
Soft Comput (2005)
DOI 10.1007/s00500-005-0029-3

ORIGINAL PAPER

Haibin Wang · Yan-Qing Zhang
Rajshekhar Sunderraman

Extensible soft semantic web services agent

© Springer-Verlag 2005

Abstract Web services technology is critical for the success
of business integration and other application fields such as
bioinformatics. However, there are two challenges facing the
practicality of Web services: (a) efficient location of the Web
service registries that contain the requested Web services and
(b) efficient retrieval of the requested services from these reg-
istries with high quality of service (QoS). The main reason
for this problem is that current Web services technology is
not semantic-oriented. Several proposals have been made to
add semantics to Web services to facilitate discovery and
composition of relevant Web services. Such proposals are
being referred to as semantic Web services (SWS). However,
most of these proposals do not address the second problem
of retrieval of web services with high QoS. In this paper,
we propose a framework called soft semantic Web services
agent (soft SWS agent) for providing high QoS SemanticWeb
services using soft computing methodology. Since different
application domains have different requirement for QoS, it is
impractical to use classical mathematical modeling methods
to evaluate the QoS of semantic Web services. We use fuzzy
neural networks with Genetic Algorithms (GA) as our study
case. Simulation results show that the soft computing meth-
odology is practicable to handle fuzzy and uncertain QoS
metrics effectively.

Keywords Quality of service · Soft computing · Semantic
Web · Intelligent agents · Soft semantic web services

1 Introduction

Web services are playing an important role in e-business
application integration and other application fields such as
bioinformatics. So it is crucial for the success of both service
providers as well as service consumers to provide and in-

H. Wang (B) · Y.-Q. Zhang · R. Sunderraman
Department of Computer Science, Georgia State University,
Atlanta, GA 30302, USA
E-mail: hwang17@student.gsu.edu, yzhang,raj@cs.gsu.edu
Tel.: +1-404-6510682
Fax: +1-404-4639912

voke the high quality of service (QoS) Web services. Unfor-
tunately, current Web services technologies such as simple
object access protocol (SOAP), web services description lan-
guage (WSDL), universal description, discovery and Integra-
tion (UDDI), electronic business XML initiative (ebXML),
XLANG, web services flow language (WSFL), business pro-
cess execution language for web services (BPEL4WS), and
bioinformatic sequence markup language (BSML) are all
syntax-oriented with little or no semantics associated with
them. Computer programs may read and parse them, but with
little or no semantic information associated with these tech-
nologies, the computer programs can do little to reason and
infer knowledge about the Web services.

Current research trend is to add semantics to the Web
services framework to facilitate the discovery, invocation,
composition, and execution monitoring of Web services. Web
services with explicit semantic annotation are called seman-
tic Web services (SWS). Several projects are underway to
try to reach such a goal. For example, OWL-S (previously
DAML-S from OWL Services Coalition) uses OWL based
ontology for describing Web services. METEOR-S [20] fol-
lows the way that relates concepts in WSDL to DAML+OIL
ontologies in Web services description, and then provides an
interface to UDDI that allows querying based on ontologi-
cal concepts. The internet reasoning service (IRS-II) [14] is a
semanticWeb services framework, which allows applications
to semantically describe and execute Web services. IRS-II is
base on the UPML framework [15]. The web service model-
ing framework (WSMF) [6] provides a model for describing
the various aspects related to Web services. Its main goal is
to fully enable e-commerce by applying Semantic Web tech-
nology to Web services.

