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Abstract In this paper we introduce a system to track
pedestrians using a combined input from RGB and thermal
cameras. Two major contributions are presented here. First is
the novel probabilistic model of the scene background where
each pixel is represented as a multi-modal distribution with
the changing number of modalities for both color and ther-
mal input. We demonstrate how to eliminate the influence of
shadows with this type of fusion. Second, based on our back-
ground model we introduce a pedestrian tracker designed as
a particle filter. We further develop a number of informed
reversible transformations to sample the model probability
space in order to maximize our model posterior probability.
The novelty of our tracking approach also comes from a way
we formulate observation likelihoods to account for 3D loca-
tions of the bodies with respect to the camera and occlusions
by other tracked human bodies as well as static objects. The
results of tracking on color and thermal sequences demons-
trate that our algorithm is robust to illumination noise and
performs well in the outdoor environments.
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1 Introduction

The problem of automatic real-time pedestrian recognition
has gained a lot of attention in the machine vision commu-
nity and is identified as one of the key issues in numerous
applications ranging from collision avoidance with pedes-
trians in the automotive world, through border surveillance,
and situation awareness in autonomous vehicles and robotic
systems [3,22] through human activity recognition [14,26].
Sensor fusion has become an increasingly important direc-
tion in computer vision and in particular human tracking sys-
tems in recent years. Human motion tracking based on the
input from RGB camera already has been producing reliable
results for the in-door scenes with the constant illumination
and steady backgrounds. Scenes with significant background
clutter due to illumination changes, however, still appear to be
challenging to handle using inputs from a conventional CCD
camera. In our work we propose a method of utilizing an
additional source of information—a thermal camera/sensor
which produces for each pixel a gray scale mapping of the
infrared radiation at the corresponding location.
Related work. Substantial research has been accumulated in
detection and tracking of people. The majority of the studies
address tracking of isolated people in a well controlled envi-
ronment, but increasingly there is more attention to tracking
specifically in crowded environments [4,11,13–15,23,29]. It
is worth noting that many works assume the luxury of mul-
tiple well-positioned cameras or stereo vision, which are to
a certain extent not present in most establishments and/or do
not have the desired overlapping fields of view. In contrast,
cheap low-resolution digital monocular color cameras are
becoming more and more readily available in stores, air-
ports and other public places as well as the hardware for
capturing compressed real-time streams provided by these
cameras.
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Recently, a flurry of contributions on pedestrian localiza-
tion and tracking in visible and infrared videos have appeared
in the literature [1,5,6,12,25,31]. In [32], the P-tile method is
developed to detect human head first and then include human
torso and legs by performing a local search. Nanda [25] builds
a probabilistic shape hierarchy to achieve efficient detection
at different scales. In [27], a particle swarm optimization
algorithm is proposed for human detection in infrared ima-
gery. Dai et al. [6] proposed a hybrid (shape and appearance)
algorithm for pedestrian detection, in which shape cue is first
used to eliminate non-pedestrian moving objects and appea-
rance cue is then used to pin down the location of pedestrians.
A generalized Expectation Maximization algorithm has been
employed by the authors to decompose infrared images into
background and foreground layers. These approaches rely
on the assumption that the person region has a much hotter
appearance than the background. Davis et al. [8] proposed to
fuse thermal and color sensors in a fusion-based background-
subtraction framework using contour saliency map in urban
settings. Information including object locations and contours
from both synchronized sensors are fused together to extract
the object silhouette. A higher performance is reported by
fusing both sensors over visible-only and thermal-only ima-
gery. This method is however computationally expensive as
it attempts to construct a complete object contour, which
does not seem to be a requirement in various applications
like surveillance or crash-avoidance system. In [31], sup-
port vector machine and Kalman filtering are adopted for
detection and tracking, respectively. In [28], two pedestrian
tracking approaches, pixel-periodicity and model-fitting, are
proposed based on gait. The first employs computationally
efficient periodicity measurements. Unlike other methods, it
estimates a periodic motion frequency using two cascading
hypothesis testing steps to filter out non-cyclic pixels so that
it works well for both radial and lateral walking directions.
The extraction of period is efficient and robust with respect to
sensor noise and cluttered background. In the second method,
they integrate shape and motion by converting the cyclic pat-
tern into a binary sequence by maximal principal gait angle
(MPGA) fitting.

