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Abstract Decision Support Systems have been utilised 
since 1960, providing physicians with fast and accurate means 
towards more accurate diagnoses and increased tolerance 
when handling missing or incomplete data. This paper 
describes the application of neural network models for 
classification of electroencephalogram (EEG) signals. Decision 
making was performed in two stages: initially, a feature 
extraction scheme using the wavelet transform (WT) has been 
applied and then a learning-based algorithm classifier 
performed the classification. The performance of the neural 
model was evaluated in terms of training performance and 
classification accuracies and the results confirmed that the 
proposed scheme has potential in classifying the EEG signals. 

Index Terms  Automated Diagnosis, Discrete wavelet 
transform (DWT), Electroencephalogram (EEG), and Neural 
networks,. 

I. INTRODUCTION 

The human brain is obviously a complex system, and 
exhibits rich spatiotemporal dynamics. Among the non-
invasive techniques for probing human brain dynamics, 
electroencephalography (EEG) provides a direct measure of 
cortical activity with millisecond temporal resolution. Early 
on, EEG analysis was restricted to visual inspection of EEG 
records. Since there is no definite criterion evaluated by the 
experts, visual analysis of EEG signals is insufficient. For 
example, in the case of dominant alpha activity delta and 
theta activities are not noticed. Routine clinical diagnosis 
needs to analysis of EEG signals. Therefore, some 
automation and computer techniques have been used for 
this aim [1]. Since the early days of automatic EEG 
processing, representations based on a Fourier transform 
have been most commonly applied. This approach is based 
on earlier observations that the EEG spectrum contains 
some characteristic waveforms that fall primarily within 
four frequency bands—delta (1–4 Hz), theta (4–8 Hz), 
alpha (8–13 Hz), and beta (13–30 Hz). Such methods have 
proved beneficial for various EEG characterizations, but 
fast Fourier transform (FFT), suffer from large noise 
sensitivity. Parametric power spectrum estimation methods 
such as AR, reduces the spectral loss problems and gives 
better frequency resolution. Also AR method has an 
advantage over FFT that, it needs shorter duration data 
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records than FFT [2]. A powerful method was proposed in 
the late 1980s to perform time-scale analysis of signals: the 
wavelet transforms (WT). This method provides a unified 
framework for different techniques that have been 
developed for various applications. Since the WT is 
appropriate for analysis of non-stationary signals and this 
represents a major advantage over spectral analysis, it is 
well suited to locating transient events, which may occur 
during epileptic seizures. Wavelet’s feature extraction and 
representation properties can be used to analyse various 
transient events in biological signals. Adeli et al. [3] gave 
an overview of the discrete wavelet transform (DWT) 
developed for recognising and quantifying spikes, sharp 
waves and spike-waves. They used wavelet transform to 
analyze and characterise epileptiform discharges in the 
form of 3-Hz spike and wave complex in patients with 
absence seizure. Through wavelet decomposition of the 
EEG records, transient features are accurately captured and 
localised in both time and frequency context. The 
capability of this mathematical microscope to analyse 
different scales of neural rhythms is shown to be a powerful 
tool for investigating small-scale oscillations of the brain 
signals. A better understanding of the dynamics of the 
human brain through EEG analysis can be obtained through 
further analysis of such EEG records. 

Numerous other techniques from the theory of signal 
analysis have been used to obtain representations and 
extract the features of interest for classification purposes. 
Neural networks and statistical pattern recognition methods 
have been applied to EEG analysis. Neural network (NN) 
detection systems have been proposed by a number of 
researchers. Pradhan et al. [4] used the raw EEG as an input 
to a neural network while Weng and Khorasani [5] used the 
features proposed by Gotman with an adaptive structure 
neural network, but his results show a poor false detection 
rate. Petrosian et al. [6] showed that the ability of 
specifically designed and trained recurrent neural networks 
(RNN) combined with wavelet preprocessing, to predict the 
onset of epileptic seizures both on scalp and intracranial 
recordings only one-channel of electroencephalogram. In 
order to provide faster and efficient algorithm, Folkers et 
al. [7] proposed a versatile signal processing and analysis 
framework for bioelectrical data and in particular for neural 
recordings and 128- channel EEG. Within this framework 
the signal is decomposed into sub-bands using fast wavelet 
transform algorithms, executed in real-time on a current 
digital signal processor hardware platform.  As compared 
to the conventional method of frequency analysis using 
Fourier transform or short time Fourier transform, wavelets 
enable analysis with a coarse to fine multi-resolution 
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perspective of the signal. In this work, DWT has been 
applied for the time–frequency analysis of EEG signals and 
NNs for the classification using wavelet coefficients. EEG 
signals were decomposed into frequency sub-bands using 
discrete wavelet transform (DWT). A neural network 
system was implemented to classify the EEG signal to one 
of the categories: epileptic or normal. The aim of this study 
was to develop a simple algorithm for the detection of 
epileptic seizure, which could also be applied to real-time. 

