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Abstract A ‘smart space’ is one that automatically identifies and tracks its oc-
cupants using unobtrusive biometric modalities such as face, gait, and voice in an
unconstrained fashion. Information retrieval in a smart space is concerned with
the location and movement of people over time. Towards this end, we abstract a
smart space by a probabilistic state transition system in which each state records
the probabilities of presence of individuals in various zones of the smart space.

We carry out track-based reasoning on the states in order to determine more
accurately the occupants of the smart space. This leads to a data model based
upon an occupancy relation in which time is treated discretely, owing to the dis-
crete nature of events, but probability is treated as a real-valued attribute. Using
this data model, we show how to formulate a number of spatio-temporal queries,
focusing on the computation of probabilities, an aspect that is novel to this model.
We present queries both in SQL syntax and also in CLP(R), a constraint logic pro-
gramming language (with reals) which facilitates succinct formulation of recursive
queries.

We show that the answers to certain queries are better displayed in a graphical
manner, especially the movement tracks of occupants of the smart space. We also
define query-dependent precision and recall metrics in order to quantify how well
the model is able to answer various spatio-temporal queries. We show that a query-
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dependent metric gives significantly better results for a class of occupancy-related
queries compared with query-independent metrics.

Keywords Smart Spaces - Abstract Framework - Biometrics - Recognition -
Retrieval - Precision - Recall - Data Model - Spatio-temporal Queries - CLP(R)

1 Introduction

A smart space is a physical space embedded with intelligence and interfaced with
humans in a natural way using vision, speech, gestures, and touch, rather than
the traditional keyboard and mouse. The key to realizing this paradigm is iden-
tifying and tracking people in the space. The ability to identify and track people
and answer questions about their whereabouts is critical to many applications.
Such smart spaces are very important and beneficial in a number of settings, in-
cluding homes for the elderly or disabled, office workplaces, and larger areas such
as department stores, shopping complexes, train stations, and airports. In some
spaces, most of the individuals are known or pre-registered (health-care moni-
toring) whereas in other spaces most of the individuals are unknown (homeland
security).

Let us consider two scenarios from real-life incidents: (1) An elderly resident in an
assisted living facility wears an RFID badge to facilitate continuous monitoring
of his presence. On one occasion, he enters the elevator alone but gets trapped
due to a power failure. The RFID signals transmitted by his badge are not in
the range of any receiver. Only much later, when the elevator resumes its service,
is he discovered. (2) An intruder has managed to gain illegal entry into a secure
facility which is monitored by surveillance cameras. After an intruder alert has
been raised, the security personnel set out to find the intruder and relies on inputs
from the control room personnel monitoring the facility through multiple video
feeds. As the intruder no longer appears on any of the video feeds, the search
team has no other option but to search each room.

Automated approaches to transforming multimedia data from video surveil-
lance feeds into a form suitable for information retrieval is a very challenging
problem and spans multiple areas - video and audio processing, computer vision,
spatio-temporal reasoning and data models. These scenarios also highlight the need
for unobtrusive data gathering, where people go about their normal activities with-
out being subject to a ‘pause and declare’ routine or the burden of RFID tags or
badges. Identifying people from their face, gait and voice is more natural and less
obtrusive and hence more suited in smart spaces. The overall goal of our research
is to develop indoor smart spaces that can recognize and track their occupants as
unobtrusively as possible and answer queries about their whereabouts. The sensors
of interest in our work are video cameras and microphones that capture biometric
modalities such as face, gait, and voice in an unconstrained fashion.

