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Abstract

In this paper, we present a patch-based regression frame-
work for addressing the human age and head pose estima-
tion problems. Firstly, each image is encoded as an en-
semble of orderless coordinate patches, the global distri-
bution of which is described by Gaussian Mixture Models
(GMM), and then each image is further expressed as a spe-
cific distribution model by Maximum a Posteriori adapta-
tion from the global GMM. Then the patch-kernel is de-
signed for characterizing the Kullback-Leibler divergence
between the derived models for any two images, and its dis-
criminating power is further enhanced by a weak learning
process, called inter-modality similarity synchronization.
Finally, kernel regression is employed for ultimate human
age or head pose estimation. These three stages are com-
plementary to each other, and jointly minimize the regres-
sion error. The effectiveness of this regression framework is
validated by three experiments: 1) on the YAMAHA aging
database, our solution brings a more than 50% reduction
in age estimation error compared with the best reported re-
sults; 2) on the FG-NET aging database, our solution based
on raw image features performs even better than the state-
of-the-art algorithms which require fine face alignment for
extracting warped appearance features; and 3) on the CHIL
head pose database, our solution significantly outperforms
the best one reported in the CLEAR07 evaluation.

1. Introduction
A face image may encode many human characteristics,

e.g., identity, expression, gender, ethnicity, age, and pose.

Age and pose information are useful in many applications,

but are less well-studied than the other identifiable charac-

teristics of an image, perhaps because both age and pose are

best represented as continuous rather than discrete hidden

variables [7] [8] [12]. Human age estimation can provide

useful information for electronic consumer relations man-

agement and demographic data collection, and head pose

estimation has broad applications including gaze detection,

driving safety, and auto-mouse on large screens. Moreover,

currently the main challenges for practical face recognition

systems come from human age and head pose variations.

Geng et al. [6] [5] proposed to conduct age estimation

by modeling the statistical properties of the aging pattern,

namely a sequence of personal facial age images, based on

the assumption that multiple images of different ages are

available for each person. Recently, Yan et al. [19] pro-

posed an algorithm based on semi-definite programming for

age estimation, with allowance made for uncertainty in the

reference age labels. The pose estimation problem has also

attracted much attention [3] [12] [13] in recent years owing

to its great potential in practical systems.

Most previous algorithms for these two tasks are based

on holistic image features, but holistic features are sensi-

tive to illumination variations and image occlusions. Lucey

et al. [9] demonstrated that face verification may benefit

from the free-patch based representation, which has the po-

tential to overcome these issues. The human age and head

pose problems are, however, beyond the solution from [9]

for two reasons. First, the free-patch representation dis-

cards the coordinate information, which has been proven to

be necessary for accurate pose estimation [4]. Second, the

algorithm in [9] is limited in addressing classification prob-

lems rather than regression problems, and its discriminating

power may be greatly degraded if large within-class varia-

tions exist. Thus, it is desirable to have a discriminative and

robust patch-based framework for general visual regression

tasks.

In this work, we present a general patch-based frame-

work for addressing visual regression problems, e.g., hu-

man age estimation and head pose estimation. First, each

image is encoded as an ensemble of overlapped coordi-

nate patches, each of which integrates coordinate informa-

tion together with the features extracted by the 2D dis-

crete cosine transform. The global distribution of these

patches is modeled by a Gaussian Mixture Model (GMM).

Then, the patch-kernel for measuring image similarity is de-

rived by representing each image as a patch distribution,

which is adapted from the global GMM using Maximum a
Posteriori adaptation. To further enhance the discriminat-

ing power of patch-kernel, a weak learning process, called
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Figure 1. An illustration of the three image representations: a) holistic image, where an appearance feature is assigned for each fixed

coordinate; b) coordinate patches, where certain appearance features may appear in a flexible area, and the attached ball for each local

patch means that the coordinate of the patch is changeable; and c) free patches, where coordinate information is discarded entirely [9].

Inter-Modality Similarity Synchronization, is proposed by

removing the kernel components with high-variability for

data with similar labels. Finally, the kernel regression pa-

rameters are learned by a Least Squares Error approach

based on the enhanced patch-kernel and a set of reference

images or image sets.