In our vision, with the maturing of semantic Web services
technologies, there willbe a proliferation of public and/or
private registries for hosting and querying semantic Web
services based on specific ontologies. Currently, there are
many public and private UDDI registries advertising numer-
ous similar Web services with different QoS. For example,
GenBank, XEMBL, and OmniGene all provide similar Web
services with different quality of services. There are two chal-

H. Wang et al.

lenges existing for automatic discovery and invocation of
Web services. One is the efficient location of service regis-
tries advertising requested Web services and the other is the
efficient retrieval of the requested services from these regis-
tries with the highest quality of service (QoS). The semantic
Web services technologies that we mentioned above can be
exploited to solve the first challenge. For the second chal-
lenge, we believe that the QoS of semantic Web services
should cover both functional and non-functional properties.
Functional properties include the input, output, conditional
output, pre-condition, access condition, and the effect of ser-
vice. These functional properties can be characterized as the
capability of the service [1]. Non-functional properties in-
clude the availability, accessibility, integrity, performance,
reliability, regulatory, security, response time and cost of the
Web service.

Several matchmaking schemes have already been pro-
posed to match the service requestor’s requirements with ser-
vice provider’s advertisements [16,23]. These schemes basi-
cally try to solve the capability matching problem. Here, we
must be aware that on the one hand, the degree of capabil-
ity matching and non-functional properties are all fuzzy, and
on the other hand, different application domains have differ-
ent requirements on non-functional properties. As a conse-
quence, it is not flexible to use classical mathematical mod-
eling methods to evaluate the QoS of semantic Web services.
Although there are several existing QoS models [3,7–9,11,
17,18,21,26], none of them are suitable for the requirements
considered in this paper. These QoS models are based on
precise QoS metrics and specific application domains. They
cannot handle fuzzy and uncertain QoS metrics.

In this paper, we propose a framework called soft seman-
tic Web services agent (soft SWS agent) to provide high QoS
semantic Web services based on specific domain ontology.
The soft SWS agent could solve the aforementioned two chal-
lenges effectively and efficiently. The soft SWS agent itself
should be implemented as a semantic Web service and com-
prises of six components:

(a) Registries crawler, (b) Repository, (c) Inquiry server,
(d) Publish server, (e) Agent Communication server, and (f)
Intelligent inference engine. The core of the soft SWS agent
is the intelligent inference engine (IIE). It uses soft comput-
ing technologies to evaluate the entire QoS of semantic Web
services using both functional and non-functional properties.
In this paper, we use semantic Web services for bioinformat-
ics as a case study. We employ fuzzy neural networks with
genetic algorithms (GA) for the IIE component of our soft
SWS agent. The case study illustrates the practicability of
soft computing methodology for handling fuzzy and uncer-
tain linguistic semantic Web Services information. For exam-
ple, capability of a Web service is fuzzy. It is unreasonable to
use crisp values to describe it. So we can use several linguis-
tic variables such as a “little bit low” and “a little bit high”
to express the capability of services.

The paper is organized as follows. In Sect. 2, we present
the necessary background of the QoS model, semantic Web
services, and soft computing methodology. In Sect. 3, we

provide the architecture of the extensible soft SWS agent.
In Sect. 4, we present the design of the fuzzy neural net-
work with GA and simulation results. In Sect. 5, we present
related work, and finally, in Sect. 6, we present conclusions
and possibilities for future research.

2 Background

This section details the background material related to this
research. We cover traditional Web services, semantic Web,
semantic Web services, soft computing methodology, and the
QoS model.

2.1 Traditional Web services

Web services are modular, self-describing, and self-contained
applications that are accessible over the internet [4]. The
core components of the Web services infrastructure are XML
based standards like SOAP, WSDL, and UDDI. SOAP is the
standard messaging protocol for Web services. SOAP mes-
sages consist of three parts: an envelope that defines a frame-
work for describing what is in a message and how to process
it, a set of encoding rules for expressing instances of appli-
cation-defined data types, and a convention for representing
remote procedure calls and responses. WSDL is an XML
format to describe Web services as collections of commu-
nication endpoints that can exchange certain messages. A
complete WSDL service description provides two pieces of
information: an application-level service description (or ab-
stract interface), and the specific protocol-dependent details
that users must follow to access the service at a specified con-
crete service endpoint. The UDDI specifications offer users a
unified and systematic way to find service providers through a
centralized registry of services that is roughly equivalent to an
automated online “phone directory” of Web services. UDDI
provides two basic specifications that define a service regis-
try’s structure and operation. One is a definition of the infor-
mation to provide about each service and how to encode it and
the other is a publish and query API for the registry that de-
scribes how this information can be published and accessed.