In our previous research, we have focused on multimodal approaches to bio-
metric recognition (Menon et al, 2010) as well as the integration of recognition
and reasoning in order to develop a more robust approach to identification and
tracking (Menon et al, 2011, 2012a). This paper extends our most recent work
(Menon et al, 2012b) on spatio temporal querying in smart spaces and discusses
the results of information retrieval and performance of a smart space from a query-
dependent perspective. While the basic data is about the location of individuals
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at various points in time, a fundamental property of this data is that it is prob-
abilistic in nature, due to the inherent inexactness of biometric recognition. For
example, during face recognition, camera angle, illumination and face expression
could potentially impair the quality of recognition results and lead to significant
errors in the overall recognition process. Thus the answers reported by the smart
space in response to spatio-temporal queries are not certain but are typically qual-
ified with probability values. We consider a number of different types of queries
in this paper, such as ‘When did X come to the conference room?’; ‘Did Y and Z
meet in the high-security zone between 6 pm and 7 pm?’, ‘Where did X go between
2pm to 4pm?’; etc.

We develop our spatio-temporal data model starting from an abstract state
transition system: states, events, and a transition function (Menon et al, 2008).
The state captures who is present in the different regions, or zones of the space.
The state changes upon an event, i.e., the movement of an occupant from one zone
to another. An event abstracts a biometric recognition step - whether it is face
recognition, voice recognition, etc. - and is represented as a set of pairs (o, p(0))
where p(o) is the probability that occupant o has been recognized at this event.
Thus, the state information is also probabilistic in nature. As we described in our
previous research (Menon et al, 2011, 2012a), there are different types of transition
functions, each with different properties. But, generally a transition function takes
as input a state (or a set of states) and an event, and determines the next state
by assigning revised probabilities to the occupants based upon the probabilities in
the event. Figure 1 depicts the architecture of a smart space.

Zone 1
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state 4
. Transition
Mail Room | System
T Event Event
Conference Sequence Sequence
T Room / Y ]
Office 1L T ‘Lounge ‘ Zone 3 ‘
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Fig. 1: Architecture of a Multimodal Smart Space

The state transition system model provides a natural basis for retrieval of
answers in response to various queries about the whereabouts of occupants in the
smart space. While the state information can be taken directly as the basis for
information retrieval, we have found in our previous work (Menon et al, 2011)
that there will be fewer spurious identifications if we to first perform a ‘spatio-
temporal track analysis’ of the states. The basic idea is that the consecutive track
elements of a valid occupant will mostly obey the zone adjacencies in the physical
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environment, whereas the tracks of spurious occupants will not have this property.
Thus, identification is contingent upon the existence of a coherent track for the
person with respect to zone adjacencies.

In this paper, we formulate a data model based upon an occupancy relation
with a real-valued probability attribute and show how to formulate spatio-temporal
queries using the well-known SQL database query language, focusing on the com-
putation of probabilities, an aspect that is novel to this model. We then show
how to formulate more complex queries in a constraint-based extension of logic
programs, called CLP(R), which permits general recursive queries and reasoning
over real-valued variables and arithmetic operations.

While the use of tables for reporting answers to relational queries is standard,
we show that for many spatio-temporal queries it is more natural to depict the
results of queries in a graphical manner. This is especially the case for depicting
the trajectory of occupants across various zones over time. We show how a time-
sequence diagram can be used for this purpose. We use graphs for reporting answers
to occupancy queries and queries such as ‘Did X and Y meet today in the lounge?’.
We provide a few illustrations of this approach along with screen shots from our
prototype system.

We also formulate precision and recall metrics in a query-dependent manner,
since the performance of a smart space is ultimately determined by how well it can
respond to the queries that are posed to it. We provide examples for calculation
of query-dependent performance metrics based on results from simulation runs
using our experimental prototype (Menon et al, 2010) of an eight-zone university
building with 45 registered occupants where each of the frequented areas is mapped
as a separate zone and named accordingly: entrance, office, mail room, lounge,
conference room, classroom, cafeteria and exit as shown in Figure 1a.

We show that a query-dependent metric gives a significantly higher precision
for a class of occupancy-related queries compared with a query-independent metric.
The reason is that a query-dependent metric is not sensitive to every single event
that occurs in the smart space and hence the degree of uncertainty is reduced
when such events are not considered.

