
An object-oriented approach to GI web service composition

C. Granell, J.F. Ramos

Department of Information Systems

Universitat Jaume I

E-12071 Castellón, Spain

{canut, jromero}@uji.es

Abstract

In this paper we describe a novel approach to the

incremental, semi-automated method for composition

of web services in a geographical domain. First, we

present the incremental component concept as a

component that comprises both atomic and composite

services under the same conceptual entity. Based on

this concept, we describe an incremental methodology

for composition by means of incremental component

reuse. In addition, we present a prototype system in

which this method is being tested in an emergency

management scenario as part of the ACE-GIS project.

1. Introduction

The web services paradigm was designed to offer

interoperability among diverse and heterogeneous

applications [6]. The basic web specifications such as

UDDI, WSDL and SOAP allow that services interfaces

are described in a standard and uniform manner. A

simple or atomic service is an Internet-based software

component that does not rely on other web services to

fulfill user requests [12]. A wind information service, a

Web Map Service (WMS) or Web Feature Service

(WFS) can be considered atomic web services. In

contrast to atomic services are complex services,

which are built by combining existing atomic or

complex services working together to offer a value-

added service. For example, as part of the pilot

application in the ACE-GIS European project

(www.acegis.net), an emergency complex service can

be developed by composing several atomic services

(see section 4). In this paper, we denote an atomic

service as a single service and a composite service as a

service that employs other services. The services

included in a composite service are its contained

services.

Due to their platform and language-neutral nature,

web services provide the ability to chain other web

services in order to offer value-added functionalities

that are then invoked using web technologies [5].

However, to enable creation of a value-added

composite service, it is necessary to provide a certain

level of interoperability among contained services. In

the geographic domain, Open GIS Consortium (OGC)

has launched recently the Open Web Services initiative

phase 2 (OWS-2) to address interoperability

requirements and to enhance standards that enable

discovery, access and use of geographic data and

geoprocessing services [13]. In this paper we discuss a

novel approach for ensuring the functionality of each

contained service, in order to go beyond one-to-one

conformance to a standard, toward true interoperability

among diverse web services. We show an approach for

composing web services in the geographical domain,

based on incremental component concept and object-

oriented aspects, and present the first steps toward

composition and invocation of diverse OGC services

in an emergency scenario.

2. Web service as incremental component

Currently, compositional languages for web

services are process-oriented in the sense that they

attempt to define an entire workflow graph consisting

of several services and their connectivity. This

approximation lacks certain benefits of the object-

oriented perspective, such as encapsulation, reuse, or

scalability. For example, suppose a composite service

that comprises several atomic services. In the case that

we desire to reuse only a part of the composition, we

need to create a new composition (and the associated

workflow script) according to these new requirements.

In BPEL [3], there is no possibility of reusing

contained processes because those do not own

associated WSDL descriptions.

To enable an object-oriented perspective for service

composition, we need to redefine the concept of web

service taking into account the object-oriented

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

Figure 1. Incremental component interfaces.

Figure 2. Connection flow example.

characteristics aforementioned. Therefore, we describe

the incremental component concept, similar to the

traditional component software concept [14], which

exposes service interface descriptions together with

associated business logic as a single conceptual entity

with which to interact. This component can be

combined, searched, invoked or used as any normal

web service. Analyzing this definition, the component

concept provides interesting benefits [14]. First, it is an

independent unit since encapsulates its constituent

features and behavior from others components.

Second, independence implies that these component

are reusable, that is, can be composed in other

compositions providing high level scalability. Finally,

an incremental component has no persistent state

because it is just a declarative description. The

qualifier incremental taken here refers to the

incremental methodology for service composition (see

section 3).

In order to provide this duality, the incremental

component provides two functional interfaces (see

Figure 1). On one hand, the incremental component

contains an abstract service interface that exposes

publicly the service behavior. This public interface is

described in WSDL, thus it (incremental component)

can be treated as a standard web service by other

applications or web clients. On the other hand, the

incremental component also presents a private

interface (dotted box) that specifies the underlying

business logic of the composition, in which are

described a list of contained services, their

orchestration (execution order of contained services),

and the connection flow established for the data

dependences between these contained services. In

other current proposals, such as the BPEL composition

language, the service interface descriptions and

associated orchestration are held separately. However,

in the incremental component, both service interface

description and associated orchestration are

encapsulated together forming a unique entity.