2. Image as Ensemble of Coordinate Patches
In this work, we address the human pose and age estima-

tion problems. The image set for model training is denoted

as a matrix X = [x1, x2, . . . , xN ], xi ∈ R
m, where N is the

image number and m is the dimension of each feature vec-

tor. The human age or head pose label for an image xi is de-

noted as li, where li ∈ R. The task is to predict the human

age or head pose of any new image x based on the knowl-

edge from the training images X and their labels. The label

li can represent continuous (real) values, and thus the hu-

man age and head pose estimation problems are essentially

regression problems rather than classification problems.

Inspired by the recent progress [14] [1] in speech/speaker

recognition research, we present a novel framework for

visual regression tasks. The whole framework consists

of three components, namely, coordinate patch based im-

age representation, patch-kernel design and enhancement

by inter-modality similarity synchronization, and kernel re-

gression. We shall introduce the image as an ensemble of

coordinate patches in this section, and the latter two com-

ponents are introduced in the next section.

2.1. Coordinate Patches

Most previous algorithms for human age and head pose

estimation are based on holistic image features, and hence

are sensitive to illumination variations and image occlu-

sions. In contrast to a holistic image representation, a patch-

based image representation has the potential to overcome

these limitations [9] [10].

In this work, we introduce a local descriptor for im-

age representation called the coordinate patch. Lucey et

al. [9] proposed to encode each image as an ensemble of

free patches, containing no information about patch coor-

dinates. Unlike free patches, coordinate patches integrate

both appearance information and coordinate information, in

order to provide a local representation that is informative

about the holistic structure of the image. For example, the

combination mode of appearance and coordinate informa-

tion within one coordinate patch can provide useful infor-

mation for pose estimation and expression recognition. For

a position within the image plane, denoted as q = (qx, qy)T ,

its corresponding coordinate patch for a given image xi is

defined as

Q(xi, q) =
[

R(xi, q)
q

]
, (1)

where R(xi, q) denotes the feature vector extracted from the

image xi within the rectangle centered at the position q. In

this work, to compute R(xi, q), we first remove the mean of

the intensity values within the rectangle, then normalize the

intensities to unit variance, and finally use the 2D discrete

cosine transform to extract the final feature vector R(xi, q).
Thus the coordinate patch is relatively robust to illumination

variations.

Discussion: What are the advantages of encoding an
image as an ensemble of coordinate patches for human
age and head pose estimation? Age information is often

embodied by local information, e.g., wrinkles around the

eye corners. The positions of these informative areas are

transformable due to the shape differences among differ-

ent subjects, but they are not totally unconstrained. The

proposed coordinate patch naturally has the potential to

model the phenomena that patches with a certain character-

istic (wrinkle-like) appear in certain geometric regions. On

the other hand, for the head position estimation task, dif-

ferent combinations of local appearance information (nose-

tip) and coordinate information can indicate head pose. Al-

though free-patch does not have the above advantages, the

coordinate patch inherits its merits in terms of robustness to

image occlusions as validated in the experiment section.



2.2. Coordinate Patch Distribution Model

A coordinate patch describes the correlation existing be-

tween the local appearance information and coordinate in-

formation. Modeling the distribution of coordinate patches

is equivalent to modeling the possible modes of dependency

between these two modalities of information. Due to the

large variations of these modes, we model the distribution

of coordinate patches from each image using a Gaussian

Mixture Model (GMM), because the GMM can approxi-

mate any distribution when the number of Gaussian com-

ponents is sufficient. However, the number of coordinate

patches from one image is small and insufficient for ro-

bustly estimating a GMM of moderate scale. Therefore, we

first estimate a global GMM which does not consider the

human age or head pose information and is derived based

on coordinate patches from all training images. It is sim-

ilar to the so-called Universal Background Model (UBM)

in speech/speaker verification [14]. Then the distribution of

the coordinate patches belonging to one image is adapted

from the global GMM by Maximum a Posteriori (MAP)

[16]. The philosophy of unsupervised global model fol-

lowed by MAP adaptation with a small number of labeled

examples can effectively overcome the small sample size

issue suffered in conventional learning processes.