Our results confirm that the state transition model serves as a concise abstrac-
tion of a smart space and that spatio-temporal querying using CLP(R) is very
effective in dealing with the query formulation involving probabilistic data from
the state transition system. The rest of this paper is organized as follows. Related
work is surveyed in section 2, the details of the data model and query formula-
tion is discussed in section 3, constraint based queries are discussed in section 4.
Query-dependent performance metrics are discussed in section 5 and conclusions
in section 6.

2 Related Work

Traditional database management systems focused on handling precise data in
applications such as payroll and inventory. The approach to queries in the domain
of databases has been different from the information retrieval arena. SQL queries
in databases are associated with a rich structure and a precise semantics that
facilitates formulation of complex queries at a user level and complex optimizations
at the system level. However, users are expected to have a detailed knowledge of the
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database to formulate queries successfully. On the other hand, query formulation in
Information Retrieval (IR) is based a set of keywords which makes this process easy
for casual users. Additionally, IR queries provide two important features, otherwise
missing in databases: ranking of results and inclusion of uncertain matches, i.e.,
the results may include documents that may not match all the keywords in the

query.

The data in smart spaces is fundamentally probabilistic and spatio-temporal in
nature since people are moving between different zones over a period of time, and
we are interested in their trajectories. Hence the data models and query languages
of interest in a smart space are probabilistic and spatio-temporal. There has been
considerable research on temporal queries (Snodgrass, 1987), spatial queries and
spatio-temporal queriesAmicis et al (2011) over the past two decades. Location-
based systems (Papandrea and Giordano, 2013) have been a major driver for the
interest in moving object databases (MOD), and their associated data models,
query languages, indexing, and uncertainty (de Caluwe et al, 2004; Guting and
Schneider, 2005; Pelekis et al, 2008).

In addition to the challenges involved in spatio-temporal databases, research
into probabilistic databases has gained momentum over the years due to the emer-
gence of a broad range of applications that need to manage large and imprecise
data sets in domains such as sensor networks (Deshpande et al, 2004) and various
pervasive computing scenarios (Amoretti et al, 2013; Das et al, 2002; McCarthy
and Anagnost, 2000). The conventional database management systems are inca-
pable of handling large volumes of imprecise data associated with an increasing
number of new applications, as imprecision is modeled in a probabilistic manner.
The existing rich query languages coupled with some of the event detection en-
gines such as Cayuga (Demers et al, 2006), SASE (Wu et al, 2006) or SnoopIB
(Adaikkalavan and Chakravarthy, 2006) are capable of extracting sophisticated
patterns from event streams, though these languages require the data to be pre-
cise.

A probabilistic database management system (ProbDMS) (Dalvi et al, 2009)
stores large volumes of probabilistic data and supports complex queries in addi-
tion to the standard features supported by conventional database management
systems. The major challenge in a ProbDMS is that it needs to exhibit scalability
with increase in data volume, like conventional database management systems,
as well as perform probabilistic inference. Special forms of probabilistic inference
that occurs during query evaluation on relational probabilistic data have been
proposed: lineage-based representations (Benjelloun et al, 2006), safe plans (Dalvi
et al, 2006), algorithms for top-k queries (Re et al, 2007), and representations of
views over probabilistic data (Re and Suciu, 2007). Recent work (Cormode and
Garofalakis, 2007; Jayram et al, 2007; Re et al, 2008) on probabilistic data streams
has investigated queries of varying complexity. Extensions to SQL with provision
for uncertain matches and ranked results have been proposed in (Agrawal et al,
2003; Motro, 1988), though with certain restrictions.

Our research on querying in smart spaces (Menon et al, 2011) makes crucial
use of probabilistic and temporal concepts, while the spatial issues are treated
more in a qualitative (symbolic) than a quantitative (geometric) manner.
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3 Data Model and Query Formulation

We begin with a presentation of the data model underlying our query language.
While the data model is basically relational in nature, it departs from the standard
relational model in the use of a real-valued attribute for the probability. Since the
underlying events occur at discrete points in time, we assume that time is dis-
cretized as a totally ordered set of hour-minute points (00 : 00,00 : 01,...,23 : 59)
over a 24-hour period. This can be extended to cover multiple days, months, and
years in a straightforward way, as necessary. We assume that every biometric event
occurs at one of these discrete time points, however, an event need not occur at
every such time point.