We developed our generative tracking framework encou-
raged by recently found implementations for particle filte-
ring. Random sampling was shown not only to successfully
overcome singularities in articulated motion [9,24], but the
particle filtering approach applied to human tracking has
also demonstrated potential in resolving ambiguities while
dealing with crowded environments [16,33]. Working under
the Bayesian framework it has been shown that particle fil-
ters can efficiently infer both the number of objects and
their parameters. Another advantage is that in dealing with
distributions of mostly unknown nature, particle filters do
not make Gaussianity assumptions, unlike Kalman filters
[17,30].

Contribution. Despite these efforts, the challenges still rem-
ain both for the stationary and moving imaging systems.
This is due to a number of key factors like lighting changes
(shadow vs. sunny day, indoor/night vs. outdoor), cluttered
backgrounds (trees, vehicles, animals), artificial appearances
(clothing, portable objects), non-rigid kinematics of pedes-
trians, camera and object motions, depth and scale changes
(child vs. adult), and low video resolution and image qua-
lity. This paper proposes a pedestrian detection and tracking
approach that combines both thermal and visible information
(see Fig. 1) and subsequently models the motion in the scene
using a Bayesian framework. We define a set of jump-diffuse
transitions for a particle filter operating within Bayesian for-
mulation, such that, these transitions reflect the nature of the
motion in the scene. This is an enhancement of blind multi-
variate optimization to incorporate prior information of the
real world.

We built our tracking system to operate in a two-camera
setup, assuming one of the cameras can sense in the ther-
mal part of the spectrum and is calibrated to give the view
matching that of the visible camera. Also we assume that
the location of the floor plane in the frame is established,
either by supervised or automated calibration techniques.
The goal of our tracking system is twofold: first attempt to
employ all available information to achieve the noise free
blob-map and second, subsequently use the blob-map to per-
form reliable pedestrian tracking to minimize two types of
tracking errors—falsely detected people and people missed
by the system. Our system segments foreground regions out
of each frame by using a dynamically adapting background
model presented here (see Fig. 2). Because each foreground
region may contain multiple people, we further hypothesize
about the number of human bodies within each such region
by using the head-candidate selection algorithm. The head is
chosen as the most distinguishable and pronounced part of
the human body, especially when observing the scene with
a highly elevated monocular camera. As the next step, our
system constructs a Bayesian inference model, based on the
a priori knowledge of the human parameters and scene layout
and geometry. Observations of the body appearances at each
frame are a second driving force in our probabilistic scheme.

Fig. 1 Left Thermal image of the scene. Right Color image of the same
scene
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Fig. 2 Tracking system flowchart

2 Background model

Video sequences from the surveillance cameras are
frequently compressed with MPEG-like algorithms, which
normally create a periodic noise on the level of a single
pixel. Moreover periodic changes in the illumination of the
scene such as cloud cover or wind effects produce simi-
lar effects. We implemented a multi-modal adaptive back-
ground model based on the codebook approach. Variable
length multi-modal distribution was previously used to
represent background model for a single RGB input in [18].
Here we extend our previous model [20,21] by adding a
probabilistic weight to color and thermal components of the
background.

2.1 Acquiring multi-modal pixel representation

Each pixel in the image is modeled as two dynamically gro-
wing vectors of codewords, so-called codebooks as shown in
Fig. 3.

For the RGB input a codeword is represented by: the ave-
rage pixel RGB value and by the luminance range Ilow and
Ihi allowed for this particular codeword. If an incoming pixel
p is within the luminance range and the dot product of pRGB

and RGB of the codeword is less than a predefined threshold
it is considered to belong to the background.

For the thermal monochromatic input a codeword is repre-
sented by: intensity range Tlow and Thi occurring at the pixel
location. Unlike for the color codewords the matching of

Fig. 3 Codebook creation

the incoming pixel’s approximate temperature pT is done by
comparing the ratios of pT /Tlow and pT /Thi to the empi-
rically set thresholds. This way we can hard limit the per-
centage of temperature change allowed to happen at each
location. By observing several thermal sequences we have
established that changes in cloud cover or shadows produced
by other moving objects do not typically cause the tempera-
ture change of more than 10%.

During the model acquisition stage the values are added to
the background model at each new frame if there is no match
found in the already existing vector. Otherwise the matching
codeword is updated to account for the information from the
new pixel. Empirically, we have established that there is sel-
dom an overlap between the codewords. In the situation when
this is the case, i.e. more than one match has been established
for the new pixel, we merge the overlapping codewords. We
assume that the background changes due to compression and
illumination noise are of re-occurring nature. Therefore, at
the end of training we clean up the values (“stale” codewords)
that have not appeared for periods of time greater than some
predefined percentage of frames in the learning stage as not
belonging to the background. We keep in each codeword a
so-called “maximum negative run-length (MNRL)” which
is the longest interval during the period that the codeword
has not occurred. One additional benefit of this modeling
approach is that, given a significant learning period, it is not
essential that the frames be free of moving foreground object.
The background model can be learned on the fly and is help-
ful when tracking and model acquisition are done simulta-
neously.

