
xDAuth: A Scalable and Lightweight Framework for Cross
Domain Access Control and Delegation

Masoom Alam†, Xinwen Zhang‡, Kamran H Khan†, and Gohar Ali†
†Security Engineering Research Group IMSciences Pakistan
{masoom.alam,kamran,gohar}@imsciences.edu.pk
‡Huawei America Research Center, Santa Clara, CA, USA

xinwen.zhang@huawei.com

ABSTRACT
Cross domain resource sharing and collaborations have be-
come pervasive in today’s service oriented organizations.
Existing approaches for the realization of cross domain ac-
cess control are either focused on the model level only with-
out concrete implementation mechanisms, or not general
enough to provide a flexible framework for enterprise web
applications. In this paper, we present xDAuth, a frame-
work for the realization of cross domain access control and
delegation with RESTful web service architecture. While
focusing on real issues under the context of cross domain
access scenarios such as no predefined trust relationship be-
tween a service provider domain and service requestor do-
main, xDAuth leverages existing web technologies to real-
ize desired security requirements while supporting flexible
and scalable security policies and privacy protection with
low performance overhead. We have implemented xDAuth
in a medical module in OpenERP, an open source ERP sys-
tem. Our evaluation demonstrates that xDAuth is a feasible
framework towards general cross domain access control for
service oriented architectures.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Design, Security

Keywords
cross domain access control, permission delegation, authen-
tication, authorization, RESTful, web services security

1. INTRODUCTION
The boom of online services has challenged traditional en-

terprises to open their legacy systems for cross domain ac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’11, June 15–17, 2011, Innsbruck, Austria.
Copyright 2011 ACM 978-1-4503-0688-1/11/06 ...$10.00.

cess. Consequently, many business processes become more
dependent on services provided by others out of their own
domains. For example, in a hospital information domain,
sharing of patient medical records among other healthcare
and insurance service providers is required for many reasons.
Similarly, it is a common practice for many organizations to
consume services from financial institutions such as audit
and financial statement analysis, by sharing their informa-
tion in online service manner.

The transition in business processes introduce new se-
curity challenges. In particular, as autonomous and self-
governing administration exists in individual domains, au-
thentication and access control mechanisms need to consider
access from external users in efficient and scalable way with
least trust to external entities. In addition, delegation has
been considered as a critical requirement in cross domain
resource sharing and collaborations [18, 13, 29, 17, 23, 28].
Beyond administrative authorizations, a user can delegate
partial or complete permissions to others from different do-
mains in a discretionary manner, which can result undesired
permission propagation and information leakage.

Cross domain access control and permission delegation
have been widely studied in research literatures. Du and
Joshi [14] have presented the solution to assign roles to users
from different domains and consider issues with role hierar-
chies. In particular, they have discussed the possibility of
exchange of role model among domains. Hasebe et al. [17]
have introduced the notion of capability into the RBAC96
for achieving capability-based delegation (CRBAC) in cross
domain scenarios. Atluri et al. [8] have presented delegation
model and policies in workflow management system. There
are also extensive research efforts in general delegation in
single control domain context (cf. Section 7). However,
these approaches focus on issues of access control and del-
egation model and policy specifications only. They do not
propose concrete enforcement mechanisms, especially prac-
tical solutions in service oriented cross domain environment.

Many web-based open standard authentication and au-
thorization protocols have been widely deployed by Internet
services. OpenID [24] is a widely used protocol to delegate
authentication functions to online identity providers (e.g.,
Google, Yahoo, MySpace). Single sign-on services such as
Microsoft Live ID [6] and Google Accounts API [1] authenti-
cate users for multiple web applications and services. OAuth
[4] is a prominent open standard authentication and autho-
rization protocol between web domains, which allows a user
to share her private resources stored on one web site to an-
other site without having to share her credentials, typically a

31

username and password. These solutions, on the other side,
focus more on open standard functions and APIs, while pro-
vide less support for fine-grained and domain-specific access
control and delegation policies. Furthermore, these proto-
cols usually focus on Internet-based services, and it is usually
difficult to directly use them in legacy enterprise information
systems, where each domain still has autonomous authority
on authentications and authorizations.

In this paper, we present xDAuth, a general framework
for the realization of cross domain access and delegation
control. xDAuth leverages a trusted delegation service to
serve as a decision making point for cross domain access re-
quests. Each resource sharing (or service provider) domain
can publish security policies to the delegation service via
open RESTful [15] web service interfaces. Upon an access
request 1, the service provider redirects the user client (e.g.,
a web browser) to the delegation service for authentication
and authorization. Instead of authenticating the user itself,
the delegation service further redirects the user to an au-
thentication service, e.g., the one in her own domain. The
delegation service then obtains the user’s attributes upon
successful authentication and makes decision if the access
request should be allowed, and redirects the user client back
to the service provider domain if so. In this way, xDAuth
provides strong privacy protection: the delegation service
does not learn the authentication credential of a cross do-
main user, and the service provider can define policies to
hide the information of shared resources from the delega-
tion service. In addition, the separation of policy decision
point (the delegation service) and policy definition (the ser-
vice provider) enables very flexible and scalable deployment
of the framework. Very importantly, with the unique po-
sition of the delegation services for authorization, xDAuth
can seamlessly support many access control and delegation
constraints in cross domain environment, such as separation
of duty (SoD) and the Chinese Wall policy.

There are several design and implementation challenges
for xDAuth. First, as the delegation service is a central
trust point, efficient decision making is mandatory. Sec-
ondly, when proxying the authorization for a service provider
domain and the authentication of a service requestor do-
main, the delegation service should maintain seamless ses-
sion management between the two redirections. Last but
not least, xDAuth should have built-in revocation mecha-
nism, not only for authorization policy revocation from a
resource sharing domain, but also for revoking a user with
already authorized permissions in an active session.