Definition (State Relation): Given a space with occupants O = o1 ...on, zones

= 21...2Zm, and biometric events occurring at distinct increasing times T =
t1...ls, the states of the smart space can be represented as a relation of the form
state(time, occupant, zone, probability), where occupant € O, zone € Z, and time
€ T, where T C {00:00, 00:01, ..., 23:59}, a discrete totally ordered set of time
units. The attribute probability € R, the set of real numbers, and is functionally
dependent on the other three attributes. The state relation satisfies the following
integrity constraint: VtVi X{p : (3z) state(t, 0;, z, p)} = 1.

The state relation shown in table la is based on the states of the smart space.
The tuples in the state relation correspond to those time units at which the events
occur. At each such time ¢, the state of a smart space is represented by a set of mxn
tuples corresponding to all possible zone-occupant pairs. The state relation satisfies
the integrity constraint that, for every occupant, the sum of the probabilities of
the presence of this occupant across all zones is 1. There is an external zone where
all occupants are assumed to be present initially when the smart space is empty.
In figure 1, the external zone is not shown, and each person’s probability of being
in the external zone at any time is 1 - sum of the probabilities of being in one of
the internal zones.

The raw data in the state relation can be improved through track-based rea-
soning, as discussed in (Menon et al, 2012a). Essentially we determine the track
of an occupant o by selecting only tuples in which o appears the state relation.
Now, given a graph representing the adjacency information of zones, we can check
whether every transition of occupant o from a zone x to a zone y in the state rela-
tion corresponds to an edge in the graph. Due to errors in recognition, not every
transition will agree with zone adjacency. Therefore, we consider o as a valid occu-
pant if the number of erroneous transitions is a small percentage of all transitions
pertaining to o, and we consider o as a spuriously identified occupant otherwise.
From our experiments, we have found track-based reasoning to be very effective in
minimizing the number of spuriously identified occupants, or false positives. The
tuples for all spuriously identified occupants are removed from the state relation
and the resulting relation is used to define an occupancy relation, as follows.

Definition (Occupancy Relation): Given a smart space with O = o1...o0np,
Z = z1...2zm, we define occupancy(start, end, person, zone, prob), where start
and end define a time interval. The attribute prob € R, the set of real numbers, is
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state(09:27, o1, entrance, 0.17)
state(09:27, o1, mail, 0.01)
state(09:27, o1, office, 0.04)
state(09:27, o1, conf_room, 0)
state(09:27, o1, lounge, 0.61)
state(09:27, o1, exit, 0)
state(09:27, o1, classroom, 0)
state(09:27, o1, cafeteria, 0)
state(09:27, oz, entrance, 0.12)

occupancy(09:27, 09:29, o1, entrance, 0.17)
occupancy(09:27, 09:29, o1, mail, 0.01)
occupancy(09:27, 09:29, o1, office, 0.04)
occupancy(09:27, 09:29, o1, conf_room, 0)
occupancy(09:27, 09:29, o1, lounge, 0.61)
occupancy(09:27, 09:29, o1, exit, 0)
occupancy(09:27, 09:29, o1, classroom, 0)
occupancy(09:27, 09:29, o1, cafeteria, 0)
occupancy(09:27, 09:29, o2, entrance, 0.12)

state(09:27, 03, cafeteria, 0) occupancy(09:27, 09:29, o2, cafeteria, 0)

state(09:27, oas, entrance, 0.05) occupancy(09:27, 09:29, 010, entrance, 0)

state(09:27, oas, cafeteria, 0) occupancy(09:27, 09:29, 010, cafeteria, 0)

(a) State Relation

(b) Occupancy Relation

Table 1: Sample State and Occupancy Relations

functionally dependent on the other four attributes, and refers to the probability of
presence of a person in a zone during a time interval.