2.2 Semantic Web

The current Web is just a collection of documents, which are
human readable but not machine processable. In order to rem-
edy this disadvantage, the concept of semantic Web is pro-
posed to add semantics to theWeb to facilitate the information
finding, extracting, representing, interpreting and maintain-
ing. “The semantic Web is an extension of the current Web
in which information is given well-defined meaning, better
enabling computers and people to work in cooperation” [13].
The core concept of semantic Web is ontology. “Ontology is a
set of knowledge terms, including the vocabulary, the seman-
tic interconnections, and some simple rules of inference and
logic for some particular topic” [10]. There are many seman-
tic Web technologies available today, such as RDF, RDFS,

Extensible soft semantic web services agent

DAML+OIL and OWL. The description logics are used as
the inference mechanism for current semantic Web technol-
ogies. There are some drawbacks in the description logics
[14]. It cannot handle fuzziness and uncertainty associated
with concept membership. The current research trend is to
combine soft computing with semantic Web [5,12,22].

2.3 Semantic Web services

The industry is proposing Web services to transform the Web
from “passive state” – repository of static documents to “pos-
itive state” – repository of dynamic services. Unfortunately,
the current Web services standards are not semantic oriented.
They are awkward for service discovery, invocation, com-
position, and monitoring. So it is natural to combine the
semantic Web with Web services, the so-called semantic Web
services. Several projects have been initiated to design the
framework for semantic Web services such as OWL-S, IRS-
II, WSMF and METEOR-S.

For example, OWL-S 1.0 that is based on OWL is the
upper ontology for services. It has three subontologies: ser-
vice profile, service model and service grounding. The ser-
vice profile tells “what the service does”; that is, it gives the
types of information needed by a service-seeking agent to
determine whether the service meets its needs. The service
model tells “how the service works”; that is, it describes what
happens when the service is carried out. A service grounding
specifies the details of how an agent can access a service.
Typically a grounding will specify a communication proto-
col, message formats, and other service-specific details such
as port numbers used in contacting the service. In addition,
the grounding must specify, for each abstract type specified in
the ServiceModel, an unambiguous way of exchanging data
elements of that type with the service.

2.4 Soft computing methodology

“Soft computing differs from conventional (hard) comput-
ing in that, unlike hard computing, it is tolerant of impreci-
sion, uncertainty, partial truth, and approximations” [25]. The
principal constituents of soft computing are fuzzy logic, neu-
ral networks, and generic algorithms. More and more tech-
nologies will join into the soft computing framework in the
near future. Fuzzy logic is primarily concerned with han-
dling imprecision and uncertainty, neural computing focuses
on simulating human being’s learning process, and genetic
algorithms simulate the natural selection and evolutionary
processes to perform randomized global search. Each com-
ponent of soft computing is complementary to each other.
Using combinations of several technologies such as fuzzy-
neural systems will generally get better solutions.

2.5 QoS model

Different applications generally have different requirements
of QoS dimensions. Rommel [17] and Stalk and Hout [21]
investigate the features with which successful companies

assert themselves in the competitive world markets. Their
result showed that success is based on three essential dimen-
sions: time, cost and quality. Garvin [8] associates eight dimen-
sions with quality, including performance and reliability. Soft-
ware systems quality of service has been extensively studied
in [9,11,26]. For middleware systems, Frlund and Koisinen
[7] present a set of practical dimensions for distributed ob-
ject systems reliability and performance, which include time
to repair (TTR), time to failure (TTF), availability, failure
masking, and server failure.