As a further enhancement we eliminated the background
learning stage as such to enable our system to operate dyna-
mically. This was done by adding the age parameter to each
codeword as the count of all the frames in which the codeword
has appeared. Now, we can start background subtraction as
soon as the majority of the codewords contain “old-enough”
modalities by setting a threshold for age variable. Typically,
around 100 frames in our test sequences (see Sect. 4) were
enough for reliable detection of the foreground objects. This
improvement also allows us to perform the removal of “stale”
codewords periodically and not as a one-time event. To deter-
mine the “staleness” of a codeword we consider the ratio
between its MNRL and it overall age. We have found that
when employing “stale” pixel cleanup for heavily compres-
sed sequences the length of the codebook required to encap-
sulate the background complexity within one pixel is usually
under 20 codewords.

Additionally, we store the number of the last frame num-
ber flast in which the codeword was activated (i.e. it matched
a pixel). To make our model dynamic, we remove the code-
words that have not appeared for long periods of time, based
on their MNRL. Instances of such codewords are indicating
that the interior has changed, due to possibly a stationary
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object placed or removed from the scene, thus causing our
model to restructure dynamically.

Background modeling using a fixed acquisition stage is
dependent on approximated environment temperature and
thus has to start within the short time interval preceding
the tracking. Our enhanced adaptive background acquisition
method will sample every n-th frame and update the back-
ground model to reflect changing environment.

2.2 Probabilistic background segmentation

To perform background subtraction step for each color xC or
temperature xT pixel the distance to the closest color vC and
thermal codeword vT is computed correspondingly to get the
RG B and I R background map.

pC = 〈xC , vC 〉
|xC ||vC |

pT = min

(
1,

|xT − vT |
σT

) (1)

where σT is the normalizing constant for thermal mode. It
can be thought of as the maximum allowed deviation for the
temperature in each location. Parameter pC has a geometric
interpretation of a cosine between two corresponding color
vectors and therefore scales nicely from 0 to 1. One has to
take special care in choosing the parameter σt in order for
pT to scale properly with respect to pC .

Knowing for each pixel the pC and pT we combine them
into the aggregate probabilistic foreground map.

pBG = pC + pT

2
(2)

This fusion model allows to compensate for the instances
where one modality is performing poorly (see Fig. 6). For
example when there is a shadow from the cloud cover in
RGB mode, or there is a halo created by the heated surface
in the thermal mode.

2.3 Computing foreground mask

The probabilistic background map obtained in the previous
step is further thresholded to the binary background mask
pBG > T . The threshold T can be preset based on the
desired sensitivity or chosen adaptively with the assump-
tion of the known average percentage of foreground pixels
in the scene. For instance, we found for medium crowded
sequences shown in Fig. 7 initial value of T = 0.5 to be
optimal. Furthermore, we sampled the percentage of fore-
ground pixels every 15 frames. If this percentage fell below
0.5% we would increase the threshold by 0.05, if it went
above 2% we would correspondingly decrease the threshold
by 0.05.

The binary mask after background subtraction is filtered
with morphological operators (2 pixel erosion followed by
2 pixel dilation) to remove standalone noise pixels and to
bridge the small gaps that may exist in otherwise connected
blobs. This results in an array of blobs created where each
blob b is represented as an array of vertices bi , i = 1, . . . , n
in two-dimensional image space. The vertices describe the
contour of b in which each adjacent pair of vertices b j and
bi is connected by a straight line.

3 Tracking

We presume the projection matrix P3×4 of the camera and
coordinates of head candidates hxy within each blob bi detec-
ted in the scene are known as described in detail in [19].
These are essential parts of our system that make it possible
to convert from simple pixel motion in image plane to the tra-
cking of the pedestrians in a 3D scene. To back-project from
2D to 3D coordinates we assume that the bodies move along
the floor plane with the zero vertical coordinate (i.e. for each
head candidate hxy , there is a corresponding foot-candidate
fxy for which Z(hxy) = 0).

