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Abstract

The paper deals with both methodological and practical as-
pects of design, implementation and application ofdata-
centricdecision support systems powered by the historical
process and business data. The paper is written from the
product development and corporate R&D perspective and
discusses major decisions and traps on the developers’ way
from the original idea to its commercial use.

1 Introduction

A decision support system, commonly abbreviated as DSS,
represents a specific form of control system that suggests
multiple possible actions (decisions) to the ultimate con-
troller (decision-maker). The suggested actions are typi-
cally accompanied with quantification of their impact onto
the controlled system.

The crucial feature of DSS is its capability to interact effec-
tively with the user. DSS is considered mostly at a fairly
high level of control hierarchy where the complexity of task
or the importance of decision requireshumanintervention.

DSS often combines multiple functions, such as estimation,
prediction, optimization, fault detection and diagnosis, and
data visualization.

DSS incorporates both data and models. Given that large
repositories of historical data have become nowadays a
commodity by-product of computerized control, the inter-
est naturally increases indata-centricconcepts of DSS.

The paper summarizes the author’s experience with design
and implementation of a data-centric DSS in the process
control context.

The challenges of DSS development are shown to go far
beyond the underlying technology. The quality of data, a
good dose of subject area expertise, and understanding of
the total cost of ownership on the end user’s side are crucial
prerequisites for success.

The process of turning the idea into a commercial concept

(product, service or technology platform) sets a separate
challenge. The paper skips obvious though important as-
pects, such as effective project management and software
development process, and focuses on the transfer of knowl-
edge from the development team to a business unit.

2 Methodology

The selection of a proper approach to modeling, simulation
and optimization is essential for a data-centric DSS, espe-
cially if it is to be applicable to a wider range of problems.

Modeling. The purpose of modeling is typically prediction
or explanation. The following discussion assumes predic-
tion to be a primary objective.

First-Principle vs. Empirical Models. In contrast to first-
principle models, empirical models can explain how the
controlled system behavior depends on the external causes
or previous operation. Problems like product demand fore-
casting or condition based monitoring are hard to solve
without fitting historical data using empirical methods. On
the other hand, the empirical models cannot predict cases
not met in the data history unless they are combined with
other sources of knowledge, which is possible but at extra
cost.

Linear vs. Non-linear Dependence.The behavior of real-
life systems, especially at the high control level where DSS
is applied, is rarely linear. To cope with global nonlinearity,
the linear regressioncan be combined with a data discount-
ing mechanism so as to fit the recent data behavior only.
An option is to use anonlinear regressionmodel, such as
a feed-forward neural network, to describe the global be-
havior of data. A compromising solution is represented by
non-parametric regressionthat builds an individual regres-
sion model for each situation.

Adaptation vs. Learning. The classical regression with
data discounting, which has become so popular in adaptive
control and signal processing, does not actually learn from
the data history; its adaptation is driven by the prediction er-
ror rather than a specific situation. If, e.g., multiple modes
of operation need to be captured by the model, adaptive re-



gression can achieve that only at the cost of periodic retun-
ing. This is in contrast to non-parametric regression that
can build a model for purpose from relevant historical data.
The nonlinear regression model—given the complexity of
its estimation—can rarely be adapted in each step. In prac-
tice, it is reestimated from time to time while a fixed model
is used in-between.

Complete vs. Recent vs. Relevant History.The global,
local-in-time and local-in-space modeling paradigms—
exemplified by the nonlinear, adaptive linear and non-
parametric regression—work quite differently with the data
history, making use of all, recent or just relevant data, re-
spectively.

Closed-Form vs. Iterative Solution. It is of advantage if
an analytic solution can be given to the data fitting prob-
lem as is in the case of linear-in-parameters regression, be it
in global or local (non-parametric) setting. The estimation
returns in this case a full description of the parameter and
prediction uncertainty.