In this paper, we construct a QoS model for semantic
Web services. It is composed of the following dimensions:
capability, response time, and trustworthiness. In order to be
more precise, we give our definitions of the three dimensions
as follows:

(a) The capability of a semantic Web service can be defined
as the degree to which its functional properties match
with the required functional properties of the semantic
Web service requestor;

(b) The response time of a semantic Web service represents
the time that elapses between service requests arrival and
the completion of that service request. Response time is
the sum of waiting time and actual processing time;

(c) The trustworthiness of a semantic Web services is the
extent to which it is consistent, reliable, competent, and
honest.

3 Architecture of extensible soft SWS agent

The extensible soft SWS agent can provide high QoS seman-
tic Web services based on specific ontology. The extensible
SWS agent uses centralized client/server architecture inter-
nally. But itself can also be and should be implemented as a
semantic Web service based on specific service ontology. The
extensible soft SWS agent comprises of six components: (a)
Registries Crawler; (b) SWS Repository; (c) Inquiry Server;
(d) Publish Server; (e) Agent Communication Server; (f)
Intelligent Inference Engine. The high level architecture of
the extensible soft SWS agent is shown in Fig. 1. Each of the
components is described next.

3.1 Registries crawler

As we pointed out before, the current UDDI registry only
supports keyword-based search for the Web services descrip-
tion. Under the Semantic Web environment, UDDI registry
must be extended to be ontology-compatible which supports
semantic matching of semantic Web services’ capabilities.
One possible way is to map the OWL-S service profiles into
current UDDI registry’s data structure. Semantic Web service
providers will publish the service profiles of semantic Web
services in the public or private specific service ontology-ori-
ented UDDI registries or directly on their semantic Web sites.
The specific ontology based semantic Web services registries
crawler has two tasks:

H. Wang et al.

Fig. 1 Architecture of the extensible soft SWS agent

Fig. 2 Architecture of the SWS repository

(a) Accessing these public and private specific service ontol-
ogy-oriented UDDI registries using UDDI query API to
fetch the service profiles, transforming them into the for-
mat supported by our repository, and storing them into
the repository using the publish API of our repository;

(b) Crawling the semantic Web sites hosting the specific
ontology based semantic Web services directly to get the
service profiles, transforming them into the format sup-
ported by the repository, and storing them into repository
using the publish API for the repository.

The registries crawler should be multithreaded and should be
available 24×7. The registries crawler must also be provided

the information of highest level specific service ontology be-
fore its execution.

3.2 SWS repository

The specific ontology based semantic Web services reposi-
tory will store service profiles of semantic Web services. The
architecture of repository is shown in Fig. 2.

The internal communication module provides the com-
munication interface between the repository and the regis-
tries crawler, inquiry server, publish server, and the agent
communication server. If a message is an advertisement, the

Extensible soft semantic web services agent

internal communication module sends it to the OWL-S/UDDI
transformer that constructs a UDDI service description using
information about the service provider and the service name.
The result of publishing with the UDDI is a reference ID of
the service. This ID combined with the capability descrip-
tion and non-functional properties of the advertisement are
sent to the OWL-S matching engine that stores the adver-
tisement for capability matching. If a message is a query,
the internal communication module sends the request to the
OWL-S matching engine that performs the capability match-
ing. After calculating the degree of capability, the OWL-S
matching engine will feed the degree of capability and non-
functional properties to the intelligent inference engine to get
the entire QoS. The service with highest QoS will be selected.
The result of the selection is the advertisement of the provid-
ers selected and a reference to the UDDI service record. The
combination of UDDI records and advertisements is then sent
to the inquiry server. If the required service does not exist,
OWL-S matching engine will transfer the query to the agent
communication server through the internal communication
module. The matching algorithm used by OWL-S matching
engine is based on the modified algorithm described in [9].
The modified algorithm considers not only the inputs, out-
puts, preconditions and effects, but also service name.

3.3 Inquiry server

The specific ontology based semantic Web services inquiry
server provides two kinds of query interface: a program-
matic API to other semantic Web services or agents and a
Web-based interface for the human user. Both interfaces sup-
port keyword oriented query as well as capability oriented
searches.