We have implemented xDAuth in a medical module of
OpenERP, an open source ERP system. Our implementa-
tion supports a set of flexible access control and delegation
policies for a medical information domain, to share medical
records to other health care services. Built on top of matur-
ing RESTful web service architecture and protocols, xDAuth
provides friendly experience for web users. Our evalua-
tion demonstrates that xDAuth is a feasible and lightweight
framework for general cross domain access control and per-
mission delegation in service oriented architectures.

Outline: The rest of the paper is organized as follows. Sec-
tion 2 presents some motivating use cases towards a flexi-
ble but lightweight cross domain access control framework
and summarizes our design principles. Section 3 gives an

1We consider cross domain access only in this paper.

overview of the xDAuth framework and Section 4 presents
its design details. Implementation and evaluation of xDAuth
in OpenERP are presented in Section 5, followed by discus-
sions on variant extensions in Section 6. Finally, Section 7
presents related work in cross domain access control and
delegation, and Section 8 concludes this paper.

2. MOTIVATING USE CASES AND SYSTEM
DESIGN PRINCIPLES

We present two motivating use cases where cross domain
access control and permission delegation are essential for
their security problems. We then identify overall design re-
quirements towards practical solutions.

2.1 Motivating Use Cases
Distributed health care information system In na-
tionwide health information network (NHIN) architecture [22],
multiple health care providers form a virtual coalition to
share health care data and provide sophisticated and effi-
cient online services. Traditionally, health care data of a
hospital is provided to an authorized user (e.g., a physi-
cian) in the same domain, which is authenticated with a
username and password. In a coalition, external physicians
belonging to other hospitals may also need access the elec-
tronic health records (EHR) of a patient not registered at
their hospitals. A trivial solution is to create a new account
for every external physician and assign proper permissions.
Obviously, this leads to a situation where the security ad-
ministrator of the hospital domain has to handle many of
external accounts in on-demand way. Alternatively, a pri-
mary doctor [17] or a patient [10] in the hospital can explic-
itly delegate corresponding permissions (access rights on the
EHR) to an eternal physician. On one hand, it is risky to
enable complete discretionary delegation between users in
cross domain scenarios, as a typical user may not have the
knowledge or awareness of sensitive permissions which can
cause serious information leak or privacy compromising. On
the other hand, complete security administrator controlled
solution fails on authorization flexibility, e.g., when an ex-
ternal physician needs to access the EHR under emergency
situation and while there is no pre-defined delegation policy
for the physician by the security administrator.

Inter-organizational workflows Commercial organiza-
tions often take consultancy services from financial institu-
tions, such as financial statement analysis and audit. Dif-
ferent employees from a financial institution need to inspect
the information of a target domain. Therefore, explicit del-
egation relationship is usually needed to allow the access.
The situation becomes complex when one user has access
to multiple organizations financial data. Trivially, each user
obtains multiple delegation credentials for accessing data of
many client systems, which is obviously not scalable and cost
effective on security administration, especially when the set
of users to access variant target domains is not fixed. Fur-
thermore, performing both authentication and authorization
at the resource sharing domain make it difficult to enforce
many dynamic security constraints such as the Chinese Wall
policy. Existing approaches use cryptographic protocols for
handling delegation. However, management of such mecha-
nisms is a very tedious task such as permission revocation
[11, 12]. An adaptable framework is needed where the user
can be authenticated in her own domain, and then be au-

32

thorized for accessing external services based on her authen-
tication attributes.

2.2 System Design Principles
The above two use cases represent many cross domain sit-

uations where a general framework is desired for flexible,
scalable, and lightweight access control and permission del-
egation. Among many requirements, we highlight several
here which represent the salient features and objectives of
our design.

Requirement#1: Flexible constraints and scalable security:
The desired solution should support flexible security poli-
cies for cross domain environments, especially when an ac-
cess request is from a user without authentication credential
at the resource provider domain. In particularly, the frame-
work should be extensible to support dynamic and scalable
application specific constraints such as separation of duty
and the Chinese Wall policy among multiple domains.

Requirement#2: Trade-off between scalability/efficiency and
trust: As aforementioned, performing both authentication
and authorization at resource provider domain introduces
the scalability and flexibility issues. However, delegating
authentication to external entities is not an option in our
design as it significantly increases the trust base. Instead,
the framework should leverage existing authentication mech-
anism of a resource requestor’s home domain. On the other
side, we can assume some trust for a resource provider do-
main to a centralized entity for authorization decision de-
riving purpose, while authorization policies are still defined
by the security administrator or individual users in the re-
source sharing domain. This enhances the scalability of cross
domain authorization as there is no need for a resource shar-
ing domain to explicitly trust and link to the authentication
mechanisms of all possible resource requestors’ domains.

Requirements#3: Preserving privacy for access requestor and
resources: An access requestor’s credentials are used for
authentication and result attributes are used for deriving
authorization decisions. Ideally, a resource sharing domain
does not need to know the requestor’s authentication cre-
dentials and attributes in her home domain, except an iden-
tity. Furthermore, the authorization decision making entity
should not know what real resources and permissions that a
requestor is accessing.

3. OVERVIEW OF XDAUTH
In real world, enterprises often delegate the security ver-

ification of incoming people (to its premises) to companies
which have specialized skill set in doing such job. Based on
stated policies of an organization, these security companies
verify various credentials of incoming people, before they are
allowed to enter the premises of the organization. Limited
time permits are often issued, thus, not every person needs
a security clearance.