Recursive vs. Batch Processing.Much of the research
initiated in 1960s and 1970s in optimal filtering and sys-
tem identification was firmly locked in the computational
paradigm of a recursive algorithm working over a low-
dimensional data statistic compressing the previous history
of data. This paradigm has lost nowadays most of its origi-
nal rationale. Thejust-in-timecomputations of models built
for purposefrom data selectedon demandhas become a
viable option.

Observed vs. Hidden Variables. A typical data-centric
DSS uses methods that fit directly the observed data, such
as different sorts of regression. There are multiple prob-
lems, however, where formulation using state-space models
is more natural. Examples include processing of laboratory
measurements or meteorological forecasts. Kalman filter-
ing is a natural choice here, as a counterpart to global linear
regression. Local estimation of multidimensional Markov
random fields can become in the future an alternative to non-
parametric regression.

Continuous vs. Categorical Variables. The support for
hybrid models combining continuous and categorical (dis-
crete) variables is relatively poor at the moment. A model
combining the regression and Markov chain characteristics
is needed. A specific difficulty in applying non-parametric
statistical methods is definition of similarity between cat-
egories (different values of a discrete variable). In what
sense is the operating mode “A” similar to the mode “C”?
Or, Tuesday operation to Thursday operation?

Uncertainty vs. Reliability. A precise quantification of the
prediction uncertainty is a key point for DSS to be perceived
as a reliable advisory tool. Most users understand that sta-
tistical methods cannot predict reliably situations not met in
the past, but expect at least a fair warning. In cases sub-

ject to high uncertainty—caused by the lack of historical
data, too many variables entering the model, or too com-
plex models—Bayesian model averaging represents a the-
oretically optimal solution, which mixesall individual pre-
dictors withweightsgiven by the posterior probabilities of
the respective models.

Prior Knowledge vs. Actual Data. In cases where the
model-based prediction exhibits too high uncertainty, DSS
can optionally combine the raw data with prior knowl-
edge. Bayesian statistical methods allow for such knowl-
edge straightforwardly, provided it is expressed in terms of
a probability distribution of modelparameters. This option
is often cumbersome for non-statisticians. A more practical
way is to ask about a typical distribution of the underlying
data. Even then, the cost of eliciting prior knowledge is
rather high and considered currently only for important and
repeatedly applicable special cases.

Interpolation vs. Extrapolation. The previous point is re-
lated to the question how far from the past operation one
can reliably extrapolate from the historical data. Does a
data-centric DSS enable the user to “think out of the box?”
The answer is given basically by the the choice of a model
class. An extremely simple model (like fitting by constant)
suggests local data interpolation whereas a more complex
model (using higher-order polynomials or other suitable ba-
sis functions) can extrapolate far from the available data,
provided we have other evidence (domain knowledge) that
the model structure fits the problem.

Simulation. Black-box modeling gives typically poor per-
formance for systems composed of multiple subsystems that
can be combined in multiple ways. Think of a complex pro-
duction schema composed of multiple processes with dif-
ferent dynamics. In order to capture the complete behavior
of such a system, one would need to operate it in all pos-
sible configurations first. This implies a lengthy learning
process—unrealistic in most cases. A faster and more di-
rect way is tomodelthe subsystems and thensimulatetheir
combined behavior.

Uncertainty Propagation. Simulation of systems com-
posed of statistical models with uncertain responses require
to generalize statistical modeling so as to make it capa-
ble to cope with uncertain values of independent variables.
Markov Chain Monte Carlo methods offer general-purpose
although computationally rather costly tools for uncertainty
propagation.

Optimization. Optimization of systems with uncertain re-
sponses and for a wide range of objective functions requires
a robust general-purpose method capable to handle the un-
certainty. Stochastic optimization methods, such as simu-
lated annealing, genetic algorithms or tabu search appear
to be a good choice for static optimization. Approximate
dynamic programming, reinforcement learning and Markov
Chain Monte Carlo apply to the dynamic case.