3.1 Bayesian model: observations and states

We formulate the tracking problem as the maximization of
posteriori probability of the Markov chain state. To imple-
ment Bayesian inference process efficiently we model our
system as a Markov chain M = {x, z, x0} and employ a
variant of Metropolis–Hastings particle filtering algorithm.
The choice of this particular approach can be justified whe-
never the number of system parameters to be optimized is
great and presents a large computational load for conven-
tional optimization techniques (see [10]). The state of the
system at each frame is an aggregate of the state of each
body xt = {B1, . . . , Bn}. Each body, in order, is parametri-
cally characterized as Bi = {x, y, h, w, c}, where x, y are
coordinates of the body on the floor map, h, w its width and
height measured in centimeters and c is a 2D color histo-
gram, represented as 32 × 32 bins in hue-saturation space.
The body is modeled by the ellipsoid with the axes h and
w. An additional implicit variable of the model state is the
number of tracked bodies n.

3.2 Computing posterior probability

The goal of our tracking system is to find the candidate state
x ′ (a set of bodies along with their parameters) which, given
the last known state x , will best fit the current observation
z. Therefore, at each frame we aim to maximize the poste-
rior probability P(x ′|z, x), which, according to the rules of
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Bayesian inference, and knowing that z and x are not
independent, can be formulated by Eq. 3.

P(x ′|z, x) = P(z|x ′, x) · P(x ′|x)/P(z|x) (3)

From Eq. (3) we formulate our goal as finding the candi-
date state x ′ resulting in a maximum a-posteriori probability:

x ′ = argmaxx ′(P(z|x ′, x) · P(x ′|x)/P(z|x))

= argmaxx ′(P(z|x ′, x) · P(x ′|x)) (4)

The right hand side of Eq. (4) is comprised of the obser-
vation likelihood and the state prior probability. The likeli-
hoods are computed jointly for all bodies present in the scene
as described below.

3.2.1 Priors

In creating a probabilistic model of a body we considered
two types of prior probabilities.

The first type of priors imposes physical constraints on the
body parameters. Human body width and height are weigh-
ted according to a normal truncated distributions as Pheight =
N (hµ, hσ 2) and Pwidth = N (wµ,wσ 2), with the correspon-
ding means and variances reflecting the dimensions of a nor-
mal human body, estimated over a number of independent
video tracking sequences. We truncated the distributions for
both height and width and the value of ±3σ to exclude phy-
siologically impossible body configurations. This results in
the body size prior:

Psize = Pheight · Pwidth (5)

The second type of priors reflects the dependency between
the candidate state at time t and the accepted state at time
t − 1. Firstly, the difference between body width and height
wt , ht andwt−1, ht−1 lowers the prior probability. As another
factor, we use the distance between proposed body position
post = (xt , yt ) and ˆpost−1 = (x̂t−1, ŷt−1)—the prediction
from the constant velocity Kalman filter. The state of Kalman
filter consists of the location of the body on the floor and
its velocity. Although tracking the head seems like a first
reasonable solution, we have established empirically that the
perceived human body height varies as a result of walking,
thus the position of the feet on the floor was chosen as a
more stable reference point. Furthermore, first order Kalman
filter was chosen as a MAP estimator under linear velocity
assumption, which, we have observed, holds in majority of
indoor/outdoor pedestrian motion patterns.

Ptemporal = P(wt |wt−1)P(ht |ht−1) ∗ P(post | ˆpost−1) (6)

When new body is created it does not have a correspondence,
we use a normally distributed prior N (d0, σ ), where d0 is
the location of the closest door (designated on the floor plan)
and σ is chosen empirically to account for image noise. The

same process is taking place when one of the existing bodies
is being deleted. In the outdoor sequences the doors can be
designated at the boundaries of the scene view.

Ptemporal = N (d0) (7)

The resulting prior probability of the state x ′ given pre-
vious state x is computed in Eq. 8.

P(x ′|x) =
∏

∀B∈x ′
Psize ∗ Ptemporal (8)

3.2.2 Likelihoods

The second component in forming proposal probability
relates the observation to the model state. First, for each exis-
ting body model the color histogram c is formed by the pro-
cess of weighted accumulation, with more recent realizations
of c given more weight. We then compute Bhattacharyya dis-
tance Bh between proposed c′

t and corresponding ct−1 as part
of the observation likelihood.

Pcolor = 1 − wcolor · Bh(c′
t , ct−1), (9)

where wcolor is an importance weight of the color matching,
experimentally set to 0.8 to accommodate for gradual changes
in the color representation of the object.