Our approach mimics these human verification systems.
As Figure 1 shows, a service provider (SP, e.g., an enterprise
web application) delegates authentication and authorization
tasks for cross domain access to a service called delegation
service (DS). Instead of performing authentication by it-
self, the DS further delegates the authentication task to the
existing mechanism of the service requestor (SR) domain.
Therefore, the DS acts as a mediator between the SP do-
main – the enterprise, and the SR domain – e.g., the user’s

Delegation Service

(DS)

Service Requestor

(user)

Service Provider

Authentication

Service

(0) Publish

delegation

policies

(1)

access

(2) Re-direct

for

authorization(3) Re-direct

for

authentication

(4) Consume

service/resources

SR

Domain

SP

Domain

Figure 1: Overview of xDAuth.

home domain. In general, an SP domain can be an SR do-
main of another, and a single DS can work for multiple SP
and SR domains.

xDAuth ensures the essential control of an SP domain
with two facts: authorization decisions made by the DS are
based on access control and delegation policies from the SP
domain, and each authorization is based on authenticated
information of the user from her home domain. More specifi-
cally, when the SP receives an access request from a user, the
user’s client (e.g., a browser) is redirected to the DS for au-
thorization decision. After the user is redirected to the DS,
a list of domains are presented. The SR selects her home
domain (or any other domain that she can be authenticated)
from the list and is redirected again to the authentication
service interface of the SR domain for authentication. Af-
ter successful authentication, the user is redirected back to
the DS along with her identity and security attributes (e.g.,
roles and clearance). These attributes are then verified and
evaluated by the DS against pre-defined policies by the SP
domain. The DS then redirects the user back to the SP
along with her identity, domain information, and authoriza-
tion result, which takes corresponding actions based on the
result.

Several benefits can be achieved with this delegated au-
thentication and authorization mechanism in cross domain
access scenarios. First, an SR domain is made aware of
accessing a service by a user to another domain, which en-
ables auditing seamlessly. Also, further security policies can
be enforced in the SR domain, e.g., cross domain access to
a particular SP is only allowed to certain users only. There-
fore, the domain might refuse to authenticate a user after
evaluating its own cross domain security policies. Secondly,
an SR has no authentication credentials (e.g., username and
password) on the DS except her home domain information
(e.g., the URL of the authentication service). By handling
two different sessions, rather than two different accounts,
xDAuth increases the efficiency and flexibility of cross do-
main authorizations.

From privacy perspective, the stated paradigm has two
advantages. Firstly, the privacy of the user is protected as
there is no user credentials or attributes provided to the SP
domain. All user attributes are verified at the DS end only

33

and the DS does not have the user’s authentication creden-
tials. Secondly, the privacy of an SP is also protected as the
DS has no knowledge of the resource (at the SP end) and
permissions that the SR is asking. Easily, the security poli-
cies defined by SP domain can use pseudonyms of resources
and permissions without revealing real internal information
to the DS when publishing policies.

As a centralized service, the DS has the knowledge of con-
current cross domain accesses from an SR, therefore can
enforce many flexible security constraints such as dynamic
separation of duty. Optionally, the DS can maintain historic
information of the access requests from variant SR domains,
which enables it to enforce other general constraints such
as the Chinese Wall policy. These constraints are specified
by individual SP domains as part of cross domain security
policies.

The role of the DS in xDAuth is very similar to the WRYF
service in Shibboleth [21]. However, there is significant dif-
ference on the design of xDAuth from Shibboleth, which
achieves different security objectives. Specifically, in Shib-
boleth, the WRYF service just maintains a list of home or-
ganization access points of users. When a user is redirected
from an SP to the WRYF, the user selects her home orga-
nization and the WRYF redirects her to the access point.
After that, the interactions are purely performed between
the SP and SR – SR does authentication and SP does au-
thorization. That is, the WRYF service is simply a redi-
rection proxy and does not obtain authentication results of
users and evaluate authorization decisions. In xDAuth, the
DS performs authorization evaluation based on user authen-
tication results. With the central position of the DS, many
flexible security constraints crossing multiple domains can
be enforced such as dynamic separation of duty and the
Chinese Wall policy, which are not viable in Shibboleth. At
the same time, xDAuth still maintains strong privacy pro-
tections to both SPs and individual users.

Threat and Trust Assumptions The main objective
of xDAuth is to prevent unauthorized access to protected
resources in an SP domain from external users. Therefore,
any access request to an SP which is not authorized by the
SP or DS is a potential threat.

By delegating the authorization decision to the DS, we
assume that the SP trusts the DS to make right decisions
based on pre-defined and published policies. This also im-
plies that the SP trusts that DS keeps the integrity of the
policies. However, we do not assume that each SP trusts all
possible SR domains explicitly. That is, we do not require
the web of trust between domains of SPs and SRs; instead,
xDAuth leverages the DS as a proxy of trust. After an SR
user is authenticated at her parent domain, and successfully
authorized at the DS end, a transitive trust relationship is
established between the SR and SP through the DS. With
this, we eliminate the complexity of trust management be-
tween SP and SR domains. For example, an SP does not
need to store credentials (e.g. , public key certificate) of
each SR domain in order to verify the message authenticity
and integrity, while the trust burden is handled by the DS
in the middle.

We also trust the SP user’s client agent such as web browser.
We do not consider attacks on the cryptography used in pro-
tecting the integrity and authenticity of messages between
SP, DS, and SR.

4. DESIGN OF XDAUTH
This section first gives the bootstrap of xDAuth including

policy specification, domain registration, and policy publish-
ing. We then illustrate the authorization and authentication
protocols for cross domain access control, cross domain con-
straint enforcement, and revocation mechanisms.

4.1 xDAuth Policy
In xDAuth, a user from an SR domain is allowed to ac-

cess resources in an SP domain, if allowed by cross access or
delegated policies of the SP. Without loss of generality, we
explain how delegation policy can be defined and enforced
in this section, while cross domain access control policies
can be easily supported with similar mechanisms. For cross
domain delegation, a user or an administrator in the SP
makes a delegation request to an internal authorization ser-
vice. The delegation request is verified against a set of del-
egation control policies in the SP. Therefore, an xDAuth
policy is generated by combining the information contained
in the delegation request and that in the delegation control
policies.

Formally, a delegation control policy is defined as a set of
rules, each of which stating the delegation status of indi-
vidual permissions and constraints. In general, a permission
p is defined as a pair (o, A), where o is an object (or resource)
and A is a non-empty set of actions. Therefore, a permis-
sion essentially identifies possible access actions on an object
within a particular domain. A constraint c defines conditions
such as the life time of a delegated permission, the delega-
tee’s attributes such as roles or domain names. Therefore,
a delegation control policy mandates an explicit approval of
the delegation of a permission. The delegation status is a
boolean value specifying whether a permission is delegatable
or not for a delegator (user or role) in the SP.