Optimization vs. Enhancement.Decision tasks perceived
ashard exhibit one or more of the following characteristics:
lack of structure (resulting from combination of combina-
torial, discrete, and symbolic variables), inherent presence
of uncertainties (requiring time-consuming averaging), and
huge search space (not easy to parameterize and prone to
combinatorial explosion). In such problems, it is unlikely
to find a global optimum in times available typically for de-
cision analysis. Rather, the user expects to be navigated in
the “right direction,” resulting in enhancement of the current
practice.

Uncertain Objective Functions. In decision support, one
often faces the problem of optimizing performance indica-
tors (such as the operating cost or profit) the actual values of
which are known onlyex post. This goes beyond the tradi-
tional formulation when the objective function is known and
all uncertainty is due to the uncertain response of the under-
lying system. The expected rewards need to be predicted
then before a decision can be made.

Multiple Objectives. The higher is the level of decision-
making, the more often the objectives to be optimized are
multiple and contradictory. Most theories of optimization
with multiple objectives boil the problem down to optimiza-
tion with a single objective function being a linear combi-
nation of individual objective functions. As the resulting
objective function may sometimes be difficult to interpret,
it is important to provide the user with a capability to ana-
lyze multiple (possibly all dominating) strategies.

Uncertainty and Risk. The uncertainty about the actual re-
ward produces risk on the decision-maker’s side. Consider
two decisions that have the same expected reward but one is
subject to higher uncertainty than the other. Which decision
should be preferred? The question can be answered only af-
ter the decision-maker explicitly defines his or her attitude
towards the risk. For one who is risk-prone, the high uncer-
tainty promises additional gains. For one who is risk-averse,
the high uncertainty threatens higher losses. The decision
theory resolves the dilemma by asking the user to define an
explicit utility function, which transforms the rewards by
stressing either the gains or the losses.

3 Work Process

The actual data exploitation—using a combination of mod-
eling, simulation and optimization methods—is only a frac-
tion of the entire knowledge extraction process.

Data Preprocessing. Before the data can be exploited in
DSS, it needs to be extracted from existing, often multi-
ple data sources, integrated in one data repository, validated
and cleansed by removing or correcting corrupt values,
and eventually transformed (aggregated, filtered, scaled) as
needed. This step takes 60–70% of time and resources of
a typical DSS application project. Regardless of its impor-

tance, the task attracts a little attention of the research com-
munity, being perceived as mundane and routine.

Data Warehousing. The data-intensive methods, such as
non-parametric regression, require data organized in a way
that facilitates their quick retrieval. One option is to prebuild
a database table so that it contains data for all the variables
entering a specific statistical model. In principle, each new
model is associated with a new database table. Such a so-
lution results in high redundancy of stored data, but guaran-
tees a quick access, especially if the table rows are properly
indexed.

Model Building. The process of model development takes
about 20–30% of time and resources and represents thus the
second most demanding task. It starts by the selection of
independent variables that significantly affect the system re-
sponse or decision reward. Then the model structure is op-
timized. For non-parametric regression, the neighborhood
shape (bandwidth parameters) is eventually tuned off-line
or on-line. The model building process can be partially au-
tomated by running different models against historical data
and comparing their performance. Complementing the au-
tomated search with a good dose of common sense (based
on the domain knowledge) is always recommended.

Model Exploitation. It is here where all the power and
beauty of statistical and optimization methods is applied.
For a given model, their application is usually straightfor-
ward, assuming that enough attention was paid to the algo-
rithms’ numerics in the implementation phase.

Knowledge Presentation. The quality of graphical user
interface and ease of use affects crucially the user’s percep-
tion of the DSS usefulness. A specific challenge is how to
present the model uncertainty and decision risk to a non-
professional user without a statistical training.