Table 1b is a snapshot of the occupancy relation. This relation satisfies the in-
tegrity constraint that, for any given occupant o and time-interval, the sum of o’s
probabilities across all zones = 1 for this time-interval. It may be noted that the
state relation is similar to a point-based representation and the occupancy relation
is similar to an interval-based representation (Bohlen et al, 1998; Toman, 1996).

We first formulate a couple of simple queries in SQL (Structured Query Language)
and then discuss in the next section the use of CLP (Constraint Logic Program-
ming) for more complex queries, including recursive queries. Our focus will be on
queries involving the computation of probabilities, as this is the novel part of the
work. Below is the syntax of the most basic form of SQL queries:

SELECT attributes FROM relations WHERE condition

We will use the occupancy relation defined earlier as the basis for formulating
queries. The tuples of the relations that satisfy the condition are selected and the
relevant attributes are returned as the result. The condition is typically a conjunc-
tion of simpler tests that serve as a basis for tuple selection. There are numerous
extensions to the basic syntax outlined above, in order to perform aggregate op-
erations, grouping, ordering, etc.

A variety of queries can be posed to the smart space regarding the whereabouts
of its occupants leading to different classes of response sets. The response set could
be based on occupants, zones, or attributes of occupants such as probabilities of
their likely presence, time of entry and exit to or from a zone. Additionally, the
response set can include derived attributes such as duration of presence, tracks.
These queries also could be based on details relating to a single occupant or mul-
tiple occupants.
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As noted earlier, even though the queries do not make any reference to probabil-
ities, the processing of the query will have to reason about them. A basic integrity
constraint of the occupancy relation is that the sum of the probabilities across all
zones = 1 at any given time. The queries will illustrate how to combine probabil-
ities when reasoning over multiple time intervals. In combining probabilities, we
often would need to known when someone was not in a particular zone at a par-
ticular time. This is simply 1 - probability of being present in the zone at that time.

Query 1. Did occupant oz visit the lounge at 3:00 pm?

Answer: For this query, it is necessary to check the occupancy relation for the
presence of o3 in the lounge at a time interval that contains 3:00 pm. If o3 was
detected to be in the lounge, at most one tuple in occupancy will satisfy the query.
For simplicity, we assume overloaded comparison operators <=, <, =, etc., that are
defined on time values.

SELECT prob

FROM occupancy

WHERE  person = o3 and
zone = lounge and
from <= 15:00 <= to

Zones visited by Occupants 01-05 during the day

1
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Fig. 2: Zones visited by occupants 01...05

We can generalize this query for all the zones visited by one or more occupants
during the day. Figure 2 shows a graphical depiction of all the zones visited by
occupants o01.., os. In this graph, for each zone z and occupant o, the maximum
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probability of presence of o in z is reported — the maximum is taken over all the
probabilities of the presence of o in z over the entire day. The data underlying this
result was generated randomly by our simulator for smart spaces. (In figure 2, we
can infer that none of these five occupants visited the conference room.)

Query 2. Was occupant o in the lounge during 10:00 am to 11:00 am?
Answer: Since there could be multiple sub-intervals within 10:00 am to 11:00 am
during which os was in the lounge (with different probabilities), the answer to the
query is 1 minus the product of the probabilities that he was not in the lounge
during every such sub-interval. The probability that an occupant was not in the
lounge at a given interval = 1 - probability that he was in the lounge during that
interval.

a -
SELECT PROD(1-prob) as prodprob
FROM occupancy
WHERE  person = 0g and
zone = lounge and
10:00 <= from and to <= 11:00
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Fig. 3: Track of occupant og

Figure 3 is a screen-shot from our prototype and illustrates the occupancy
track of occupant og in the smart space. Modeled on lines of a UML time-sequence
diagram, this track plot has zone locations along the x-axis and event time stamps
along the y-axis. The solid blue lines correspond to the ground truth track and
the dashed red lines indicate the estimated track inferred by the smart space. The
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horizontal lines capture the transition between zones and the vertical bars indicate
the duration of presence in a zone. At each zone, the image captured by the camera
at that zone is shown. In this example, the estimated track agrees with the ground
truth for most part and deviates only for a few events.