A delegation request is defined as a triple (si, p, sj) where
si ∈ S is a subject playing the role of a delegator, p is a per-
mission, and sj ∈ S is a subject playing the role of a delega-
tee. Each delegation request is evaluated against delegation
control policies in the SP domain. If there is a delegation
control policy that allows the request, it is approved by the
internal authorization service of the SP, and a cross domain
delegation policy is generated with the (sj , p, c), where c is
the constraint corresponding to the delegation control pol-
icy. Formally:

xDAuthPolicyGen: (DR ⊗ P) → {xDAuthP | Error},
where xDAuthPolicyGen is a mapping from a set of dele-
gation requests DR and set of control policies P to a set of
xDAuth policies xDAuthP or an error. ⊗ operator matches
a particular delegation request against the set of delegation
control policies. We note that there can be multiple control
policies that can satisfy one request, where multiple autho-
rization polices can be generated.

As an example, consider a delegation request made by a
doctor in an hospital for the blood tests of a patient. This
requires access to the medical record of the patient. The
following delegation query (DLQ) is being made:

DLQ(Doc001, Lab001, readPatientRecord,
designation =′′ pathologist′′ and lifetime = 300mins),

where Doc001 requests the delegation of read permission on
the patient record to another domain lab001 with the del-
egation constraint that designation of a user from lab001

should be pathologist. The delegation control policy in
this case, verifies that whether a xDAuth policy exists that

34

can satisfy the above delegation request. In case, an xDAuth
policy exists, the above delegation request will not be ap-
proved.

4.2 Domain Registration
Consider an SP domain which provides services via http:

//sp.com, and the DS http://ds.com. In order to share re-
sources, an administrator of the SP domain should first reg-
ister on the DS via a web service interface http://ds.com/

register. The registration requires information of the SP
including service name, service access URL, and other meta-
data such as the services it offered (e.g. blog, finance solu-
tion, social networking, etc). Similar registration is required
for an SR domain. In addition, a call back interface (e.g.,
http://sr.com/authenticate) is also provided by the sR do-
main to the DS, which is used by the DS for redirecting
authentication requests.

As the results of an registration, the DS returns a domain
key and secret pair. The domain key is a 30-byte public
string that is unique to identify the domain, and the secret
is a 10-byte shared secret between the DS and the domain.
Table 1 lists necessary web interfaces for the DS and indi-
vidual domains.

4.3 Publishing Policy
Each SP domain has an internal authorization service that

approves delegation requests made from local users. When
an administrator wants to delegate any permission of access-
ing resources to others in different domains, we assume the
local authorization service provides necessary interfaces and
tools to help the user make appropriate selections, such as
corresponding objects and set of access actions which she
wants to delegate, and applicable constraints such as valid
time period. Upon this specification, the authorization ser-
vice can approve the request based on pre-defined delegation
control policies in the domain. In reality, the approval of a
delegation request can be done automatically by system, or
manually approved by administrators.

After a delegation request is approved, the authorization
service creates a real cross domain delegation policy with
the delegated permission information and constraints, and
publishes it to the DS via a service interface https://ds.

com/policy/publish. Each policy can be identified with an
id by the authorization service such that it can be referred
later, e.g., for update or revocation. For privacy purpose,
the permission information in the delegation policy can be
pseudonyms such that the real information of shared re-
sources is hidden from the DS.

4.4 xDAuth Protocol
Consider a user from an SR domain wants to access a

resource of a service provider in an SP domain by accessing
http://sp.com. Figure 2 shows the work flow of xDAuth
protocol to authorize this request. We assume that the user
has not been granted for any access before this request at the
SP. Therefore, she does not present any delegation permit
with her access request. We also assume that the SP does
know that the request is from external, e.g., via the client
IP address of the HTTP request.

In order to authorize the request, the SP first generates a
request token, and then redirects the user’s browser to the
DS for authentication and authorization. The HTTP redi-
rection request includes the request token and permission

User SP DS SR domain

Data Access

User connects

HTTP Redirect:

AuthorizationRequest(

session id, permission

pseudonyms,…)

Domain

Selection
HTTP Redirect:

AuthenticationReque

st(SR Attributes

Request, session

id,..)

User authentication

at her home domain

HTTP Redirect

Signed Attributes,

signed sessionid,

userid, domain name

HTTP Redirect

(Signed Session id,

userid, domain name,

allowed||denied)

Figure 2: xDAuth protocol.

information required by the user’s access, e.g., permission
pseudonyms. A unique session id is also used in the HTTP
request to prevent replay attacks.

After the user is redirected at the DS, she is asked to se-
lect her home domain from a list of registered SR domains.
Upon the selection, the user is in turn redirected by the DS
to the authentication service interface of SR with the domain
name, which is provided to the DS during the SR domain
registration process. This HTTP redirection includes the
domain name and other information of the SP, as well as
the session id. The user then authenticates herself, e.g., by
login with username and password. Local security policies
of the SR domain may be enforced within the authentication
service, e.g., by checking if the user is allowed to access the
SP’s resources. We note that if the user is already authen-
ticated in the SR domain, the authentication service can
directly obtain the results, e.g., by reading the cookie at the
user’s browser. Overall, the authentication mechanism in
the SR domain can be variant but provide single interface
to the DS.

Upon successful authentication and authorization in the
SR domain, the user is redirected back to the DS along with
authentication results, such as roles, identities, or other at-
tributes. The HTTP redirection is signed by the shared
secret between the DS and SR, such that the DS can verify
the integrity and authenticity of the authentication results.
When the DS receives these, it first evaluates the user’s ac-
cess request based on the authentication results and pre-
published delegation policies by the SP domain authoriza-
tion service. Note that as the same session id is used when
the user is redirected back from the SR, the DS can link
the authentication results to the user who make the original
access request to SP. The DS then redirects the user back
to the SP, along with the authorization result (allowed or
denied), the request token, the session id, and the necessary
user identity information if the access is allowed (e.g., for
logging and auditing purposes at the SP side).