User Guidance. DSS provides an effective support only
if the user feels at every moment in control. In modeling,
it is helpful if the user can check the results of data fitting
graphically against the raw data. In optimization, the user
should be given the possibility to suggest decisions around
which DSS does a fine search.

4 User Acceptance.

The success or failure of DSS depends to a large extent on
the user acceptance.

General-Purpose vs. Problem-Specific. DSS designed
as a general-purpose tool makes the user save on the pur-
chase price (the development cost is distributed over many
copies) and multiple-product training (one tool can serve
multiple tasks). DSS designed as a problem-specific appli-
cation makes the user save on the model development (mod-
els are built in) and application training (single-purpose tool



speaking the domain language is easier to master).

Untrained User vs. Expert. DSS for expertis to DSS for
non-professionalas a racing car to a family van or as a sur-
geon’s scalpel to a Swiss-army knife. It makes little sense to
ask which one is better as they serve different purposes. It is
not only the user interface, but primarily the choice of meth-
ods that makes the difference. DSS for the untrained user re-
quires generic but robust methods that can be tuned quickly
for 80/20 solution, with potential for further improvement
at extra cost if required.

Process vs. Business Culture.DSS often requires data
and knowledge from both process and business communi-
ties. The communities have different cultures; while the
process people behave as asset owners, the business peo-
ple act more like opportunity scouts. The different perspec-
tives of these two classes of users can hardly disappear in
DSS. Although the ideal solution remains to be one inte-
grated system shared by both process and business people,
such a system is still rarely met in practice.

Perception of Decision Support Itself.Much of the foun-
dations of a data-centric DSS has been identified in the past
few years with the area ofdata mining. A certain exagger-
ated hype, promising occasionally a new silver bullet, can
hinder the acceptance of a data-centric DSS.

5 Product Development

When a decision is made what methodology will power
DSS, how the data will be prepared and results presented,
and who will be a typical user, time comes to implement the
system.

Building a Team. There are significant differences be-
tween research and development as done in corporate R&D
organizations and in technology start-ups. While the cor-
porate R&D can generally benefit from bigger concentra-
tion of resources, it has a tendency towards distinguishing
strictly between technology and product development, as-
suming a workingtechnology transferbetween both. Often,
the assumption does not work; either the technology trans-
fer has no obvious champion or the product development
team has its own R&D capability and vision.

One option for teams in the corporate R&D is to emulate
the multi-functional teams typical for technology start-ups,
which combine development of new methods, rapid proto-
typing of software, pilot applications in various markets and
technology marketing inside and outside the company. This
way the technology transfer friction can be reduced while
the development team preserves a strong feeling of owner-
ship of the resulting product.

Software Implementation. The decision on the right way
of packaging the technology is far from easy, in both user in-

terfaces and software architecture. Should one focus a desk-
top tool or client-server architecture or Web deployment?
Should one prefer performance or commonality? What set
of software technologies to choose, given the uncertainty
as to where the major vendors will be in a couple of years
from now? And, most importantly, will the end user enjoy
the result?

In the increasingly dynamic and uncertain environment,
many development teams currently prefer a spiral (scrum)
model of software development to the linear (waterfall) one.
The scrum model assumes from the early phases involve-
ment of a sample of target users and counts on evolutionary
development with several iterations in software design and
implementation. The objective is to capture the right prod-
uct concept as quickly as possible, before the accumulated
development cost prevents any further major changes to the
software design.

Work Organization. Most of the risks down the road are
about the people and due to the people. The whole de-
velopment goes typically in a highly competitive environ-
ment. There is no control strategy that would guarantee au-
tomatic success. Nevertheless, there are some “good prac-
tices” worth following.

Communicate vigorously.If you are to choose between one
more software feature and one more person who likes your
work, go always for the latter.

Schedule your development carefully.Do the right things at
the right time. Be prepared that at the early phases it is often
an intuitive rather than a fully controlled process.

Allocate your resources wisely.There are always more
things to do than resources available. Find a balance be-
tween the product maturation and market growth.