For ease of presentation, here we denote z as the com-

bined local appearance information and coordinate informa-

tion of a coordinate patch, namely, z = Q(xi, q). Then, the

distribution of the variable z is

p(z; Θ) =
K∑

k=1

wkN (z;µk, Σk), (2)

where wk, µk and Σk are the weight, mean and covariance

matrix of the kth Gaussian component, respectively, and K
is the total number of Gaussian components.

The density is a weighted linear combination of K uni-

modal Gaussian densities, namely,

N (z;µk, Σk) =
1

(2π)
d
2 |Σk| 12

e−
1
2 (z−µk)T Σ−1

k (z−µk). (3)

Many approaches can be proposed to estimate the model pa-

rameters. Here we obtain a maximum likelihood parameter

set using the Expectation-Maximization (EM) algorithm.

For computational efficiency, the covariance matrices are

restricted to be diagonal [1] as conventionally.

2.3. Image-Specific Model via MAP

We derive the image-specific coordinate-patch distribu-

tion model by adapting the mean vectors of the global

GMM and retaining the mixture weights and covariance

matrices.

Mean vectors are adapted using MAP adaptation [16]

with conjugate priors [16], thus the parameters µ̂k are se-

lected to maximize

ln p(θ̂, Z) =
K∑

k=1

lnN (µ̂k;µk,Σk/r)

+
H∑

i=1

ln
K∑

k=1

wkN (zi; µ̂k,Σk), (4)

where θ̂ = {µ̂1, . . . , µ̂K} is the set of image-dependent

parameters, θ = {w1, µ1,Σ1, . . .} are the parameters of

the universal background model, and Z = {z1, . . . , zH}
are the patches of the image being modeled. As shown,

the conjugate prior for parameter µ̂k is itself Gaussian

(N (µ̂k;µk,Σk/r)), with a covariance matrix shrunk by

smoothing parameter r. The joint distribution function

p(θ̂, Z) has the same form as the likelihood function

p(Z|θ̂), and may therefore be maximized in the same way

as a likelihood function, i.e., using EM with the hidden vari-

able Pr(k|zi) as the posterior probability of Gaussian com-

ponent k given patch zi [16].

So in the E-step, we compute the posterior probability:

Pr(k|zi) =
wkN (zi;µk,Σk)∑M
j=1 wjN (zi;µj , Σj)

, (5)

nk =
H∑

i=1

Pr(k|zi), (6)

and then the M-step updates the mean vectors, namely

Ek(Z) =
1
nk

H∑
i=1

Pr(k|zi)zi, (7)

µ̂k = αkEk(z) + (1 − αk)µk, (8)

where αk = nk/(nk +r). MAP adaptation using conjugate

priors is useful because it interpolates, smoothly, between

the hyper-parameters µk and the maximum likelihood pa-

rameters Ek(Z). If a Gaussian component has a high prob-

abilistic count, nk, then αk approaches 1 and the adapted

parameters emphasize the new sufficient statistics; other-

wise, the adapted parameters are determined by the global

model. In this work, r is adjusted, empirically, depending

on the total number of coordinate patches for each image.

3. Regression from Patch-Kernel
In this section, the derived GMM-based coordinate patch

distribution for each image is used to construct the patch-

kernel for measuring image similarity. Then, discriminating

power is this kernel is further enhanced by discarding the

kernel components with high-variability for data with simi-

lar labels, and consequently the similarity within the feature



space characterized by patch-kernel will be better “synchro-

nized” with the similarity between the target labels; we call

this method Inter-Modality Similarity Synchronization. Fi-

nally, the resulting similarity-synchronized patch-kernel is

used for kernel regression to predict the target age or pose

labels.