35

Table 1: Web Service Interfaces of DS and Individual Domains
URL Function Description
http://ds.com/ Main interface for authorization.
http://ds.com/register Register individual domains, called by domain administrators.
https://ds.com/policy Publish, update, and revoke cross domain access control policies,

called by an SP domain authorization service.
https://ds.com/update Update and revoke an authenticated user, called by an SR au-

thentication service.
https://sr.com/authenticate Authenticate a user in SR domain, called by DS.
https://sp.com/revoke Revoke an authenticated user who has been allowed in a cross

domain access session, called by DS.

Once receives and verifies the authenticity of the HTTP
response, the SP generates an access token based on the re-
quest token, and allows the access of the user to required
resources. The access token is used in all following transac-
tions of the same session. Moreover, the access token along
with different attributes is stored in the browser of the user
as a delegation permit.

4.5 Cross Domain Constraint Enforcement
Enforcing cross domain security constraints is one of the

major benefits of xDAuth. As the policy decision point
(PDP) for cross domain access, the DS has the capability
to enforce very flexible constraints. We use the Chinese
Wall policy as an example to explain this capability. Con-
sider a simple Chinese Wall policy which states that two
SP domains are in conflict of interest such that resources
in SP1 should not be accessed by a user who has an active
session with SP2 at the same time. With the DS’s record
of active authorized sessions, it maintains two simple lists
of SR domains that have active sessions in SP1 and SP2,
respectively. When a new request from an SR domain for
authorization of SP1, the DS simply checks if the same SR
appears in the active list of SP2. If so then the request is
denied due to the Chinese Wall policy. In order to support
general Chinese wall policy which is a constraint for multi-
ple sessions, the DS implements a function that records the
history of accesses to conflicting domains. Moreover, in the
current xDAuth, a single DS is used among a set of federated
domains. We note that with Shibboleth and OAuth-like pro-
tocols, as there is no record of active sessions, cross domain
constraints are difficult to enforce. Similarly, more general
and fine-grained constraints such as dynamic separation of
duty (DSoD) [27, 20] in user and role levels can be enforced
with same mechanism.

4.6 Authorization Revocation
Revocations can happen in xDAuth in two levels: policy

revocation, and access token revocation. The revocation of
a delegation policy is relatively simple with the help of a
dedicated web interface provided by the DS. This service
URL is provided to each SP domain as the result of domain
registration. When revoking a policy, the authorization ser-
vice in an SP domain sends the domain name and policy id
to the DS. After verifying the authenticity of the revocation
request, i.e., with the signatured generated from the shared
secret between the DS and SP, the DS removes the policy
in its local database.

There can be several scenarios to revoke an active ac-
cess token issued by the SP to a cross domain access ses-
sion. First of all, if a user within the SP domain or the

SP service wants to revoke an active accessing session, it
can directly revoke the access token issued for that session.
Immediately, the user cannot access the resource. A more
complex situation appears when any of the accessing user’s
attributes in her home domain is changed, e.g., a role is de-
activated or even revoked by the SR domain. In this case,
the SR authentication service needs to send the updated
user information to the DS, via a dedicated web interfaces
http://ds.com/update, given by the DS during registration
phase. This HTTP request should include previous session
id that is obtained from the DS for original authentication
request, therefore the DS can re-evaluate the user’s per-
mission based on updated information. If the user’s access
should be revoked, the DS issues an revocation request to
the SP via a web interface http://sp.com/revoke. The same
session id is used so that the SP can make corresponding
actions on the active session. The lifetime of the session id
and access token are global system parameters, e.g., from a
few minutes to hours.

5. IMPLEMENTATION & EVALUATION
In this section, we provide the implementation details of

xDAuth framework along with a case study for a medical
domain. The underlying information system playing the
role of the SP is an open source enterprise resource plan-
ning (ERP) system called OpenERP [5]. We then evaluate
the performance of xDAuth with our implementation and
suggest performance improvement strategies.

5.1 xDAuth for Healthcare
Medical [2] is an open source module in OpenERP that

provides a complete electronic medical record (EMR) system
with patient information and other medical information. It
also contains a hospital information system (HIS) integrated
with other OpenERP modules like inventory and financial
management.

As OpenERP does not support cross domain access, in
current Medical module, each user must have an local ac-
count with username/password in order to access medical
objects. Therefore, in the current settings, it is not possi-
ble for an external laboratory to connect to an OpenERP
server and process the medical record of a patient. To en-
able cross domain access, we have developed a module called
xauth in OpenERP. The module is derived from the OAuth
Python library [4], which consists of a server module called
provider and a client library test.py to provide xDAuth
functionalities.

Our implementation consists of three servers: the SP do-
main running a Medical information system [2], the DS
server running a Python web service, and the SR authen-

36

IS2:user2:13

View

user2

2

3

4

1

Figure 3: A snapshot of the xDAuth protocol: (1) view list of shared resources at the SP, (2) domain selection
at the DS, (3), authentication at the SR home domain, and (4) resource access at the SP.

tication server running a PHP service which provides typical
username/password login. The username/password database
is extract from the Medical in SP domain to the SR authen-
tication server. Figure 3 shows a snapshot of the xDAuth
work flow for an external user to access Medical EMR of
a patient. Once the user selects a particular resource and
presses the view button in Medical main web page (cf. Fig 3
– Part 1), the client part of the xauth is called and redirects
the user’s browser to the DS service along with the unique
link through which the necessary permission is identified at
SP. It is important to note that the actual resource informa-
tion such as ReadPatientRecord is not forwarded as part of
the redirection for privacy, while only a pseudonym is used,
which is the same name used when a delegation policy is cre-
ated in the Medical domain for reading patient EMR. The
user is prompted with a list of registered SR domains (cf.
Fig 3 – Part 2). After the user selects her home domain,
the browser is redirected to the SR authentication page (cf.
Fig 3 – Part 3). After successful authentication, the user is
redirected back to the DS, which evaluates the delegation
policies defined by the Medical domain, and then redirected
back to the original resource web page. If the access is al-
lowed, the user can view the requested patient record (cf.
Fig 3 – Part 4).