Prototype software quickly.If you are not 100% sure that
you develop the right thing, do it fast at least.

Approach development as evolution.Most users prefer
functionality to performance if they are forced to choose
one. Start with the former, you may be given time to opti-
mize later.

Productize successful solutions.Make running solutions
configurable and reusable rather than the other way around.
Resist the temptation to proceed in a linear way.

6 Growing a Business

To see that a highly educated team makes an innovative so-
lution work is exciting in its own right, but it does not nec-
essarily sets a pattern for a successful business. A natural
concern of a business unit is whether its application engi-
neers or a typical end user will be capable to solve similar



problems on their own, without direct involvement of the
developers.

An answer to this question depends on the level of com-
plexity and sophistication of the problem to be solved, the
software tool available and the problem solver and tool user
in one person. There are several basic ways how the end
user can be supported in solving a nontrivial problem using
DSS tools.

Workflow Automation. Knowledge-intensive steps in
DSS configuration can be automated to some extent. A typ-
ical example is partial automation of the model selection
process based on a built-in capability to assess a particular
set of models against a particular set of data for a particu-
lar set of situations. Needless to say, this extra capability
does not come for free; it requires more development effort,
more computational time and a good dose of experience (or
training) in interpreting the results.

Solution Library. Experience from multiple projects can
be effectively shared through a library of proven “tem-
plate” solutions, which can be reused with relatively little
effort. The library lists model structures recommended for
frequently met problems and indicates their typical perfor-
mance. A solution library provides an effective way of shar-
ing knowledge between application groups and the develop-
ment team.

Modeling Services. The supplier of DSS system can con-
sult the customer on an appropriate model for a specific
problem. This is typical when delivering a complete solu-
tion, which will be further maintained by the supplier. The
model may still require periodic retuning, performed by the
software itself or as a remote service.

User Training. Consulting on model development assumes
that the user comes back whenever he or she faces a new
problem. Some customers may find more cost-efficient to
expose their frequent users to advanced training. The case
when the end users are supposed to develop models on their
own represents a major challenge for developers who must
position themselves on the scale between simple widespread
tools such as spreadsheet calculators and specialized statis-
tical and optimization packages for expert users. It goes
back to the decision about the target end user.

7 Innovation Story

The beauty of hindsight is that it makes it possible to orga-
nize the development steps in an linear and logical way. In
reality, the innovation and development process goes rarely
a straight way.

Initial Idea. For a team in Honeywell Laboratories, the
DSS endeavor started when confronted with the task to fore-
cast total steam, heat and electricity demand, heat demand

in individual hot-water pipelines, and total gas consump-
tion in a municipal district heating system. The system was
relatively complex, composed of five generation plants, a
steam pipeline network totaling 60 miles, and five primary,
partially interconnected hot-water pipeline networks of to-
tal length of 46 miles. Information about the system was
too crude to build a simulation model. The only informa-
tion available to the team was a set of historical production
and meteorological data for about one year. Under these cir-
cumstances, the team was naturally tempted to describe the
system behavior through an empirical model.

The attempts to apply classical regression with age dis-
counting of past data failed because of a strongly nonlinear
behavior and a large portion (15–20%) of missing and un-
reliable data in the archive. A global nonlinear model such
as a neural network was abandoned soon, too. The demand
profile was found to change rather quickly in the transient
economic conditions of the country. As a result, the global
model needed to be periodically retrained, which signifi-
cantly compromised the forecast quality towards the end of
period. In addition, the periodic adaptation of model meant
to develop an extra application running in background in or-
der to meet the customer’s requirement of 24x7 operation of
decision support.

Since none of the traditional approaches worked satisfacto-
rily, the team decided eventually for a hybrid approach—
applying a multiple regression model to only a fraction of
the past data points that were “similar” to the forecasted sit-
uation. This worked remarkably well and became a basis for
a software prototype that was installed and commissioned
successfully at the customer site.