To guide the tracking process by the background map at
hand, we use two more components while computing model
likelihood: the amount of blob pixels not matching any body
pixels P+ and the amount of body pixels not matching blob
pixels P−. Note that we use a Z-buffer Z for these as well as
for computing the color histogram of the current observation
in order to detect occlusions. In this buffer all the body pixels
are marked according to their distance from the camera (i.e.
0 = background, 1 = furthermost body, 2 = next closest body,
etc.), which we obtain during the calibration process. This
way only visible pixels are considered when computing the
likelihood (see Fig. 4). The Z-buffer is updated after each
transition to reflect the new occlusion map.

In computing the likelihood as outlined above, there is one
major shortcoming overlooked in previous works [16,33]. If
the computation is done in terms of the amounts of image
pixels it causes the bodies closer to the camera influence

Fig. 4 Left Original frame with tracked pedestrians. Right Z-buffer
(lighter shades of gray are closer to the camera)
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the overall configuration much more, and the bodies further
away are being mostly neglected. This becomes particularly
evident when the camera covers a large area, where pedes-
trian image presentations can vary from under 20 pixels of
overall area in the back of the scene to more than 200 in front.
In addition, such neglect makes the system absolutely tied to
the current scene configuration and not portable to a different
camera model.

To avoid these shortcomings we have utilized a “distance
weight plane” D which is the image of the same dimensions
as the input frame and Dxy = |PXY Z , CXY Z |, where ||—is
the Euclidean distance, CXY Z —camera world coordinates
and PXY Z —world coordinates of the hypothetical point in
space located at a height z = hµ

2 and corresponding to the
image coordinates (x, y). To prevent noise in the areas with
large Dxy (i.e. areas near the horizon) from affecting the
tracking process we imposed an upper limit Dmax = 20 m.
The map produced in this manner is a rough assessment of
the actual size to image size ratio (see Fig. 5).

To summarize, the implementation of z-buffer and dis-
tance weight plane allows to compute multiple-body confi-
guration with one computationally efficient step. Let I be
the set of all the blob pixels and O the set of all the pixels
corresponding to the bodies currently modeled, then

P+ =
∑ (I − O

⋂
Z(Zxy>0)) · D

|I |
P− =

∑ (O
⋂

Z(Zxy>0) − I ) · D

|O|
(10)

where ‘
⋂

’ is set intersection, ‘·’ is element-wise multipli-
cation; ‘−’ is set difference and ‘||’ is set size (number of
pixels).

The resulting joint observation likelihood is computed in
Eq. 11 where w+ and w− are scalar weight to give more prio-
rity to either overcompensating blobs or overcompensating
bodies, with w+ + w− = 1.

P(z|x ′) = exp −(w+ ∗ P+ + w− ∗ P−) ·
∏

∀bodies

Pcolor

(11)

Fig. 5 Left Original frame with tracked pedestrians Right Distance
weight plane (weights increase from blue to red)

3.3 Jump-diffusion dynamics

Particle filtering approach can be considered as a type of
a non-deterministic multi-variate optimization method. As
such it inherits the problems to which other, classical opti-
mization methods can be prone [10]. Here we present a way
to overcome one such problem—traversing valleys in the
optimization space by utilizing task specific information. On
the other hand, particle filtering methods are robust because
they do not require any assumptions about the probability
distributions of the data.

Our joint distribution is not known explicitly, so we have
chosen to use Metropolis–Hastings sampling algorithm.

α(x, x ′) = min

(
1,

P(x ′)
P(xt )

· mt (x |x ′)
mt (x ′|x)

)
. (12)

where x ′ is the candidate state, P(x) is the stationary distri-
bution of our Markov chain, mt is the proposal distribution.
In Eq. (12), the first part is the likelihood ratio between the
proposed sample x ′ and the previous sample xt . The second
part is the ratio of the proposal density in both directions
(1 if the proposal density is symmetric).

This proposal density would generate samples centered
around the current state. We draw a new proposal state x ′
with probability mt (x ′|x) and then accept it with the proba-
bility α(x, x ′). Notice that the proposal distribution is a time
function, that is at each frame it will be formed based on the
rules outlined below.

To form the proposal distribution we have implemented
a number of reversible operators. After a number of such
operators (mutations) are applied to the current state of the
system, the resulting candidate state is accepted with the pro-
bability α(x, x ′). There are two types of jump transitions and
five types of diffuse transitions implemented in our system:

Adding a body To generate human hypotheses within a blob
detected in the scene we have used a principle similar to that
of the vertical projection histogram of the blob. Our method
utilizes information about the vanishing point location we
obtain from the camera during the calibration stage. The pro-
jection of the blob is done along the rays going through the
vanishing point instead of the parallel lines projecting onto
the horizontal axis of the image. Search for local maxima is
performed on the resulting histogram. A more detailed des-
cription of the “vanishing point projection histogram” can
be found in [21]. This transformation draws a random head
candidate and adds a new body using its head and foot coor-
dinates. At this point the actual height and floor coordinates
of the body are estimated.