The reminder of this section gives more details of xDAuth
policy in XACML and the implementation of xauth module
and the DS service, followed by our performance evaluation.

5.2 xDAuth Policy in XACML
As a de-facto standard, XACML [3] is a natural choice

for xDAuth policies specification. The reason is that the
DS works like a central policy decision point for multiple
service providers, therefore XACML can be used to express
and evaluate policies from a variety of SPs using a single
language.

In our implementation, the <Subject> element of an XACML
policy identifies the domain of the delegatee subject. A more
detailed information about a delegatee can also be included
here such as roles or even identities. The <Resource> el-
ement refers to the resource URL in an SP domain, and
the <Rule> element specifies the corresponding constraints
which the DS must evaluate regarding a request. In our
implementation we focus on enforcing cross domain con-
straints. Specifically, the XACML policy specifies simple
mutual conflict of interests among individual SP domains,
such that a user cannot have active sessions in both do-
mains in a conflict pair concurrently. Another possible set-
ting could be to include the SR’s domain information within
the <Rule> element of XACML. Therefore, policy encoding
in the same way helps the DS in the organization of a set of
xDAuth policies from various SPs.

37

5.3 xauth Module
The xauth module extends the base module in Open-

ERP with an extra class called res_delegation. The
res_delegation class is responsible for handling delega-
tion requests from the local users and generating xDAuth
policies. It further adds an extra attribute external in
the res_users class by using the inheritance mechanism
in OpenERP. This attribute is used to distinguish a local
user from an external user. In addition to that, within the
res_delegation class, a Python function is defined called
delegationRequestHandler, which handles the incoming
delegation requests from the local users and creates or up-
date an existing xDAuth policy at the DS.

5.4 Implementation of DS
The DS is a standalone service which implements the

server part of the xauth module. This library contains all
the functions which an SP or SR can call. Besides, two
other important functions are implemented. Firstly, as the
DS proxies two HTTP redirections, we use the function
xauth_request_token, the handler of the first redirection
at the DS side, to initiate the second redirection with the
SR authentication server by calling the test.py at the SR
service side. Secondly, xauth integrates a Python XACML
engine [7] to evaluate XACML delegation policies.

Delegation Decision Making As multiple delegation
policies might exist that can be applied on a single user, it is
the responsibility of the DS to efficiently evaluate an access
request. Several strategies can be employed to efficiently
evaluate a set of delegation policies applied to an SR user.
In OAuth protocol, for each query from a web consumer
to a backend service regarding user data (for example, user
contact list), a separate function is defined at the backend
service. These functions are responsible for providing data
of a user to the consumer. We extend this mechanism to
include a function that can also answer some logical queries
such as whether an SR user’s role is or senior to a particular
role x (i.e., role ≥ x) in the SR domain. For example, if
the DS has a delegation policy with delegatee’s domain is
the SR, but with a condition that access is not allowed to
an SR user with role lower than x. In this case, the DS can
efficiently evaluate the authorization of an SR user without
asking all the attributes from the SR domain. Similarly,
multiple logical queries can be defined. Negative delegation
policies can also be enabled for efficient evaluation, by first
evaluating these policies.

Delegation Revocation As the SP trusts the DS on
authorization and authentication, logically, it is the respon-
sibility of the DS to intimate the SP regarding any change
in the attributes of the user in SR domain during an active
session. For this, whenever a change occurs about the user’s
attributes in her domain, the DS should be notified by the
corresponding SR domain, so that this change can be prop-
agated to the SP domain if a delegated permission should
be revoked.

In order to handle revocation efficiently, the SR domain
updates to the DS regarding those attributes only, for which
the DS has asked during the authentication step of the xDAuth
protocol. The DS then re-evaluates the delegation policies
to decide if the active session should be revoked. For ex-
ample, suppose the SR domain updates the DS regarding a
local revocation of attribute x for the user. According to

a delegation policy which specifies a delegation constraint
of x ∧ y, the delegation permission should be denied, and a
revocation signal is sent to the SP’s corresponding interface.

5.5 Performance Evaluation
In our testbed, the DS, SP, and SR run on individual Dell

Optiplex desktops with Ubuntu 10.4, 2.8GZ Core2Quad,
and 4 GB RAM, within 100MB LAN. The overhead of an
xDAuth session includes the two HTTP redirections, and
policy loading and evaluation times at the DS. Based on our
50 measurements, the average time for the first redirection
from the Medical service to the DS takes about 800ms. The
second redirection can occur in 560m or 3s, depending on
the factor that whether the user is already authenticated in
her home domain or not. We note that the times taken by
redirections are almost constants in the xDAuth protocol,
with slight variant according to network connection status.
We do not count the time taken by a user to login her SR do-
main, which can vary according to different authentication
mechanisms.

Table 2: Performance Evaluation of DS
No. of
Policies

Load
Time

Evaluation Time
(w/o cache)

Evaluation
Time(with cache)

10 5ms 48ms 38ms
100 15ms 64ms 46ms
1000 29ms 88ms 64ms

On the other hand, the time taken by the DS for xDAuth
policy loading and evaluation is heavily dependent on the
number of policies. We evaluate this performance overhead
with 10, 100, and 1000 delegation policies, respectively. As
Table 2 shows, The major overhead at the DS side is taken
by policy evaluations. To improve the performance, we im-
plement a cache mechanism in the XACML evaluation en-
gine. As we can see in Table 2, with authorization decision
cache support, the performance of the evaluation engine is
improved 25% by average. For large number of policies from
many different domains, another strategy can be employed
to have policy index such that the policy loading time can be
reduced by loading only policies for a particular SR domain.

6. DISCUSSION
In order to reduce the attack window, the permit token

expiration time can be set to minimum. Therefore, in critical
situations, a delegation permit can be made only good for
a single session. This means that delegation permits have
to be reissued each time the user logs into a cross domain
service and have a very limited lifetime. However, delegation
permits expiry time must be chosen adequately to balance
usability so that users are not prompted for authentication
too frequently.