For capability-oriented query, the inquiry server trans-
forms the service request profile into the format supported
by the repository such as OWL-S service profile and sends
the query message to the internal communication module of
the repository. The internal communication module sends the
service profile to the OWL-S matching engine and returns
back the requested advertisement to the inquiry server and
then on to the service requestor. The process is shown in
Fig. 3.

For the keyword-oriented queries, the inquiry server will
directly send the query string to the internal communication
module as a query message and the internal communication
module sends the query string to the UDDI Registry and
returns back the requested UDDI records to the inquiry server
and then on to the service requestor. The process is shown in
Fig. 4.

We use SOAP as a communication protocol between ser-
vice requestors and the inquiry server.

3.4 Publish server

The specific ontology based semantic Web services publish
server provides the publishing service for other agents and

Fig. 3 Capability oriented query

Fig. 4 Keyword oriented query

human users. It has two kinds of interface. One is the pro-
grammatic API to other semantic Web services or agents and
another is for the human user that is Web-based. The pub-
lish server will transform the service advertisement into the

H. Wang et al.

Fig. 5 Publish service advertisement

format supported by the repository such as OWL-S service
profile and sends the publish message to the internal commu-
nication module. The internal communication module sends
the transformed OWL-S service profile to the OWL-S/UDDI
transformer. The OWL-S/UDDI transformer will map the
OWL-S service profile into UDDI registries data structure,
and store the OWL-S service profile and reference ID of ser-
vice into OWL-S matching engine. The process is shown in
Fig. 5.

If the advertised semantic Web services are not in the
domain of the soft SWS agent, the internal communication
server will transfer the advertisements to the agent commu-
nication server which will try to publish the advertisements
into other soft SWS agents. SOAP is used as a communi-
cation protocol between service publisher and the publisher
server.

3.5 Agent communication server

The soft semantic Web services agent communication server
uses a certain communication protocol such as knowledge
query and manipulation language (KQML) and agent com-
munication language (ACL) to communicate with other soft
SWS agents. If the current soft SWS agent cannot fulfill the
required services (query and publish), the agent communica-
tion server is responsible for transferring the requirements to
other soft SWS agents, getting results back, and conveying
the results back to the service requestors. The current KQML
and ACL should be extended to be ontology-compatible to
facilitate the semantic oriented communication.

3.6 Intelligent inference engine

The intelligent inference engine (IIE) is the core of the soft
SWS agent. The soft SWS agent is extensible because the IIE
uses soft computing methodology to calculate the QoS of the
semantic Web services with multidimensional QoS metrics.
The IIE gets the degree of capability matching and non-func-
tional properties’ values from OWL-S matching engine and
returns back the whole QoS to the OWL-S matching engine.
In the next section, we show the details of designing an IIE
using fuzzy logic, neural networks, and genetic algorithms.

4 An Implementation of intelligent inference engine

This section shows one implementation of IIE based on fuzzy
logic, neural networks, and genetic algorithms. A schematic
diagram of the four-layered fuzzy neural network is shown
in Fig. 6. Nodes in layer one are input nodes representing
input linguistic variables. Nodes in layer two are membership
nodes. Each membership node is responsible for mapping an
input linguistic variable into a possibility distribution for that
variable. The rule nodes reside in layer three. The last layer
contains the output variable nodes [13].

As we mentioned before, the metrics of QoS of semantic
Web services are multidimensional. For illustration of spe-
cific ontology based semantic Web services for bioinformat-
ics, we decide to use capability, response time and trustwor-
thiness as our inputs and whole QoS as output. The fuzzy
logic system is based on TSK model.

4.1 Input fuzzy sets

Let x represent capability, y represent response time, and z
represent trustworthiness. We scale the capability, response
time and trustworthiness to [0,10] respectively. The graphical
representations of the membership functions of x, y, and z
are shown in Fig. 7.