Until now, there is no study in the literature related to 
the estimation of multiple-classifier accuracy in the 
analysis of EEG signals. In this study, a new approach 
based on the multiple-classifier concept will be presented 
for epileptic seizure detection. In the neural network 
techniques, both the feed-forward error back-propagation 
network and the Radial Basis function (RBF) network will 
be used. The choice of these two networks was based on 
the fact that the former is the most popular type of NNs and 
the latter is one of the most powerful networks commonly 
used in solving classification/discrimination problems. The 
accuracy of the various classifiers will be assessed and 
cross-compared, and advantages and limitations of each 
technique will be discussed.  

II. DATA SELECTION AND RECORDING 

We have used the publicly available data described in 
Andrzejak et al. [8]. The complete data set consists of five 
sets (denoted A–E) each containing 100 single-channel 
EEG segments. These segments were selected and cut out 
from continuous multi-channel EEG recordings after visual 
inspection for artefacts, e.g., due to muscle activity or eye 
movements. Sets A and B consisted of segments taken from 
surface EEG recordings that were carried out on five 
healthy volunteers using a standardised electrode placement 
scheme (Fig. 1).  

Fig. 1: The 10–20 international system of electrode placement c images of 
normal and abnormal cases. 
Volunteers were relaxed in an awake-state with eyes open 
(A) and eyes closed (B), respectively. Sets C, D, and E 
originated from EEG archive of pre-surgical diagnosis. 
EEGs from five patients were selected, all of whom had 
achieved complete seizure control after resection of one of 
the hippocampal formations, which was therefore correctly 
diagnosed to be the epileptogenic zone. Segments in set D 
were recorded from within the epileptogenic zone, and 
those in set C from the hippocampal formation of the 
opposite hemisphere of the brain. While sets C and D 
contained only activity measured during seizure free 
intervals, set E only contained seizure activity.  

Fig. 2: Examples of five different sets of EEG signals taken from different 
subjects. 

Here segments were selected from all recording sites 
exhibiting ictal activity. All EEG signals were recorded 
with the same 128-channel amplifier system, using an 
average common reference. The data were digitised at 
173.61 samples per second using 12 bit resolution. Band-
pass filter settings were 0.53–40 Hz (12dB/oct). In this 
study, we used two dataset (A and E) of the complete 
dataset. Typical EEGs are depicted in Fig. 2. 

III. ANALYSIS USING DWT

Wavelet transform is a spectral estimation technique in 
which any general function can be expressed as an infinite 
series of wavelets. The basic idea underlying wavelet 
analysis consists of expressing a signal as a linear 
combination of a particular set of functions (wavelet 
transform, WT), obtained by shifting and dilating one 
single function called a mother wavelet. The decomposition 
of the signal leads to a set of coefficients called wavelet 
coefficients. Therefore the signal can be reconstructed as a 
linear combination of the wavelet functions weighted by 
the wavelet coefficients. In order to obtain an exact 
reconstruction of the signal, adequate number of 
coefficients must be computed. The key feature of wavelets 
is the time-frequency localisation. It means that most of the 
energy of the wavelet is restricted to a finite time interval. 
Frequency localisation means that the Fourier transform is 
band limited. When compared to STFT, the advantage of 
time-frequency localisation is that wavelet analysis varies 
the time-frequency aspect ratio, producing good frequency 
localization at low frequencies (long time windows), and 
good time localisation at high frequencies (short time 
windows). This produces a segmentation, or tiling of the 
time-frequency plane that is appropriate for most physical 
signals, especially those of a transient nature. The wavelet 
technique applied to the EEG signal will reveal features 
related to the transient nature of the signal, which are not 
obvious by the Fourier, transform. In general, it must be 
said that no time-frequency regions but rather time-scale 
regions are defined [9],[10]. All wavelet transforms can be 
specified in terms of a low-pass filter g, which satisfies the 
standard quadrature mirror filter condition 