According to our model, all composite services are

incremental components, such that these terms are

interchangeable. In addition, atomic services can be

considered incremental components without private

interface.

Incremental component

WSDL abstract descriptions

Composition pattern

Connection flow

Web Client &

Apps

WSDL

Interface

The public interface provides abstract WSDL

definitions of the composite service itself, without

details of concrete implementation: things such as

access protocols or location points. In particular,

messages, operations, portTypes and, if necessary,

types and schemas are described in this interface. Note

that the WSDL interfaces of the contained services are

not specified in the composite service, providing a

high degree of encapsulation. The optional section of

types and schemas defines the XML schema used by

the composite service. We provide reuse and extension

of existing schema defined in the contained services.

In this sense, input and output XML schemas of the

composite service are created from any contained

service schema, if necessary. For example, suppose

that a complex type declaration called Point exists in a

Get Nearest Airport Info service (see Figure 2). If the

Point declaration is included necessarily in the Get

Wind Info By Coordinates service, its XML schema

declaration is kept in the composite service named by

its fully qualified name, avoiding collisions between

type declarations with the same name yet disparate

contents. At this moment, semantic aspects related to

the schemas reuse are not considered.

Get Wind Info By Coordinates service

Composition pattern: serial

Point

mapping

SRS

Airport code

mapping

Weather

info

mapping

Get Nearest

Airport Info

service
Global

Weather

service

In the private interface, encoded declaratively in an

XML WSDL extension, are specified the business

logic in order to define the interactions between the

contained services comprising the composition pattern

and the connection flow descriptions. On one hand, the

composition pattern description indicates the contained

services orchestration, whether they are invoked in a

serial or parallel manner. In addition, it also includes a

list of contained services. On the other hand, the

connection flow description is charged with

establishing data flow between the contained services

themselves as well as data dependences between the

composite service and the contained services. Figure 2

illustrates the four kinds of mapping mechanisms

defined in the connection flow section. The input

mappings connect the input parameters of the

composite services with the input parameters of its

contained services. In contrast to input mappings, the

output mappings connect the output parameters of the

contained services to output parameters of the

composite service. The data mappings between

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

contained services are piped by internal mappings.

Finally, a special case of internal mappings are

constant mappings in which a simple constant value is

assigned at design time to an input parameter

belonging to both the composite service and the

contained services. For instance, the SRS parameter

used in the Point type is specified as a constant value

and it is not visible from input message of the Get

Wind Info By Coordinates service. In the three first

mappings, messages among services are mapped by

means of XPath [7] queries.

To increase the interoperability between services,

we define the concept of incremental component. Its

public interface provides a WSDL interface, while the

private interface gives enough clues to construct a

composite service in terms of the contained services.

This high-level view of a service allows the

encapsulation of the underlying service complexity and

reduces the entire graph complexity since dependences

between services are also reduced. In addition, there is

no need for a workflow script as in other proposals,

since the incremental component together with the

incremental composition process (see next section)

provides a straightforward means for reusing

compositions in future compositions.

3. Composition of incremental components

The composition model presented here provides an

incremental methodology for web services

composition, which is centered around descriptive

aspects, on interoperability and on scalability. This

model, using the incremental component concept

defined previously, provides a high-level approach for

describing interactions between web services, taking

into account an object-oriented perspective (in contrast

to process-oriented approach) which provides

encapsulation, reuse and scalability characteristics.

According to the conceptual architecture that supports

the incremental composition model [10], we establish

two functional views of the system – composition and

invocation view – in order to achieve the composition

and invocation of services.

The composition process is responsible for creating

the desired composition in terms of incremental

components. The outcome of this process is the

composite service seen as a logical composition graph

given the user requirements. The main principle

consists of decomposing complex compositions into

basic patterns [1] of pairs of incremental components.

In this manner the desired composition is constructed

in multiple iterations of composing two at a time.

While most current composition languages allow

construction of several services simultaneously [2], in

our geographic service context – indeed, in many use

cases – it is not realistic that a user would combine

many WMS at the same time. Therefore, in principle,

we prefer a simple and consistent manner to create

compositions instead of increasing the cardinality of

services composition during a single graph definition.