4 Constraint Based Queries

Logic programs offer a more expressive query paradigm than SQL because they
permit the formulation of general recursive queries. SQL offers the guarantee that
all queries will terminate, an important requirement for a database query lan-
guage. The subset of Horn clauses called Datalog, which is essentially Horn clauses
without function symbols (Ceri et al, 1989), also has the strong termination prop-
erty and has been studied extensively in the literature. Datalog supports recursive
queries and has gained much interest in recent years with applications in a number
of domains.

Since our underlying data model uses a real-valued attribute for probability
along with operations for comparison and arithmetic, it is more natural to adopt
the paradigm of constraint logic programming over reals, CLP(R) (Jaffar et al,
1992), rather than Horn clauses. Essentially, CLP(R) extends Horn clauses by gen-
eralizing unification to constraint satisfaction. Typically, CLP(R) systems provide
solvers for linear equalities and inequalities; non-linear equations and inequations
are deferred until one or more variables become bound and they become linear.
They also support aggregation predicates, such as min, max, sum, count, etc.,
and we will make use of such operations in our formulations as well.

Definition (CLP(R)): A CLP(R) program is a collection of rules, which are one
of two forms:

p(t) B B

p(t) : — pr(tr) ... pe(tr)
where each p is a user-defined predicate and each p1 ...pr may be user-defined or
may be one of a pre-defined set of builtin constraint predicates, such as <, >, etc.
The terms t and t; for 1 < i < k include ordinary terms as well as terms composed
from real numbers, variables, and the usual arithmetic operators.

Note that <= and => are overloaded operators and we use them in this paper
for also comparing time units. We also use the addition (+) and subtraction (-)
operation over time units.

Query 3. Did 01 and o2 meet in the lounge today? Assume that “met” means
“being in the same zone at the same time”.

Answer: As in query 2, since there are multiple time intervals when o1 and o2
could have met, the probability that o1 and o2 met in the lounge today is 1 minus
the probability that o; and o2 did not meet in the lounge during any of the time
intervals. For any interval, the probability of not having met in the lounge during
this interval is 1 minus product of the probabilities of their being in the lounge
during this interval — predicate g3 returns this probability for every overlapping
interval. We assume a built-in aggregate operation prod which multiplies the re-
sults of multiple solutions to a goal.
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query3(1-Prob) :-
prod(P, q3(P), Prob).

q3(1 - ProblxProb2) :-
occupancy(F, T, o1, lounge, Probl),
occupancy(F, T, o2, lounge, Prob2).

Lounge Occupancy for Occupants ol and o2
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Fig. 4: Graphical output for Query 3: Did 01 and o2 meet in the lounge today?

Figure 4 shows the probability of presence (for both occupants 01 and 02) in the
lounge through the day. The data for this output was again generated randomly
by our simulator. From the graph, one can infer that o; and o2 probably met at
9.00 am and again around 1.00 pm.

Query 4. What is the longest contiguous duration during which occupant o1 was
in the office?
Answer: We define the contiguous occupancy in a zone recursively and use this
definition in order to define the longest duration. In order to obtain a meaningful
response to this query we need to assume that a person is considered to be present
in the office if his or her probability is greater than some value, say 0.5.
query4 (Duration) :-
setof (F,occupancy(F,_,01,0ffice,_ ), FromSet),
max (D,q4 (FromSet,D), Duration).
q4(FsS,D) :-
member (F,FS),
contiguous(F,T,01,0ffice),
D=T-F.