3.1. Patch-kernel: Image as a Distribution

Suppose we have two face images xa and xb, with the

coordinate patch sets Za and Zb respectively. Then, from

the GMM adaptation process in (5-8), we can obtain two

adapted GMMs for them, denoted as ga and gb. Conse-

quently, each face image is represented by a specific GMM

distribution model, and a natural similarity measure be-

tween them is the Kullback-Leibler divergence,

D(ga||gb) =
∫

ga(z)log
(

ga(z)
gb(z)

)
dz. (9)

The Kullback-Leibler divergence itself does not satisfy

the conditions for a kernel function, but there exists an up-

per bound from the log-sum inequality,

D(ga||gb) ≤
K∑

k=1

wkD(N (z; µa
k,Σk)||N (z;µb

k,Σk)),

where µa
k denotes the adapted mean of the kth component

from image xa, and likewise for µb
k. Based on the assump-

tion that the covariance matrices are unchanged during the

MAP adaptation process, the right side of the above in-

equality is equal to

d(xa, xb) =
1
2

K∑
k=1

wk(µa
k − µb

k)T Σ−1
k (µa

k − µb
k). (10)

It is easy to prove that d(xa, xb) is a metric function, and

therefore we can define the following kernel function

k(xa, xb) = e−d(xa,xb)/δ2
1 , (11)

where δ1 is a constant for controlling the final similarity.

k(xa, xb) can be considered as a conventional Gaussian ker-

nel defined on the so-called supervector,

φ(xa) = [
√

w1

2
Σ− 1

2
1 µa

1 ; · · · ;
√

wK

2
Σ− 1

2
K µa

K ], (12)

and then d(xa, xb) = ‖φ(xa) − φ(xb)‖2. This kernel func-

tion is derived by encoding each image as an ensemble of

coordinate patches, and is hence called a patch-kernel in

this work. Note that here we can also use image-specific

weight wa
i for φ(xa) calculation, where wa

i is adapted from

wi by MAP [14].

3.2. Synchronize Inter-Modality Similarity

The patch-kernel is derived from the generative GMM

and does not consider inter-class or intra-class relationships;

hence it does not necessarily provide good discriminating

power. More specifically, the supervector φ(xa) is com-

puted directly from the image xa by adapting the global

GMM, and hence is not ensured to be close to the super-

vectors computed from images with similar ages or poses.

In this subsection, we present a weak learning pro-

cess for enhancing the kernel discriminating power. More

specifically, we want the patch-kernel computed using a pair

of images with similar ages or poses to have a large value,

while the patch-kernel computed using images with greatly

different ages or poses should have a small value. In this

way the similarities measured in the feature modality and

label modality are synchronized, hence we call this pro-

cess Inter-Modality Similarity Synchronization. A natural

way to achieve this goal is to remove any patch-kernel com-

ponents in which supervectors corresponding to similar la-

bels (similar ages or similar poses) are spread out over a

wide range of values (high-variability). These directions

are assumed in this work to be characterized by a subspace

spanned by the projection matrix V . In order to identify V ,

we first define the label-similarity matrix W as

Wij = e−||li−lj ||2/δ2
2 , (13)

which measures the label similarity between image xi and

image xj , using hyper-parameter δ2 to control the scale over

which label similarities are distinguished.

The goal of inter-modality similarity synchronization is

to identify the subspace, V , that has maximum inter-image

distance (maximum ‖V T φ(xi) − V T φ(xj)‖2) for image

pair with high label similarity (large Wij). Expressing this

goal in the form of an optimality criterion, we find that

V = arg max
V T V =I

∑
i �=j

||V T φ(xi) − V T φ(xj)||2Wij . (14)

Denote X̂ = [φ(x1), φ(x2), · · · , φ(xN )], then the optimal

V consists of the eigenvectors corresponding to the top few

largest eigenvalues of the matrix X̂(D − W )X̂T , where D

is a diagonal matrix with Dii =
∑N

j=1 Wij , ∀i.
V identifies the components in which feature similarity

and label similarity are most out of sync (high label similar-

ity corresponds to low feature similarity, and vice versa). In

order to achieve inter-modality similarity synchronization,

we must discard the components V φ(xi) prior to comput-

ing the similarity between any two images. It is possible to

define a similarity-synchronized distance metric, d(xa, xb),
as

d(xa, xb) = (φ(xa)−φ(xb))T (I−V V T )(φ(xa)−φ(xb)),
(15)



where we have taken advantage of the equality (I −
V V T )(I − V V T ) = (I − V V T ).