In this sense, the incremental approach taken here is

more cautious because the developer moves ahead pair

by pair, in an incremental mode, assuring herself along

the way that the composition is functional at each step

before moving ahead. For example, figure 2 depicts a

couple of atomic web services: Get Nearest Airport Info

and Global Weather. Our goal is to obtain a composite

service called Get Wind Info By Coordinates from the

serial composition of these atomic web services. A

user specifies the private interface provided by the

composite service while the public interface is

automatically generated. In this case, serial is assigned

to composition pattern and diverse data mappings are

established for the messages involved in linking this

pair of services aligning with user requirements. The

process continues forming new composite services

from other atomic or composite services. Finally, the

resulting composition is actually a composition graph,

as logical relations between services, which is defined

implicitly by the very structure of the composition.

Therefore, the private interface provides a means for

reusing and composing services in a controllable and

consistent manner.

Once the composition is created, the invocation

process is charged with analyzing the private interface

of the composite service to encode the logical

composition graph as a tree structure ready for

execution. This graph may be thought of as a tree

structure, whose leaf nodes are linked to atomic

services, and whose internal nodes represent virtual

intermediate compositions, and where the root node

represents and encapsulates the entire composition.

Compositions are virtual in the sense that each one

functions independently, without the need to know that

it is being used by other services. In addition, each

internal node (or composition) does not exist

physically as an atomic service since these

compositions only contain abstract descriptions (public

interface). For this reason, a composite service can be

considered as a logical or virtual service.

The algorithm for tree traversal has been developed

on the basis of the depth-first search, in which

extremes (leaf nodes) are searched first, while paying

attention to the composition pattern description. The

composition pattern (serial, parallel) dictates how to

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

Figure 3. Components of the incremental composition in the emergency scenario.

traverse the tree invoking directly the atomic web

services found and, chaining the results obtained

according to the connection flow description defined in

the private interface of each composite service visited.

Common with other proposals for compositional

languages is that invocation through the incremental

composition model achieves a dynamic binding with

concrete web service instances at execution time. The

access mechanism to a service is not known until the

moment of invocation. In this way, the composition

using the abstract interfaces provides maximum

flexibility compared to binding at design time.

4. Emergency use case

In this section we present an emergency pilot as use

case to investigate the interoperability among diverse

and more complex web services, and to test both the

incremental component concept and the incremental

model presented here. This use case is one of the pilot

applications proposed in the ACE-GIS project. The

emergency pilot [11] deals with accidents involving

toxic gas releases from a chemical plant located at an

arbitrary location.

The proposed architecture is shown in Figure 3. The

Registry contains both atomic service and composite

service descriptions according to WSDL. The

Composition Handler and the Description Handler

form the core of the composition process, and they

build the logical composition graph as a logical

sequence of services that represent the final

composition. For instance, C1 service represents the

serial sequence of Get Plant Location and Get Nearest

Airport; in turn C2 is forming by C1 and Global

Weather service. The process continues until we obtain

the emergency service (C4). Note that C1 to C4 are

incremental components, so C2 can only access to the

public interface of C1 service, encapsulating the C1

service complexity. In fact, the dependences between

the contained services are drastically reduced due to

the public and private interfaces defined in the

incremental component.

C4

C3

C2
C1

C4

C2 C1

Get Gas
Disp.

Map Get Gas
Disp.

Plume

Get Plant

Location

Get
Nearest

Airport

Global

Weather

WFSWMS
Apps

wrappers

WSDL/SOAP interface

logical graph tree
C3

Components of the Incremental Architecture

Web

Client

Invocation
Handler

Registry

explore

retrieve

compose
find

analyse

WSDL interface

publish

WSDL interface

Composition
Handler

Interpreter
Handler

Browser

Register Description
Handler

Searcher

In the invocation process composite services are

selected and invoked. The Interpreter Handler

analyses the selected composite service. This module is

charged with generating the tree structure from the

logical composition graph. This virtual graph is

encoded by the inherent structure of the composition,

that is, the tree structure is generated by interpreting

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

the private interface of each composite service

involved in the composition. Finally, the Invocation

Handler traverses it in order to execute the entire

composition.

5. Conclusions and future work

We have presented a novel approach for

composition and invocation of web services within the

context of the ACE-GIS project, on-going research on

geographic web services interoperability. This

approach is aimed at becoming a first step in resolving

some of the key interoperability problems among GI

services.

