m

Fig. 2 Shannon’s model for defining communication security.
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information about x  whatsoever, i.e., for 
any secret number, one can find a 
random polynomial with that secret 
number as the constant term that is com-
patible with the given collection of 
shares. Such lack of knowledge about 
the secret is a mathematical fact and has 
nothing to do with the computational 
capability of the adversary. As such, SSS 
is information-theoretic secure. Now let 
us see how SSS can be used in a three-
party SMC.

Suppose the user U  has a secret 
number x  and the vendor V  has a secret 
number .y  For a three-party SMC, there is 
also a third participant C  involved in the 
computation who promises not to collude 
with either U  or .V  To create secret shares, 
U  randomly generates a first-order poly-
nomial  ( )f s r s x1= +   and  computes 
secret shares ( ), ( ),f f1 2  and ( ) .f 3  U  
keeps ( )f 1 , and sends ( )f 2  to ,V  ( )f 3  to 

.C  As long as V  and C  are not colluding, 
they can learn nothing about .x  Similarly, 
V  randomly generates a first-order poly-
nomial  s r sg y2= +^ h   and  computes 
secret shares , ,g g1 2^ ^h h  and ( ) .g 3  To 
allow computation on the secret shares, it 
is important that the secret shares held by 
a particular participant are all evaluated at 
the same point. Thus, V  will send g 1^ h to 
U  and g 3^ h to .C  The additive homomor-
phism in secret shares can be easily real-
ized by having each participant add up 
the i r   sha r e s ,   i . e . ,   U   compu te s 

( ) ( ),f g V1 1+   computes  ( ) ( ),f g2 2+  
and C  computes ( ) ( ) .f g3 3+  These are 
the three secret shares of the function

	
,mod

f s g s r r s

x y N

1 2/+ +

+ +

^ ^ ^h h h
� (3)

which hides the desired x y+  as the 
constant term.

SSS is multiplicative homomorphic as 
well. Each participant can multiply their 
own shares, which become ,f g1 1^ ^h h  

,f g2 2^ ^h h  and .f g3 3^ ^h h  They are the 
secret shares of the function

	
,mod

f s g s r r s r x r y s

xy N

1 2
2

2 1/ + +

+

^ ^ ^ ^h h h h
� (4)

which hides the desired xy  as the con-
stant term. The key difference between 
SSS’s additive and multiplicative homo-
morphism is the degree of the resulting 

polynomial. The degree of the additive 
polynomial in (3) is still one while the 
degree of the multiplicative polynomial 
in (4) becomes two. This has an impor-
tant consequence: U  can always recon-
struct the final answer regardless of the 
number of additions by collecting one 
additional share from either V  or .C  
However, only one multiplication can be 
performed as further multiplication will 
increase the degree beyond two, render-
ing the final result unreconstructible 
with only three secret shares. 

To support more than one round of 
multiplication, we need to reduce the 
degree of the multiplicative polynomial 
using a two-step process called renor-
malization. First, each participant treats 
the share product ( ) ( )f i g i  as a secret 
and generates three secret shares for 
that.  Specifically,  U   creates  h sU ^ h

r s f g1 1U= + ^ ^h h and generates secret 
shares h 2U ^ h and h 3U ^ h for V  and C  
respectively. Similarly, V  creates 
h s r s f g2 2V V= +^ ^ ^h h h and generates 
secret shares h 1V ^ h and h 3V ^ h for U  
and ,C  and C  creates h s r sC C=^ h  

f g3 3+ ^ ^h h and generates secret shares 
h 1C ^ h and h 2C ^ h for U   and .V  No 
secret information is exchanged as none 
of the participant receives more than 
one share from the same function.

Second, ,U  V , and C  compute the 
final secret shares as

	
:

mod

h i h i h i

h i N

U V

C

1 2

3

c c

c

= +

+

^ ^ ^
^

h h h
h

for , , .i 1 2 3=  sic  are the coefficients 
used in the reconstruction formula in 
(2). These secret shares correspond to a 
function ( )h s , which can be derived in 
the boxed equation at the bottom of the 
page. The second line is based on the 
definitions of , ,h s h sU V^ ^h h  and .h sC ^ h  
The third line is based on the reconstruc-
tion formula in (2). The renormalization 
procedure produces a polynomial with 
degree one and the product of the two 
secret numbers as the constant term. As 
such, more multiplication operations can 
be applied.

Compared with HE, SSS is significantly 
faster because the calculations can be 
done directly on the signal samples. Rather 
than using operands with thousands of 

bits to provide computational security, the 
computations of SSS can all be done using, 
say 16-b numbers if the signal samples are 
of 8-b precision. The extra 8 b can be used 
to prevent possible overflow during the 
computation process.

Collusion deterrance
The security of the three-party SSS 

example hinges on the assumption that 
C  does not collude with either U  or .V  
In practice, it is very difficult to enforce 
this assumption –C  may be colluding 
with U  to steal ’V s  secret using a com-
munication channel different from that 
used in the SMC. The communication 
messages and the results within the SMC 
remain completely unchanged and as 
such, the act of collusion is completely 
undetectable. This is the Achilles’ heel of 
SSS and a number of approaches have 
been proposed to mitigate this problem. 
In this article, we briefly describe our 
approach on using a game theoretic 
design in deterring collusion behaviors.