   (1)

Where G(z) denotes the z-transform of the filter g. Its 
complementary high-pass filter can be defined as 
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                   (2)

A sequence of filters with increasing length (indexed by i) 
can be obtained 

 (3) 

with the initial condition G0(z) = 1. It is expressed as a two-
scale relation in time domain 

(4)

where the subscript [. indicates the up-sampling by a 

factor of m and k is the equally sampled discrete time.

] m

One area in which the DWT has been particularly 
successful is the epileptic seizure detection because it 
captures transient features and localises them in both time 
and frequency content accurately. DWT analyses the signal 
at different frequency bands, with different resolutions by 
decomposing the signal into a coarse approximation and 
detail information. DWT employs two sets of functions 
called scaling functions and wavelet functions, which are 
related to low-pass and high-pass filters, respectively. The 
decomposition of the signal into the different frequency 
bands is merely obtained by consecutive high-pass and 
low-pass filtering of the time domain signal. The procedure 
of multi-resolution decomposition of a signal x[n] is 
schematically shown in Fig. 3. Each stage of this scheme 
consists of two digital filters and two down-samplers by 2. 
The first filter, h[.] is the discrete mother wavelet, high-
pass in nature, and the second, g[.] is its mirror version, 
low-pass in nature. The down-sampled outputs of first 
high-pass and low-pass filters provide the detail, D1 and 
the approximation, A1, respectively. The first 
approximation, A1 is further decomposed and this process 
is continued as shown in Fig. 3. 

Fig. 3: Sub-band decomposition of DWT implementation; h[n] is the high-
pass filter, g[n] the low-pass filter. 

Selection of suitable wavelet and the number of 
decomposition levels is very important in analysis of 
signals using the DWT. The number of decomposition 
levels is chosen based on the dominant frequency 
components of the signal. The levels are chosen such that 
those parts of the signal that correlates well with the 
frequencies necessary for classification of the signal are 
retained in the wavelet coefficients. In the present study, 
since the EEG signals do not have any useful frequency 
components above 30 Hz, the number of decomposition 
levels was chosen to be 4. Thus, the EEG signals were 
decomposed into details D1–D4 and one final 
approximation, A4. Usually, tests are performed with 

different types of wavelets and the one, which gives 
maximum efficiency, is selected for the particular 
application. The smoothing feature of the Daubechies 
wavelet of order 2 (db2) made it more appropriate to detect 
changes of EEG signals. Hence, the wavelet coefficients 
were computed using the db4 in the present study. The 
proposed method was applied on both data set of EEG data 
(Sets A and E). Fig. 4 shows approximation (A4) and 
details (D1–D4) of an epileptic EEG signal. 

0 100 200 300
-200

0

200

a4

0 100 200 300
-100

0

100

d4

0 100 200 300
-200

0

200

a3

0 100 200 300
-50

0

50

d3

0 100 200 300
-200

0

200

a2

0 100 200 300
-20

0

20

d2

0 100 200 300
-200

0

200

a1

0 100 200 300
-10

0

10

d1

0 50 100 150 200 250 300
-100

-50

0

50

100

150
Original signal

Time(Sample)

A
m

pl
itu

de

Fig. 4: Approximate and detailed coefficients of EEG signal taken from 
unhealthy subject (epileptic patient). 

A. Feature Extraction  
The extracted wavelet coefficients provide a compact 

representation that shows the energy distribution of the 
EEG signal in time and frequency. Table 1 presents 
frequencies corresponding to different levels of 
decomposition for Daubechies order-2 wavelet with a 
sampling frequency of 173.6 Hz. In order to further 
decrease the dimensionality of the extracted feature vectors, 
statistics over the set of the wavelet coefficients was used 
[10],[11]. The following statistical features were used to 
represent the time frequency distribution of the EEG 
signals: 

 Maximum of the wavelet coefficients in each 
sub-band. 