According to our understanding, OpenERP defines per-
missions at the class level and not at the business object
level. Once a user has been granted read/write permissions
on a class, he/she can view all the object’s data which are
instances of this class. This limitation is inherent in our
implementation. Therefore, multiple delegatees having per-
missions on the same object can view each other’s data.
Tracking the identity of a local user who has made a dele-
gation can be a problem in cases where multiple users have
delegated the same set of rights on the same objects. An SP

38

creates a temporary identity of an SR by augmenting the
domain information taken from the DS and identity of the
local user who has enabled this delegation with each other.

In the cross domain access scenarios, one of the major
concerns is the privacy protection of a user. An SP usually
needs the identity of a user for tracking changes in its system.
On the other side, disclosing the identify of a user to an SP
might not be desirable due to several reasons. For example,
financial monitoring departments often perform inspections
of financial institutions. In this case, disclosing the identity
of a particular inspector is prohibited, although inspections
rights are delegated. This feature is can be easily supported
by xDAuth by not forwarding the user identity from the DS
to the SP, once the cross domain access is authorized.

Multi-step delegation has been discussed extensively in
many delegation models [9, 29, 13]. In cross domain con-
text, multi-step delegation has two alternatives: a user can
delegate her authorized permission of an active session to a
local user (i.e., in the same SR domain), or to another user
in a different domain. xDAuth can be extended to support
both cases. For the first one, the local authorization service
in SR domain can approve the delegation request, and file
the request to the DS, which can evaluate the permission
based on delegation policies from the SP domain. Once al-
lowed, the DS can send a request to a dedicated SP interface
for this further delegation. The SP can revoke the original
active access token and issue a new access token to the new
delegatee. For the second case, the original delegatee can file
a delegation request to her local authorization service (in
SR domain), and if allowed, the authorization service can
send a re-delegation policy to the DS. Users from the third
SR domain can use the permission with the same xDAuth
protocol. However, we argue that multi-step delegation in
xDAuth in general is a complex process including more than
two nested HTTP redirections. Certificate based delegation
mechanisms [11, 12] may be integrated with xDAuth for
practical multi-step delegations, which is the topic of our
future research direction.

7. RELATED WORK
Delegation in Role-based and Workflow Manage-
ment Systems Among those approaches, RBDM0 [9]
was the first approach that aims at modeling user-to-user
delegation in the RBAC model. RDM2000 [29] proposes hi-
erarchical roles and multi step delegation. Delegation Logic
(DL) [19] and PBDM [30] limits the delegation scope to indi-
vidual permissions and roles. Crampton et al. [13] presented
a formal model for administrative scope of delegations in the
context of workflow systems. The main difference between
these existing theoretical approaches and that we are con-
cerned is the implementation issues with the enforcement of
cross domain delegations using existing web standards.

Cross Domain Access Control and Delegation Cramp-
ton et al. [14] presents an approach where a restrictive role
hierarchy mechanism is used for external users. Whenever
an SR user requests a set of permissions, an authentication
service verifies which role can satisfy the requested permis-
sions and uses an assistant matrix to determine the min-
imum of roles that can satisfy the requested permissions.
The authentication service in their architecture ensures that
an external user cannot activate inherited permissions in the
SP domain. Their architecture can be supported by xDAuth

using an authentication service at the SP side. CRBAC [17]
provides the formal details of the integration of capability
based access control in to RBAC96. The concept of capa-
bility is exclusively used to represent permissions that can
be delegated in cross domain access scenarios in order to
reduce administration cost. Therefore, any user having a
special permission create can create a capability and as-
sign it to an external user. xDAuth provides a classical
mechanism for capability delegation described in CRBAC.
In addition, an internal authorization service in SP governs
the delegation of permissions to external domains. Shafiq
et al. [26] proposed a framework for integrating access con-
trol policies of heterogeneous and autonomous domains to
form global policy. This integration of access control policies
might cause some conflict which are removed in a way that
semantics of the global policy are preserved without chang-
ing the the autonomy of each individual domain. Our focus
is this paper is on the enforcement of a delegation authority
that can take decisions on the behalf of various domains.
Community authorization service (CAS) is an authorization
mechanism between virtual groups in Grid computing [23].
The main difference between xDAuth and CAS is that in
CAS, a user first requests a capability from the CAS service
before initializing the access at a resource provide side, while
in xDAuth, we use web redirections to obtain more friendly
user experience.

Web-based Authorization and Delegation OAuth is
a de-fato protocol for authentication of web application re-
garding the data of individual users OAuth. Our inspiration
for the OAuth protocol is due to token exchange mechanism
for authentication. However in the original OAuth proto-
col, both authentication and authorization of users are per-
formed at a backend server side, therefore it does not fit the
design goal of xDAuth. Permitme [16] has introduced the
concept of a delegation authority for providing delegation
permits to mashup web applications, for accessing user data
at back end services. Regarding the introduction of a delega-
tion authority, Permitme is similar to our approach. How-
ever there are some fundamental differences as Permitme
assumes that the delegation authority and backend services
share information regarding user data. This means that
whenever there is a change in the user data, the backend
service has to intimate the delegation authority regarding
the change. In xDAuth a user has no account on the dele-
gation service, then authentication takes place in her home
domain only. Shibboleth [21] is the closest technology to
xDAuth. As we have discussed in Section 3, there is signif-
icant difference on the design of xDAuth from Shibboleth,
especially on the role of the DS, which makes xDAuth ideal
for cross domain constraint enforcement. DAuth [25] is an
extension of OAuth to split an access token into multiple
sub-tokens and assign them to different components of a
distributed web consumer. Therefore DAuth can support
very fine-grained permission control for accessing user data
in service providers. However, like OAuth, DAuth does not
support cross domain access and delegation as xDAuth does.