First, in order to introduce the object-oriented

perspective in service compositions, we presented the

concept of incremental component, which comprises

the idea of atomic and composite service under the

same entity. In addition, service interfaces and their

associated business logic are also encapsulated,

forming a unique conceptual entity. As a distinct

benefit over known composition languages, this

approach does not define a language or a small set of

well-known compositional languages. Just as the

web’s success can be attributed to its simplicity [8], we

propose a process in which services are composed in

an incremental and controllable manner, avoiding the

need for a compositional or flow language to describe

complex graphs of multiple service interactions, based

only on appropriate composition patterns definition.

This incremental composition is specified declaratively

in XML WSDL extensions, as an aggregation of public

interfaces, that is, the external behavior of the

contained services as well as the private interfaces

containing the composition pattern and connection

flow. Future work will include the dissemination of the

incremental model components under a open software

license and the presentation of the WSDL extensions

(private interface) of the component service to relevant

standards bodies, beginning with OGC and OASIS, in

order to improve its general acceptance and use.

Thus far we have developed a prototype capable of

guiding the user in the creation of compositions

formed by an arbitrary number of existing web

services. In addition, this prototype is also capable of

dealing with any XML-Schema’s user-defined data

type interchanged between services, by means of data

mappings, such as in the use case of the emergency

scenario.

Future work concentrates on assuring that the

resulting service composition is somewhat fault

tolerant with regard to service availability and quality

of service. In this line, we are investigating new

composition patterns [1] in order to support dynamic

composition and service changes in the composition at

execution time [4, 9], so that the composition will be

able to detect service faults and replace faulty services

with substitutes meeting user requirements.

6. Acknowledgements

The work described here has been supported in part by

European Union project IST-2001-37724 (ACE-GIS)

and by Spain Ministry of Science and Technology

grant TIC-2000-1568-C3. Feedback from ACE-GIS

project partners has been especially helpful.

References

[1] W.M.P van der Aaslt et al.. “Workflow Patterns”.

Distributed and Parallel Databases, 14(1):5-51, 2003.

[2] A. Aissi, P. Malu, and K. Srinivasan, “E-business process

modeling; The Next Big Step”, IEEE Computer, 35(5):55-

62, 2002.

[3] T. Andrews et al. (eds.). Business Process Execution

Language for Web Services Version 1.1. May 2003.

http://www.ibm.com/developerworks/library/ws-bpel/.

[4] M.S. Akram, B. Medjahed, and A. Bouguettaya.

“Supporting Dynamic Changes in Web Service

Environments”, In Proc. of First ICSOC. Springer-Verlag,

pages 319-334, Trento, Italy, 2003.

[5] N. Alameh, “Chaining geographic information web

services”, IEEE Internet Computing, 7(5):22-29, 2003.

[6] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web

Services: Concepts, Architectures and Applications, Berlin,

Springer-Verlag, 2003.

[7] J. Clark and S. DeRose, XML Path Language (XPath)

Version 1.0. http://www.w3.org/TR/xpath/, 1999.

[8] N.J. Davies, D. Fensel, and M. Richardson. The Future of

Web Services. EBT Technology Journal, 22(1):118-130,

2004.

[9] S. Ghandeharizadeh et al., “Proteus: A System for

Dynamically Composing and Intelligently Executing Web

Services”. In Proc. of the First Intl. Conference on Web

Services, Las Vegas, Nevada, June 2003.

[10] C. Granell, J. Poveda, and M. Gould. “Incremental

Weak Composition and Invocation of Geographic Web

Services”. In Proc. of the 2nd Intl. Workshop on Semantic

Processing of Spatial Data, pages 179-187, Mexico, 2003.

[11] C. Granell, J. Poveda, and M. Gould. “Incremental

Composition of Geographic Web Services: An Emergency

Management Context”. In Proc. of the 7th Conference on

Geographic Information Science, pages 343-348, 2004.

[12] B. Medjahed et al. “Business-to-business interactions:

issues and enabling technologies”. The VLDB Journal,

12(1):59-85, 2003.

[13] OGC, OGC Web Service Phase 2 (OWS-2).

http://www.opengis.org/initiatives/?iid=7, 2004.

[14] C. Szyperski. Component Software. Beyond Object-

Oriented Programming. New York, Addison-Wesley, 1999.

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