4.2 Fuzzy Rule Bases

Here, we design the fuzzy rule base based on the TSK model.
A fuzzy rule is shown below:

IF x is I1 and y is I2 and z is I3
THEN O is ai,1* x+ ai,2* y+ ai,3* z+ ai,4.
where, I1, I2 and I3are in low, middle, high respectively

and i is the integer in [1,27].There are a total of 27 fuzzy rules.
The ai,j are consequent parameters which will be obtained
by the training phase of fuzzy neural network using genetic
algorithms.

4.3 Design of defuzzier

Suppose, for certain inputs x, y and z, there are m fired fuzzy
rules. To calculate the firing strength of jth rule, we use the

Extensible soft semantic web services agent

Fig. 6 Schematic diagram of fuzzy neural networks

Fig. 7 Membership functions of inputs

formula:

Wj = µx(x)∗µy(y)∗µz(z) (1)

So, the crisp output is:

O =
∑

j=1m

(
a∗

j,1x + a∗
j,2y + a∗

j,3z + aj,4
)
/

∑

j=1m

Wj (2)

4.4 Genetic algorithms

Genetic algorithm is a model of machine learning that derives
its behavior from a metaphor of the processes of evolution in

nature. This is done by creation within a machine of a popu-
lation of individuals represented by chromosomes. Here we
use real-coded scheme. Given the range of parameters (coeffi-
cients of linear equations in TSK model), the system uses the
derivate-free random search-GA to learn to find the near opti-
mal solution by the fitness function through the training data.

(a) Chromosome: The genes of each chromosome are 108
real numbers (there are 108 parameters in the fuzzy rule
base) which are initially generated randomly in the given
range. So, each chromosome is a vector of 108 real num-
bers.

H. Wang et al.

(b) Fitness function: The fitness function is defined as

E = 1

2

∗ ∑

j=1m

(
dj − oj

)2
(3)

(c) Elitism: The tournament selection is used in the elitism
process.

(d) Crossover: The system will randomly select two parents
among the population and then randomly select the num-
ber of cross points, and simply exchange the correspond-
ing genes among these two parents to generate a new
generation.

(e) Mutation: For each individual in the population, the sys-
tem will randomly select genes in the chromosome and
replace them with randomly generated real numbers in
the given range.

4.5 Simulations

In Sect. 3, we just describe the design of the soft SWS agent.
We haven’t implemented the whole system so the real data is
not available. Here, we assume the degree of capability and
the values of response time and trustworthiness are already
existing.

There are two phases for applying a fuzzy neural net-
work: training and predicting. In the training phase, we use
168 data entries as training data set. Each entry consists of
three inputs and one expected output. We tune the perfor-
mance of the system by adjusting the size of population, the
number of generations and probability of crossover and muta-
tion. After the training phase, we use other 168 data entries
as testing data set. Table 1 gives the part of prediction results
with several parameters for output o.

In Table 1, No. of generations = 100000, No. of popula-
tions = 1000, probability of crossover = 0.7, probability of
mutation = 0.1. The maximum error of the prediction result
is 1.6. The total prediction error for168 entries of testing data
set is 25%. In this experiment, the membership functions of
degree of capability, response time, and trustworthy are iden-
tical just for illustration of the practicability of our proposed
method. In real applications, according to the characteristics
of the application domain, they may be different. Also, the
training data set used in the experiment is not given by the

Table 1 Prediction result of fuzzy nNeural network

Input x Input y Input z Desired output d Real output o

0.0 0.0 0.0 0.0 0.0
1.0 4.0 5.0 0.0 0.24
2.0 0.0 4.0 0.0 1.35
3.0 6.0 3.0 0.0 0.53
4.0 2.0 6.0 0.0 0.63
5.0 4.0 7.0 0.0 1.57
6.0 2.0 2.0 3.0 2.80
7.0 5.0 0.0 3.0 2.4
8.0 0.0 8.0 4.0 2.66
9.0 9.0 4.0 2.0 3.3
10.0 0.0 6.0 7.0 5.4

domain experts. In real applications, they should be obtained
from the domain experts. We believe that by designing rea-
sonable fuzzy membership functions and choosing reason-
able training data set which is based on specific application
domain, we can reduce the prediction error further.