 Minimum of the wavelet coefficients in each 
sub-band. 

 Mean of the wavelet coefficients in each sub-
band 

 Standard deviation of the wavelet coefficients 
in each sub-band 
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Extracted features for two recorded class A and E shown in 
Table 2. The data was acquired using a standard 100 
electrode net covering the entire surface of the calvarium 
(see Figure 1).  

TABLE 1: FREQUENCIES CORRESPONDING TO DIFFERENT LEVELS OF 
DECOMPOSITION

The total recording time was 23.6 seconds, corresponding 
to a total sampling of 4,096 points. To reduce the volume 
of data, the sample (time points) was partitioned into 16 
windows of 256 times points each.  From these sub-
samples, we performed the DWT and derived measures of 
dispersion statistics from these windows (each 
corresponding to approximately 1.5 seconds). The DWT 
was performed at 4 levels, and resulted in five sub-bands: 
d1-d4 and a4 (detail and approximation coefficients 
respectively).  For each of these sub-bands, we extracted 
four measures of dispersion, yielding a total of 20 attributes 
per sample window.  Since our classifiers use supervised 
learning, we must also provide the outputs, which was 
simply a class label (for the experiments presented in this 
paper, there were 2, corresponding to classes A and E).  

TABLE2:    THE EXTRACTED FEATURES OF TWO WINDOWS FROM A & E
CLASSES

IV. INTELLIGENT CLASSIFIERS

Recently, the concept of combining multiple classifiers 
has been actively exploited for developing highly reliable 
“diagnostic” systems [11]. One of the key issues of this 
approach is how to combine the results of the various 
systems to give the best estimate of the optimal result. A 
straightforward approach is to decompose the problem into 
manageable ones for several different sub-systems and 
combine them via a gating network. The presumption is 
that each classifier/sub-system is “an expert” in some local 
area of the feature space. The sub-systems are local in the 
sense that the weights in one “expert” are decoupled from 
the weights in other sub-networks. In this study, 16
subsystems have been developed, and each of them was 
associated with the each of the windows across each 
electrode (16/electrode). Each subsystem was modelled 
with an appropriate intelligent learning scheme.  In our 
case, two alternative schemes have been proposed: the 
classic MLP network and the RBF network using the 

orthogonal least squares learning algorithm. Such schemes 
provide a degree of certainty for each classification based 
on the statistics for each plane. The outputs of each of these 
networks must then be combined to produce a total output 
for the system. 

A. MLP and RBF networks 
The Multilayer Perceptron Network (MLP), which has 

the ability to learn and generalise, smaller training set 
requirements, fast operation, ease of implementation and 
therefore most commonly used neural network 
architectures, have been adapted for describing the 
alertness level of arbitrary subject. We have used in this 
case, the classic gradient descent-learning scheme for the 
training of this particular network. 

The second classification scheme utilised here is a 
Radial Basis Function Network (RBF) scheme. RBF 
networks train rapidly, usually orders of magnitude faster 
than MLP, while exhibiting none of its training pathologies 
such as paralysis or local minima problems. Such a system 
consists of three layers (input, hidden, output). The 
activation of a hidden neuron is determined in two steps: 
The first is computing the distance (usually by using the 
Euclidean norm) between the input vector and a centre ci
that represents the ith hidden neuron. Second, a function h 
that is usually bell-shaped is applied, using the obtained 
distance to get the final activation of the hidden neuron. In 
this case the Gaussian function G(x) 

)exp()( 2

2xxG         (5) 

was used. The parameter  is called unit width and is 
determined using the heuristic rule “global first nearest-
neighbour”. The activation of a neuron in the output layer 
is determined by a linear combination of the fixed 
nonlinear basis functions, i.e.   