Deleting a body A randomly selected body is removed from
the system and excluded from further tracking. As with the
creation of new bodies, door proximity is a factor. We have
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experimented with three types of modeling the doors, 2D
points on the floor; 2D polygon, representing the floor pro-
jection of the interior of the tracked part of the scene—the
proximity is computed then as the distance from the floor pro-
jection of the body to the closest edge; and a uniform model,
where every location is considered equally distant from the
hypothetical door. The last type of door model is useful in
dealing with videos in which pedestrians are already present
in the scene at the start of the tracking sequence.

Recovering a recently deleted body This step is similar to
the new body creation. The body id is taken from the list of
recently deleted bodies which were in some spatial proximity
to the newly created body. If a strong match is found with
respect to color descriptors we assign the id of the deleted
body to the new one. This step is essential to overcome short-
lived full occlusions and requires maintaining a history of
deleted objects to pool from.

Changing body dimensions Changes the height or width of a
random body probabilistically drawn from normal truncated
distribution. Dimensions are viewed as normally distributed
around mean human body height and width (set empirically
at 170 and 70 cm correspondingly) and truncated to zero at
the extremes (130–200 cm for body height and 50–90 cm for
body width).

Changing body position One out of two position changes
is applied at random. First type: move one of the existing
bodies by applying the mean-shift operator with weighted
anisotropic Gaussian kernel. The kernel is formed as a Gaus-
sian, elliptic mask, where the weights increase with increased
Mahalanobis distance. Additionally, if a pixel value of the
foreground mask (corresponding to the background) is zero
or the same pixel value from the Z-buffer is greater (i.e loca-
ted further from the camera) than the current body, the weight
in the kernel is effectively zeroed out. This, in essence, per-
forms a standard color-based mean shift, but accounts only
for the pixels belonging to the hypothesized body model.
Second type: move the body to a random “initial head can-
didate” in some proximity from the current body position. It
allows for the head candidates not initially revealed (possi-
bly due to image noise) to be considered in the subsequent
frames.

Notice that we use a set of controllable weight probabili-
ties to add more emphasis to one or another transition type. In
our application normally around 100 jump-diffuse iterations
are required for each frame to reach convergence.

4 Experimental results

For testing and validation purposes we used thermal and color
dataset from OTCBVS [7], with short outdoor pedestrian

sequences in two locations. Each scene is filmed both with
a RGB and thermal camera at the identical resolution, and
calibrated to provide an approximate pixel to pixel corres-
pondence between two types of sensors.

We assess the performance of color-thermal background
model and conclude that it significantly reduces and in most
cases fully eliminates two types of false foreground regions:
(1) shadows as the result of a moving cloud cover (2) shadows
cast by moving pedestrians (see Fig. 6).

We performed preliminary evaluation of our tracking sys-
tem for the presence of three major types of inconsistencies:
misses, false hits and identity switches. A miss is when the
body is not detected or detected but tracked for an insigni-
ficant portion of its path (<30%). A false hit is when a new
body is created where there is no actual person present. An
identity switch is when two or more bodies exchange their IDs
once within the close proximity from each other. By coun-
ting the number of each of types of errors on a number of
sequences of overall 6,000 frames we have obtained results
summarized in Table 1.

The most common mistakes made by the tracker were false
hits. We have observed that the majority of false hits (more
than 50%) are short lived, i.e. typically last for only several
frames. False hits are created when the system recognizes
a blob as containing more people than the actual number
present in the scene. This can be explained by the distortion
in shape of the blob due to pixel level noise.

Fig. 6 Original frame (row 1). Probabilistic heatmap of the foreground
(red representing higher probability) is shown using color channel only
(row 2), thermal channel only (row 3), and using a combined model
(row 4)
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Table 1 Tracking results based
on the manually observed
ground truth

+/ − f rames Percentage of
frame misses/false-hits out of all
sequence frames; +/ − ppl is
missed/false-hit pedestrians
a Two infants, below the tracked
height limit, not counted
b 2 pedestrian covered by trees
not counted