The key to our design is that while 
colluding to steal another’s secret may 
have a good payoff, there needs to be a 
venue for the victim to “retaliate.” Let us 
assume that all participants are ratio-
nal—they choose among the two possi-
ble strategies, honest or cheating, to 
optimize their own payoff. A possible 
venue that supports SSS-based computa-
tion can go as follows. As the key objec-
tive for any SMC is to protect privacy, U  
and V  must first agree to abide by a 
legal-binding contract to pay for dam-
ages if caught colluding with .C  Suppose 
that after executing the computation, V  
accuses U  of trying to steal his secret. U  
is likely to defend himself with different 
tactics and may even accuse V  back for 
stealing his secret. A judgment will ulti-
mately be rendered by an appropriate 
authority after possibly a long proceed-
ing to evaluate all the available evidence. 
The extra cost and effort of collecting 
evidence and going through the pro-
ceeding makes retaliation the most 
undesirable outcome for everyone.

This disastrous outcome is not the 
only scenario. To fully understand the 
tradeoffs between choosing the two 
strategies, each participant must rank all 
possible outcomes so as to choose the 
strategy that results in the best payoff. A 
reasonable ranking of different out-
comes is shown in Table 1. As postu-
lated before, the lowest ranked outcome 
is retaliation brought on by the cheating 
strategy of either U  or .V  The second 
lowest-ranked outcome is when both 
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have cheated but neither retaliates—
even though both U  and V  steal each 
other’s secrets without getting caught, 
the fact that they both cheat would imply 
that they have wasted resources collud-
ing with C  in stealing something that is 
of little value. If only U  cheats and gets 
away with it, U  will have the highest-
ranked outcome. As for ,V  we give a 
rank of 3 for two reasons: 1) V  success-
fully carries out the task and gets com-
pensated  and 2) V  does not retaliate 
because either a) he is unaware of the 
theft as he does not put in a significant 
effort in tracking any leakage of his 
secret or b) the cost of retaliation is 
higher than the cost of his secret. Either 
reason implies that the loss of the secret 
may not be too significant to .V  The situ-
ation is reverse if we switch U  and .V  
Finally, we assign the second highest 
rank of 3 to both U  and V  when they 
complete the task faithfully.

While we believe that these rankings 
are general for most applications, map-
ping them to numerical payoff values 
depends on the values of the secrets and 
the computational task. For simplicity, we 
assume that the same payoffs are used for 
both U  and V  and denote the payoff 
values as p p p p p0 1< < < <1 2 3 4 5= =  
for the five different ranks. Notice that we 
normalize all the payoff values within 0 
and 1 as only the relative values matter in 
determining the optimal strategies.

Since the outcome depends on the 
decision to retaliate, which in turn 
depends on how a player values his/her 
secret compared to the cost of retalia-
tion, we define a “nonretaliate” probabil-
ity q  for both U  and ,V  conditioned on 
the discovery of others’ cheating behav-
ior. For example, q 1=  means that no 
one retaliates or cares about the secret, 
while q 0=  means that a player will 
always retaliate if his/her secret is stolen. 
For a typical SMC application, q  should 
be close to 0 as all secrets are highly 

valued and any leakage of secret is easily 
identifiable.

Using a standard representation in game 
theory, we compute the payoff matrix for 
this game in Table 2. The two-tuple in each 
entry indicates the average payoffs of U  
and V  when adopting the row and column 
strategies respectively. For example, the 
lower left outcome corresponds to the case 
when U  is cheating and V  is honest. With 
probability ,q1-^ h  V  will retaliate result-
ing in the worst payoff , .p p1 1^ h  With prob-
ability ,q V  does not retaliate and U  gets 
away with the theft, resulting in the payoff 
of  p5 for U  and p3 for .V

With this payoff matrix, we can com-
pute the celebrated Nash equilibrium 
(NE) for this game. The significance of 
the NE is that it represents the best strat-
egy taken by a participant regardless of 
the choice of the other. Interested readers 
should refer to any game theory books 
on how to find the NE. For this game, one 
can show that the NE would be for both  
U  and V  to stay honest, provided that 

.p q3 $  As we have argued that q  is small 
for SMC applications, this result indicates 
that both participants will stay honest 
given the threat of retaliation. The situa-
tion becomes more complicated if p q3 1  
and is beyond the scope of this article.

Conclusions
We have motivated the importance of 

privacy protection in processing multimedia 
signals in distributed networks. The compu-
tational framework to enable such protec-
tion is secure multiparty computation. For 
two-party SMC, HE is often used and we 
have discussed the mathematics behind one 
of the most popular HE called the Paillier 
cryptosystem. If more noncolluding partici-
pants are available, Shamir’s secret sharing 
can deliver better performance and can 
guarantee information-theoretic security. To 
deter possible collusion attacks, we have 
presented a game-theoretic construction and 
showed that staying honest is the NE. While 
our discussions remain at a rather theoretical 
level, exciting practical applications have 
begun to emerge in the past few years. It is 
our hope that these technologies can make 
our world safer without sacrificing our pre-
cious right to privacy.
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Table 1. The ranking of 
different outcomes.

Strategies Retaliate? U Rank V Rank

Either or  
both 
cheats

Y 1 1

Both cheat N 2 2

U cheats 
only

N 5 3

V cheats 
only

N 3 5

No one 
cheats

N 4 4

Table 2. The pay-off matrix.

Vendor V

 Honest Cheating

User U Honest ,p p4 4^ h , ,,q p p q p p qp q1 1 1 3 5 3- + =^ ^ ^ ^h h h h
Cheating , , ,q p p q p p q qp1 1 1 5 3 3- + =^ ^ ^ ^h h h h , , ,q p p q p p q p q p1 2

1 1
2

2 2
2

2
2

2- + =^ ^ ^ ^h h h h