Technology Maturation. Soon after a working solution to
the problem was found through experimentation, a number
of similarities were recognized with known methods, such
as locally weighted regression in non-parametric statistics
[1], memory-based or lazy learning in machine learning [2]
and just-in-time or on-demand modeling in system identifi-
cation [3].

These connections were used to mature quickly the proto-
type solution and to lay down a solid basis for its further
elaboration. Local regression was complemented with lo-
cal classification for the case when the target variable was
categorical. Models mixing continuous and categorical in-
dependent variables were supported. The frequentist for-
mulation of the estimation problem, favored traditionally
in non-parametric statistics, was replaced with a Bayesian
framework [4] allowing for incorporation of simulation- and
expert-based knowledge [5]. A lot of research effort has
been put into providing a reliable capability to do model as-
sessment and selection off-line and on-line.

A significant driver for innovation became the fact that the
local modeling concept was applied to a huge operational
database storing low-quality data. Apart from the need for



continuous data validation, the team started identifying and
transferring relevant knowledge from the data warehousing
community. A theoretical support for linking data ware-
housing and Bayesian data smoothing was provided by the
information geometry of parameter estimation [6], origi-
nally developed in a global modeling context.

Scope Stretching. With local modeling in place, the team
was in position to develop “localized” versions of optimiza-
tion and diagnostic tools working only with a fraction of
relevant historical data points. The work focused in particu-
lar on local algorithms for process enhancement and abnor-
mal event detection. In addition, state-of-the-art tools for
visualization of multidimensional data were implemented
and made part of the package to support further the model
building process.

All the tools continued to share a common paradigm:
1. Retrieve historical data relevant to the case.
2. Fit the data with a model of appropriate structure.
3. Use the model for forecasting or decision-making.

A common paradigm made it possible to preserve a small
kernel of general-purpose functions that could be reused ef-
fectively for multiple purposes.

Software Implementation. It took a few months in a cou-
ple of people to develop the first instance of a data-centric
forecasting solution. It took several years in a considerably
larger team to turn it into a fully configurable product pro-
totype.

Early decision support or data mining products were de-
signed for highly educated and experienced users. The
team’s ambition has been to come up with a tool that could
be used by non-experts, with little or no prior training. The
search for the most appropriate way of packaging the un-
derlying technology resulted in several internal releases of
software that applied different architectures and user inter-
faces.

To speed up the development in the early development
phases, the team used several rapid prototyping platforms.
Later, when the integration with the business units’ prod-
ucts became a priority, the team standardized in software
development tools with the divisional teams.

A challenge of its own was to develop quickly data ware-
housing skills and adapt the technology to warehousing of
process data.

Knowledge Transfer. The team focuses currently on mak-
ing the technology and software usable by non-experts and
on expanding the scope of applications. Discussion goes
increasingly about the business aspects of further develop-
ment and effective ways of sharing the knowledge.

The development would not be possible without a strong
and cohesive team with a start-up mind-set and firm con-

viction in the underlying idea. In building the team, it
was decided to prefer generally highly educated and eagerly
learning people to highly productive but narrowly oriented
specialists. Looking back, it has turned out to be a lucky
choice. In the team where more than 80% people carry a
Ph.D. degree, most have changed their job descriptions sev-
eral times during the development and become active con-
tributors to further development of the technology, software
and industry-specific solutions.

8 Conclusion

The paper presents experiences from development of a data-
centric Decision Support System that takes advantage of
synergy of data warehousing, non-parametric statistics and
stochastic optimization technologies. The technology is-
sues are shown to be a crucial but—measured by the overall
productization and commercialization effort—a relatively
small part of the whole endeavor. A successful control
of the innovation process requires to view the technical
part of development from the overall system perspective,
which takes into account the conflicting interests of all ma-
jor stakeholders and ultimately benefits the end user.
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