Sequence Frames People −ppl −Frames +ppl +Frames Identity switches

1 1,054 15 3 20 1 1 3

2 0601 8 0 0 3 2 4

3 1,700 16a 5 10 14 5 15

4 1,506 3b 0 0 0 0 1

5 2,031 2 0 0 0 0 2

6 1,652 4 0 0 0 0 1

ALL 8,544 48 8 5 3 1.3 4.3

% 100 100 16.6 N/A 6.2 N/A 8.9

Misses typically occurred due to partial or total occlusions
by the scene objects or due to the clothing color being too
close to the background. The first type of misses is usually
promptly recovered by the tracker, but if the recovery took
place in a different location, a new id is assigned, that way
resulting in a “switch”. For example in the first frame from
sequence one in Fig. 7, pedestrian with I D = 5 is missed for
a number of frames because of his color proximity to acquired
background and insufficient number of pixels to recover with
the help the color histogram.

Overall performance of the tracker shows space for impro-
vement, it produces satisfactory detection and prolonged tra-
cking in the crowded scenes (as shown in Fig. 7), although
the ratio of pedestrian id switches has to be reduced. As
it becomes apparent the complexity of the scene, i.e. the
number of pedestrians, decrease the performance of the
tracker.

5 Future work

One way to increase the accuracy of tracking is to enhance
binary foreground map to include probabilities of each pixel
belonging to foreground. Since this requires higher computa-
tional load, we intend to develop an efficient implementation
for this method.

We intend to investigate the application of temporal filte-
ring to remove insignificantly short paths. Sometimes, howe-
ver, false detections are accompanied by ID switches, when
the body tracked for a long time is substituted for a false hit.
This presents a more complicated case and deserves further
study.

As of now the tracked body is modeled by the verti-
cal spheroid. This, in itself is quite limiting when it comes
to modeling complex body transformations and interactions
between people and objects. With this in mind we plan to
extend the model to include a separate modality (parame-
trized by the size as well as the rotation angles) for each
prominent body part: torso, head, arms and legs.

Although we have provided some preliminary evaluation
of our tracking method which shows promising results, we

Fig. 7 Sample frames showing tracking in three sequences (each tra-
cked body is indicated by a green light ellipse with white tag above
showing a unique ID of a body; missed ID = 5 in sequence 1 is identi-
fied with a red arrow)

still plan to extensively validate the accuracy of our algorithm
using the manually marked ground truth dataset of more than
30,000 frames provided by CAVIAR project [2].

References

1. Bhanu, B., Han, J.: Kinematic-based human motion analysis in
infrared sequences. In: IEEE WS. on Applications of Computer
Vision, pp. 208–212 (2002)

2. CAVIAR: Ist 37540. Found at http://homepages.inf.ed.ac.uk/rbf/
CAVIAR/ (2001)

123

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/


Pedestrian tracking by fusion of thermal-visible surveillance videos

3. Collins, R., Lipton, A., Kanade, T.: Introduction to the special
section on video surveillance. IEEE Trans. Pattern Anal. Mach.
Intell. 22(8), 745–746 (2000)

4. Collins, R., Lipton, A., Kanade, T., Fujiyoshi, H., Duggins, D.,
Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O., Burt, P.,
Wixson, L.: A system for video surveillance and monitoring. Tech.
Rep. CMU-RI-TR-00-12. Carnegie Mellon University, Pittsburgh
(2000)

5. Connaire, C.O., O’Connor, N., Smeaton., A.F.: Thermo-visual
feature fusion for object tracking using multiple spatiogram
trackers. Mach. Vis. Appl., pp. 1–12 (2007). doi:10.1007/
s00138-007-0078-y

6. Dai, C., Zheng, Y., Li, X.: Layered representation for pedestrian
detection and tracking in infrared imagery. In: IEEE CVPR WS on
OTCBVS (2005)

7. Davis, J., Sharma, V.: Fusion-based background-subtraction using
contour saliency. In: IEEE International Workshop on Object
Tracking and Classification Beyond the Visible Spectrum, IEEE
OTCBVS WS Series Bench (2005)

8. Davis, J.W., Sharma, V.: Fusion-based background-subtraction
using contour saliency. In: IEEE CVPR WS on Object Tracking
and Classification Beyond the Visible Spectrum, pp. 19–26 (2005)

9. Deutscher, J., North, B., Bascle, B., Blake, A.b.: Tracking through
singularities and discontinuities by random sampling. In: Interna-
tional Conference on Computer Vision (1999)

10. Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo
Methods in Practice. Springer, Heidelberg (2001)

11. Elgammal, A., Davis, L.: Probabilistic framework for segmenting
people under occlusion. In: International Conference on Computer
Vision (2001)