12 V. Menon et al.

contiguous(F,T,P,Z) :-
occupancy(F,T1,P,Z, Prob), Prob > 0.5,
T2 = T1 + 0:01,
contiguous(T2,T,P,Z).
contiguous(F,T,P,Z) :-
occupancy(F,_,P,Z,Prob), Prob <= 0.5,
T=F - 0:01.

It is straightforward to extend the above definition of contiguous so that the
average probability during this period is also included. Other extensions include
the incorporation of distances between adjacent zones and spatial queries that
make use of this distance information. As can be seen from the above formula-
tions and possible extensions, the CLP(R) is a powerful paradigm for probabilistic
spatio-temporal queries.

5 Query-dependent Performance Metrics

The query-dependent characterization involves evaluating the performance of the
model from an information retrieval perspective based on its ability to answer
spatio-temporal queries about the space and its occupants. While the query-
independent (Menon et al, 2010) approach is holistic and involves performance
characterization at a system level, the scope of query-dependent performance char-
acterization is restricted to the spatio-temporal dimensions that are either explicit
or implicit from the query of interest. At a very granular level, the window of
interest for evaluating the performance may only concern an occupant’s presence
in a particular zone at a specific point or interval of time, which maps to just one
or few states of the state transition model.

The performance metrics for any given query of interest are defined in terms
of the ground truth, which is a set of true answers associated with the query.
The nature of the response set may vary depending on the type of query posed
and includes attributes such as occupants, zones, probabilities of presence, time of
occurrence or derived attributes such as duration of presence, tracks, etc., which
are based on relations that can be defined as part of the data model. The response
set involving the occupants in a zone is defined in terms of recognition threshold 6,
only those persons with a probability > 6 are assumed to be present. For a state
where a person’s probability in two or more zones is > 6, the zone with the highest
probability is taken as the zone of his presence.

Definition (Ground Truth): Given n occupants O={o1...0,} and an event
sequence e1 ...ez, then the ground truth, GT, is a sequence 0;, . ..0;, where each
index 11 .. .1 lies in the range 1...n.

The ground truth basically states which person was the true occupant in question
for each biometric event. We first define occupancy-based precision and recall, as
follows.

Definition (Precision Recall - Occupancy based): Given a space with m
zones, n occupants O = {o01...0n}, an event sequence E = ey ...ez, and ground
truth GT'. For an occupancy-based query Q, suppose Rel, is the set of relevant
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occupants that satisfies the query as per GT, and Ret, is the set of retrieved
occupants as per the data model and occupancy relation. Then, precision, =
|Reto N Relo| /|Reto| and recall, = |Reto N Relo| / |Relo|.

This definition can be extended to queries that determine durations or time inter-
vals. Essentially, each time interval < t1,t2 > can be regarded as a discrete set of
time points {t1, t1 + 0: 01,...¢2}. This leads to the following definition.

Definition (Precision Recall - Time based): Given a space with m zones,
n occupants O = {o1...0n}, an event sequence E = e1...ez, and ground truth
GT. For an time-based query Q, suppose Rel; is the set of relevant time units that
satisfy the query as per GT', and Ret: is the set of retrieved time units as per the
data model and occupancy relation. Then, precision: = |Ret: N Rel:| / |Rett| and
recally = |Rety N Rel:| /| Rely).

We discuss query-dependent performance metrics by considering a fairly typical
class of query and evaluating the occupancy based precision recall metrics for
varying number of occupants (n = 5, 10, 15, 20, 25) while keeping the recogni-
tion threshold constant at #=0.4. For example, a query of the form ‘Who all were
present in the cafeteria between 10:00 am - 11:00 am?’ is an example of a spatio-
temporal query that retrieves the set of occupants present in a zone (cafeteria)
during a specified time interval (10:00 am - 11:00 am). We report performance
metrics for this class of occupancy query by varying the zone of occupancy as well
as the duration of occupancy. All zones in the smart space in our experimental
setup were considered namely, entrance, mail, office, lounge, conf_room, exit, class-
room, and cafeteria. The duration of occupancy over varying time intervals in an
8 hour workday were considered. The time intervals considered were 15 minutes,
30 minutes, 1 hour, 2 hours, 4 hours, and 8 hours.