M

i
ii xwxF

1
)()(         (6) 

where )()( ii cxGx  and wi are the adjustable weights 
that link the output nodes with the appropriate hidden 
neurons. The orthogonal least squares (OLS) method has 
been employed as a forward selection procedure that 
constructs RBF networks in a rational way. The algorithm 
chooses appropriate RBF centres one by one from training 
data points until a satisfactory network is obtained. 

V. RESULTS

The proposed diagnostic system consists of a pre-
processing /feature selection and one classifier subsystem. 
Duabechies Wavelets order-2 with 4 levels have been used 
for pre-processing in order to achieve the same 
dimensionality reduction of wavelet coefficients. In this 
work, the 100 time series of 4096 samples for each class 
windowed by a rectangular window composed of 256 
discrete data and then training and test sets were formed by 
3200 vectors (1600 vectors from each class) of 20 
dimensions (dimension of the extracted feature vectors).  

The proposed multi-classifier scheme consists of 16
sub-systems/classifiers. For each one of these sub-systems, 
an MLP or RBF network structure has been utilized. The 
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average concept of combining the individual output of the 
16 classifiers has been adopted in this study. The 
architecture of MLP is based on straightforward approach 
with 20 input with two hidden layer of 24 and 14 nodes 
respectively, and two outputs, with 2000 epochs training. 
The 20 inputs correspond to the four features times the 
number of wavelet decomposition (D1-D4 & A4). The 
results using MLP were encouraging. After combining the 
outputs of the 16 classifiers, the classification accuracy for 
this two-class problem found to be 97%. More specifically, 
out of 3,200 (classes A and E), only 96 was incorrectly 
labelled (i.e. misclassified). 

Similarly, the RBF network using the OLS algorithm 
has been used in this case study. Each sub-system consisted 
of 20 again inputs and the result was a classification 
accuracy of 98%. One of the advantages of RBF over the 
MLP is the extremely fast training which is due to the OLS 
algorithm. 

VI. CONCLUSIONS

The results from this study indicate that the hybrid 
approach to the classification of a complex dataset such as 
an EEG time series can be achieved with a high degree of 
accuracy.  This dataset contains both a spatial and a 
temporal component – the electrodes are placed on spatially 
distinct regions of the calvarium.  There are several 
diseases that yield a characteristic signature that can be 
detected reproducibly using standard EEG equipment.  For 
instance epilepsy yields a characteristic change in the 
power spectrum within the temporal lobe region.  This 
would indicate that there will be a spatial signal that 
requires proper spatial localisation within the appropriate 
brain region.   In addition, symptoms may change over time 
– and thus the temporal resolution of the recording must be 
such that it is samples at the correct frequency – without 
yielding Nyquist or other sampling errors.  In the present 
work, we employed a discrete wavelet transform to the 
dataset in order to extract temporal information in the form 
of changes in the frequency domain over time – that is they 
are able to extract non-stationary signals embedded in the 
noisy background of the human brain.  In this study, we 
examined the difference(s) between normal and epileptic 
EEG signals – over a reasonable duration of 24 seconds 
approximately.   We extracted statistical information from 
the wavelet coefficients, which we used as inputs to a set of 
supervised learning algorithms – MLP and RBF based 
neural networks. The attributes (inputs) used were 
measures of dispersion – which captured the statistical 
variations found within the particular time series.  Both 
classifiers were able to correctly map the inputs to the 
desired outputs with appropriate and typical training 
periods – indicating that local minima were not a major 
factor in training – although the RBF training period was 
substantially less than that for MLP.   

The results from this preliminary study will be 
expanded to include a more complete range of pathologies.  
In this work, we focused on the extremes that are found 
within the EEG spectrum – normal and epileptic time 
series.  These two series were chosen as they would more 
than likely lead to the maximal dispersion between the 2 
signals and be amenable for training of the classifiers.  In 

the next stage of this research, we have datasets that are 
intermediate in the signal changes they present.  This will 
provide a more challenging set of data to work with – and 
will allow us to refine our learning algorithms and/or 
approaches to the problem of EEG analysis. We will also 
consider additional attributes - are these attributes the most 
critical in terms of classification? These are interesting 
research questions that need to be addressed.  Lastly, we 
may also investigate additional pre-processing steps such as 
clustering and related techniques.  
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