12. Gavrila, D.: The visual analysis of human movement: A survey.
Comp. Vis. Image Understanding 73(1), 82–98 (1999)

13. Haritaoglu, I., Flickner, M.: Detection and tracking of shopping
groups in stores. In: International Conference on Computer Vision
and Pattern Recognition (2001)

14. Haritaoglu, I., Harwood, D., Davis, L.: W-4: Real-time surveillance
of people and their activities. IEEE Trans. Pattern Anal. Mach.
Intell. 22(8), 809–830 (2000)

15. Havasi, L., Sziranyi, T.: Motion tracking through grouped tran-
sient feature points. In: Advanced Concepts for Intelligent Vision
Systems (2004)

16. Isard, M., MacCormick, J.: Bramble: A bayesian multiple-blob
tracker. In: International Conference on Computer Vision (2001)

17. Kemp, C., Drummond, T.: Multi-modal tracking using texture
changes. In: British Machine Vision Conference (2004)

18. Kim, K., Chalidabhongse, T., Harwood, D., Davis, L.: Background
modeling and subtraction by codebook construction. In: Interna-
tional Conference on Image Processing (2004)

19. Leykin, A.: Visual human tracking and group activity analysis:
A video mining system for retail marketing. PhD Thesis, Indiana
University (2007)

20. Leykin, A., Hammoud, R.: Robust multi-pedestrian tracking in
thermal-visible surveillance videos. In: IEEE CVPR WS on Object
Tracking and Classification Beyond the Visible Spectrum, p. 136.
IEEE Computer Society, Los Alamitos (2006)

21. Leykin, A., Tuceryan, M.: A vision system for automated customer
tracking for marketing analysis: Low level feature extraction. In:
Human Activity Recognition and Modelling Workshop (2005)

22. Maybank, S., Tan, T.: Introduction to special section on visual
surveillance. Int. J. Comp. Vis. 37(2), 173–173 (2000)

23. Mittal, A., Davis, L.: M2tracker: A multi-view approach to seg-
menting and tracking people in a cluttered scene using region-based
stereo. In: European Conference on Computer Vision (2002)

24. Morris, D., Rehg, J.: Singularity analysis for articulated object tra-
cking. In: International Conference on Computer Vision and Pat-
tern Recognition (1998)

25. Nanda, H., Davis, L.: Probabilistic template based pedestrian detec-
tion in infrared videos. In: IEEE Intell. Vehicles Symp. (2002)

26. Oliver, N., Rosario, B., Pentland, A.: A bayesian computer vision
system for modeling human interactions. IEEE Trans. Pattern Anal.
Mach. Intell. 22(8), 831–843 (2000)

27. Owechko, Y., Medasani, S., Srinivasa, N.: Classifier swarms for
human detection in infrared imagery. In: IEEE CVPR WS on Object
Tracking and Classification Beyond the Visible Spectrum (2004)

28. Rana, Y., Weiss, I., Zheng, Q., Davis, L.S.: Pedestrian detection via
periodic motion analysis. Int. J. Comp. Vis. 71(2), 143–160 (2007)

29. Rittscher, J., Tu, P., Krahnstoever, N.: Simultaneous estimation of
segmentation and shape. In: International Conference on Computer
Vision and Pattern Recognition, vol. II, pp. 486–493 (2005)

30. Sminchisescu, C., Triggs, B.: Kinematic jump processes for mono-
cular 3d human tracking. In: International Conference on Computer
Vision and Pattern Recognition (2003)

31. Xu, F., Fujimura, K.: Pedestrian detection and tracking with night
vision. In: IEEE Intell. Vehicles Symp. (2002)

32. Yasuno, M., Yasuda, N., Aoki, M.: Pedestrian detection and tra-
cking in far infrared images. In: IEEE CVPR WS on Object Tra-
cking and Classification Beyond the Visible Spectrum (2004)

33. Zhao, T., Nevatia, R.: Tracking multiple humans in crowded envi-
ronment. In: International Conference on Computer Vision and
Pattern Recognition (2004)

123

http://dx.doi.org/10.1007/s00138-007-0078-y
http://dx.doi.org/10.1007/s00138-007-0078-y

	Pedestrian tracking by fusion of thermal-visiblesurveillance videos
	Abstract
	1 Introduction
	2 Background model
	2.1 Acquiring multi-modal pixel representation
	2.2 Probabilistic background segmentation
	2.3 Computing foreground mask

	3 Tracking
	3.1 Bayesian model: observations and states
	3.2 Computing posterior probability
	3.3 Jump-diffusion dynamics

	4 Experimental results
	5 Future work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