No. of Query-dependent | Query-independent
Occupants Avg. Precision Avg. Precision
5 0.88 0.63
10 0.87 0.83
15 0.87 0.70
20 0.85 0.73
25 0.83 0.82

Table 2: Performance Metrics for Varying Number of Occupants

Table 2 reports the query-dependent precision metrics associated with this class
of spatio-temporal query for varying number of occupants in the smart space and
compares it with query-independent precision metrics reported in our previous
work (Menon et al, 2012a). The query-dependent average precision is computed
from precision values across all zones of the smart space over varying time intervals
as discussed earlier. As typical queries are not concerned with every single event
that occurred in the smart space, query-dependent average precision values are
higher than query-independent precision values. (The recall metric did not exhibit
appreciable difference between the two cases and hence is not presented here.)
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6 Conclusions and Future Work

We have presented an approach to retrieving information on the whereabouts of
occupants in a smart space. An important characteristic of such spaces is that
the location of an occupant is fundamentally probabilistic in nature due to the
inherent uncertainty associated with unconstrained biometric recognition using
devices such as video cameras and microphones. Our data model captures this
uncertainty in the occupancy relation, wherein each tuple records the probability
that a given individual is present at a certain location for a certain duration. While
probabilities are modeled as a real number in our data model, time is modeled
discretely reflecting the discrete nature of the underlying events. We formulated
probabilistic queries in SQL and CLP(R) to show how information can be retrieved
and illustrate the results for some of the queries in a graphical manner. The state
transition system model provides a natural basis for keeping track of the effect
of various events that occur in the smart space. The states in turn serve as an
effective basis for the retrieval of answers in response to various queries about the
whereabouts of occupants in the smart space.

This paper makes two important contributions in spatio-temporal retrieval of
information from a smart space:

1. We show different ways of presenting the result of spatio-temporal queries.
While the tabular form of presenting views of relational data is standard and
well-known, we show the usefulness of graphs and sequence diagrams in this
paper. Sequence diagrams are especially useful in presenting the movements of
people across zones of the smart space. When the results involve probabilities,
we can also use graphs to report results, such as the probability distribution
for the occupancy of an individual across various zones at a particular time.

2. We show how the performance of a smart space can be defined using precision-
recall and tailored to the needs of information retrieval. In our earlier papers
(Menon et al, 2010, 2011, 2012a), we presented precision-recall metrics for a
smart space in a query-independent manner. Such an approach takes every
event into account, whether or not it is pertinent to a particular query. Query-
based metrics tend to provide a more realistic appraisal of the performance
of a smart space, as it caters to the application at hand. From our experi-
mental results, the smart space tends to provide significantly higher numbers
in the precision metric for occupancy-related queries compared with query-
independent precision metrics.

We have presented a variety of spatio-temporal queries in this paper. As part of
our future work, we propose to investigate a class of interesting queries which may
be called what-if queries, e.g., ‘If A was known to be in the lounge at noon with
certainty, what is the probability that B was also present at that time?’ This query
cannot be answered without re-initializing the state and occupancy relations. If
A was in the lounge at noon with certainty it means that A was present with
certainty in the zone preceding his entry to the lounge. Inductively, we can say
that A was present with certainty in all zones in his track leading up to entrance
to the security zone at or preceding noon. Thus, we need to define a revised event
sequence in which the probability of A is 1.0 for each event in his track leading
up to lounge at noon, and the probabilities of all other occupants for each such
event is 0. The above query shows the deep interconnection between retrieval,
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reasoning, and recognition. A ‘what-if’ query that declares knowledge about an
event causes the redefinition of one or more biometric events, thereby triggering
the state transition system to compute a new set of states, which the retrieval
system uses to determine a new occupancy relation for answering the query.
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