5 Related Work

METEOR-S Web service discovery infrastructure (MWSDI)
is an infrastructure of registries for semantic publication and
discovery of Web services [24]. MWSDI supports creating
registry federation by grouping registries that are mapped
to the same node in Registries Ontology. MSWDI is based
on the P2P model, so the registries are considered as peers.
In our work, the soft SWS agents also can be regarded as
peers. MWSDI uses the Registries Ontology to maintain a
global view of the registries, associated domains and uses this
information during Web service publication and discovery.
The limitation of MWSDI is that it supports only capability
matching of Web services and does not consider non-func-
tional properties of Web services. The soft SWS agent can
be viewed as an enhancement over MWSDI as it provides
the service for discovering semantic Web services with the
highest whole QoS.

The MWSDI approach annotates WSDL by associating
its input and output types to domain specific ontologies and
uses UDDI structures to store the mapping of input and output
types in WSDL files to domain specific ontologies. It is sim-
ilar to our work where we use OWL-S ontology directly to
enable the semantic description of Web services.

Semantic Web enabled Web services (SWWS) proposes
a semantic-oriented service Registry that is similar to our
idea. It has five components: Profile Crawler, UDDI Integra-
tion Engine, Registry API, Ontology Server and Query Inter-
face. The service modeling ontology is stored in the ontol-
ogy server. All individual service descriptions are stored as
instances of the service description ontology and are also
managed by the ontology server. SWWS does not support
quality based semantic Web services discovery.

OASIS/ebXML describes architecture of service regis-
try. The registry provides a stable store where information
submitted by a submitting organization is made persistent.
Such information is used to facilitate ebXML based B2B part-
nerships and transactions. Submitted content may be XML
schema and documents, process descriptions, ebXML Core
Components, context descriptions, UML models, etc. It fo-
cuses mainly on the registry information model and discusses
issues like object replication, object relocation and lifecycle
management for forming registry federation. It does not use
semantic Web and semantic Web services technologies.

6 Conclusion and future work

In this paper, we discussed the design of an extensible soft
SWS agent and gave one implementation of the Intelligent

Extensible soft semantic web services agent

Inference Engine. The soft SWS agent supports both key-
word based discovery as well as capability based discov-
ery of semantic Web services. The primary motivation of
our work is to solve two challenges facing current Web ser-
vices advertising and discovery techniques. One is how to
locate the registry hosting required Web service description
and another is how to find the required Web service with
highest QoS in the located registry. The soft SWS agent can
solve both these problems effectively. The soft SWS agent is
built upon semantic Web, Web services, and soft computing
technologies.

The soft SWS agent could be used in WWW, P2P, or Grid
infrastructures. The soft SWS agent is flexible and extensible.
With the evolution of soft computing, more and more tech-
nologies can be integrated into the soft SWS agent. We used
fuzzy neural network with genetic algorithm as our study
case. The training time is short and training results are sat-
isfactory. In the future, with the maturing of semantic Web
services technology, we plan to implement the whole system
and apply it into real applications. We also plan to extend the
architecture of the soft SWS agent to compute the entire QoS
workflow of semantic Web services to facilitate the compo-
sition and monitoring of complex semantic Web services and
apply it to semantic Web-based bioinformatics applications.

Acknowledgements The authors would like to appreciate the support
by NIH under Grant P20 GM065762. We thank Dr. Harrison for his
support and Mr. Tang for his valuable suggestions.