8. CONCLUSION
In this paper, we have presented a cross domain access

control and permission delegation framework called xDAuth
for service oriented organizations. xDAuth leverages a trusted
delegation service to serve as a decision making point for

39

cross domain access requests. Each resource sharing domain
can publish security policies to the delegation service via
open RESTful web service interfaces. Delegation in xDAuth
occurs at two places: A local user or an administrator dele-
gates rights on her owned resources to other domain users,
provided that the delegation at this level is allowed by a del-
egation control policy of her domain. Secondly, each domain
delegates the evaluation of cross domain authorization poli-
cies called xDAuth policies to a central policy decision point
called delegation service. We implement xDAuth framework
within a medical module in OpenERP, an open source ERP
system. Currently, we are extending xDAuth framework for
multi-step delegation and working on providing it as a open
source module in the OpenERP project repository.

9. REFERENCES
[1] Authentication and authorization for google apis,

http://code.google.com/apis/accounts/docs/

AuthForWebApps.html.

[2] Medical–The Universal Hospital and Health
Information System. medical.sourceforge.net/.

[3] OASIS, journal=OASIS: www.oasis-
open.org/committees/xacml/repository/csxacml-
specification-1.1.pdf,
2003.

[4] OAuth official web site. http://www.oauth.net/code.

[5] OpenERP systems. http://www.openerp.com/.

[6] Windows live id, https://accountservices.passport.
net/ppnetworkhome.srf?lc=1033&mkt=EN-US.

[7] XACML 2.0 implementation in Python.
http://pypi.python.org/pypi/ndg-xacml/0.4.0.

[8] V. Atluri and J. Warner. Supporting conditional
delegation in secure workflow management systems. In
Proceedings of the tenth ACM symposium on Access
control models and technologies, 2005.

[9] E. Barka and R. Sandhu. A role-based delegation
model and some extensions. In Proceedings of National
Information Systems Security Conference, 2000.

[10] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter.
Patient controlled encryption: ensuring privacy of
electronic medical records. In Proceedings of the 2009
ACM workshop on Cloud computing security, 2009.

[11] M. Blaze, J. Feigenbaum, and A. Keromytis. KeyNote:
Trust management for public-key infrastructures. In
Security Protocols, pages 625–625. Springer, 1999.

[12] D. Clarke, J.E. Elienb, C. Ellison, M. Fredette,
A. Morcos, and R.L. Rivest. Certificate chain
discovery in SPKI/SDSI. Journal of Computer
Security, 9(4):285–322, 2001.

[13] J. Crampton and H. Khambhammettu. Delegation in
role-based access control. International Journal of
Information Security, 7(2):123–136, 2008.

[14] S. Du and J.B.D. Joshi. Supporting authorization
query and inter-domain role mapping in presence of
hybrid role hierarchy. In Proceedings of the eleventh
ACM symposium on Access control models and
technologies, 2006.

[15] R. T. Fielding and R. N. Taylor. Principled design of
the modern web architecture. ACM Transactions on
Internet Technology, (2), 2002.

[16] R. Hasan, M. Winslett, R. Conlan, B. Slesinsky, and
N. Ramani. Please permit me: Stateless delegated

authorization in mashups. In Computer Security
Applications Conference, pages 173–182, 2008.

[17] K. Hasebe, M. Mabuchi, and A. Matsushita.
Capability-based delegation model in RBAC. In
Proceeding of the 15th ACM symposium on Access
control models and technologies, 2010.

[18] J.B.D. Joshi and E. Bertino. Fine-grained role-based
delegation in presence of the hybrid role hierarchy. In
Proceedings of the eleventh ACM symposium on Access
control models and technologies, 2006.

[19] N. Li, B.N. Grosof, and J. Feigenbaum. Delegation
logic: A logic-based approach to distributed
authorization. ACM Transactions on Information and
System Security (TISSEC), 6(1):128–171, 2003.

[20] N. Li, M.V. Tripunitara, and Z. Bizri. On mutually
exclusive roles and separation-of-duty. ACM
Transactions on Information and System Security
(TISSEC), 10(2), 2007.

[21] RL Morgan, S. Cantor, S. Carmody, W. Hoehn, and
K. Klingenstein. Federated Security: The Shibboleth
Approach. Educause Quarterly, 27(4):6, 2004.

[22] T.H. Payne, D.E. Detmer, J.C. Wyatt, and I.E.
Buchan. National-scale clinical information exchange
in the United Kingdom: lessons for the United States.
Journal of the American Medical Informatics
Association, 18(1):91, 2011.

[23] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and
S. Tuecke. A community authorization service for
group collaboration. In Policies for Distributed
Systems and Networks, 2002. Proceedings. Third
International Workshop on, 2002.

[24] D. Recordon and D. Reed. OpenID 2.0: a platform for
user-centric identity management. In Proceedings of
the second ACM workshop on Digital identity
management, 2006.

[25] J. Schiffman, X. Zhang, and S. Gibbs. DAuth:
Fine-grained Authorization Delegation for Distributed
Web Application Consumers. In Proc. of IEEE
Symposium on Policies for Distributed Systems and
Networks, 2010.

[26] B. Shafiq, J.B.D. Joshi, E. Bertino, and A. Ghafoor.
Secure interoperation in a multidomain environment
employing RBAC policies. IEEE transactions on
knowledge and data engineering, pages 1557–1577,
2005.

[27] R.T. Simon and M.E. Zurko. Separation of duty in
role-based environments. In Proc. of Computer
Security Foundations Workshop, 2002.

[28] J. Wainer, A. Kumar, and P. Barthelmess.
DW-RBAC: A formal security model of delegation and
revocation in workflow systems. Information Systems,
32(3):365–384, 2007.

[29] L. Zhang, G.J. Ahn, and B.T. Chu. A rule-based
framework for role-based delegation and revocation.
ACM Transactions on Information and System
Security (TISSEC), 6(3):404–441, 2003.

[30] X. Zhang, S. Oh, and R. Sandhu. PBDM: a flexible
delegation model in RBAC. In Proceedings of the
eighth ACM symposium on Access control models and
technologies, 2003.

40