References

1. Ankolekar A, Burstein M, Hobbs J (2002) Daml-s: Web services
description for the semantic web. In: Proceeding of the the 1st
international semantic web conference (ISWC), Chia, Sardegna,
Italy

2. Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci
Am 284(5):34–43

3. Clark D, Shenker S, Zhang L (1992) Supporting real-time appli-
cations in an integrated services packet network: architecture and
mechanism. In: Proceedings of ACM SIGCOMM. pp 14–26

4. Curbera F, Nagy W, Weerawarana S (2001) Web services: why
and how. In: Proceedings of the workshop on object-oriented Web
services-OOPSLA, Tamba, Florida

5. Ding Z, Peng Y (2004) A probabilistic extension to ontology lan-
guage owl. In: Proceedings of the Hawai’ international conference
on system sciences, Big Island, Hawaii

6. Fensel D, Bussler C (2002) The web services modeling framework:
wsmf. Electr Commerce: Res Appl 1:113–137

7. Frlund S, Koisinen J (1998) Quality of service specification in dis-
tributed object systems. Distrib Sys Eng J 5(4):179–202

8. Garvin DA (1998) Managing quality: the strategic and competitive
edge, Free, New York

9. Georgiadis L, Guerin R, Peris V, Sivarajan K (1996) Efficient
network qos provisioning based on per node traffic shaping.
IEEE/ACM Trans Networking 4(4):482: 501

10. Hendler J (2001) Agents and the semantic web. IEEE Intelli Sys
16(2):30–37

11. Hiltunen M, Schlichting R, Ugarte C, Wong G (2000) Survivabil-
ity through customization and adapatability: the cactus approach.
DARPA Information Survivability Conference and Exposition, pp
294–307

12. Koller D, Levy A, Pfeffer A (1997) P-classic: a tractable probabi-
listic description logic. In: Proceedingss of AAAI-97:390–397

13. Lee C-H, Hong J-L, Lin Y-C (2003) Type-2 fuzzy neural network
systems and learning. Int J Comput Cogniti 1(4):79–90

14. Motta E, Domingue J, Cabral L, Gaspari M (2003) A framework
and infrastructure for semantic web services. In: Proceedings of
the 2nd international semantic conference (2003), Sanibel island,
Florida, USA

15. Omelayenko B, Crubezy M, Fensel D, Benjamins R (2003) Upml:
the language and tool support for making the semantic web alive, In:
Spinning the semantic web: bringing the WWW to its full potential,
MIT Press Cambridge, USA, pp 141–170

16. Paolucci M, Kawamura T, Payne T, Sycara K (2002) Semantic
matching of web services capabilities. In: Proceedings of 1st ISWC
2002, Sardinia, Italia

17. Rommel G (1995) Simplicity wins: how Germany’s mid-sized
industrial companies succeed. Harvard Business School Press,
Boston, Mass

18. Sheth A, Cardoso J, Miller J, Kochut K (2002) Qos for service-
oriented middleware. In: Proceedings of conference on systems,
cybernetics and informatics, Orlando, Florida

19. Sheth A, Ramakrishnan C, Thomas C (2005) Semantics for the
semantic web: the implicit, the formal and the powerful. Int J
Semantic Web Inf Sys 1(1):1–18

20. Sivashanmugam K, Verma K, Sheth A, Miller J (2003) Adding
semantics to web services standards. In: International conference
on Web services pp 395–401

21. Stalk G, Hout T (1990) Competing against time: how timebased
competition is reshaping global markets, Free, New York

22. Straccia U (1998) A fuzzy description logic. In: Proceedings of 1st
AAAI-98, Madison, USA, pp 594–599

23. Sycara K, Klusch M, Widoff S, Lu J (1999) Dynamic service
matchmaking among agents in open information environments.
SIGMOD Record 28(1):47–53

24. Verma K, Sivashanmugam K, Sheth A, Patil A (2005) Meteors
wsdi: A scalable p2p infrastructure of registries for semantic pub-
lication and discovery of web services. J Inf Technol Manag (in
press)

25. Zadeh L (1994) Fuzzy logic, neural networks, and soft computing.
Communi ACM 37:77–84

26. Zinky J, Bakken D, Schantz R (1997) Architectural support for
quality of service for corba objects. Theory Pract Obj Sys 3(1):1–
20

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