Note that the patch-kernel is applicable not only for im-

age pairs. If any object can be characterized by a coordinate

patch set Z, then we can adapt the global GMM to a new

one by the process in (5-8); thus we can compute the kernel

similarity between an image and an image set, or between

two images with missing patches.

3.3. Kernel Regression

Kernel regression [11] is a non-parametric technique in

statistics to estimate the conditional expectation of a ran-

dom variable. In this work, we generalize this model and

set the expected values of the reference points as model pa-

rameters to be determined. In kernel regression, a set of ref-

erence points is required for learning the model. We evenly

divide the label field into multiple subsets, and then for each

subset with training images denoted as Xm, we can com-

pute the similarity, denoted as k(x,Xm), between an image

x and the image set Xm. Then the kernel regression model

is expressed as

F (x) =
∑M

m=1 βmk(x,Xm)∑M
m=1 k(x,Xm)

, (16)

where M is the number of reference subsets, and the param-

eters βm can be easily derived by using the Least Squares

Error method based on the training images. For a new im-

age, its age or pose label can be directly computed from

(16).

Discussion: There exist many popular algorithms for re-

gression, e.g., linear regression and neural networks [15]. In

this work, we choose kernel regression because the patch-

kernel itself provides reasonably good similarity measure-

ment, and then the term k(x,Xm) will have a large value if

x is within the age or pose range in which Xm lies, which

coincides with the philosophy of kernel regression. The re-

sult of learning is a set of kernel regression coefficients that

approximately equal the label means of the reference image

sets Xm.

4. Experiments
In this section, we systematically evaluate the effective-

ness of the regression framework from the patch kernel

(RPK), and compare RPK with the state-of-the-art algo-

rithms for human age and head pose estimation. The human

age estimation experiments are conducted on the YAMAHA

aging database1 and the FG-NET [20] aging database. The

head pose estimation experiments are conducted on the

CHIL data used for CLEAR07 evaluation [21].

1To protect the portrait rights of the participants, sample images of the

YAMAHA face database are not shown here.

Figure 2. Sample images of one person in the FG-NET database.

4.1. Data Sets and Experimental Setups

4.1.1 Human Aging Databases

The YAMAHA aging database contains 8000 Japanese fa-

cial images of 1600 persons with ages ranging from 0 to 93.

Each person has 5 images and the YAMAHA database is

divided into two subsets with 4000 images from 800 males

and another 4000 images from 800 females. Our experi-

ments are carried out separately on female and male sub-

sets. For each subset, 1000 images are randomly selected

for model training while the remaining 3000 samples are

used for testing, and the configurations of the training and

testing sets are the same as in [19]. The FG-NET aging

database [20] contains 1002 face images of 82 persons with

ages ranging from 0 to 69. For both databases, the image

is cropped and scaled to 32-by-32 pixels, and some exam-

ple images of one person from the FG-NET database are

depicted in Figure 2.

For comparison, the results from the traditional regres-

sion algorithms, Quadratic Models (QM) [8], Neural Net-

works [15], and the Nonlinear Regression with Uncertain

Nonnegative Labels (RUN) algorithm [19], were used as

baselines to evaluate the performance of our RPK frame-

work. For the YAMAHA aging database, the latest results

were obtained from the RUN algorithm as reported in [19],

and for the FG-NET database the best results were reported

in [18], where the evaluation protocol is Leave-One-Person-

Out.

4.1.2 CHIL Head Pose Database

For the CHIL data in the CLEAR07 evaluation, each sam-

ple consists of four images captured by four cameras. In

our experiments, we use the same experimental configura-

tion as designed by the evaluation committee. For train-

ing, 10 videos are provided with the annotations of the head

bounding boxes and the original ground truth information

on three pose angles, namely, pan, tilt, and roll. For eval-

uation, 5 videos from 5 subjects are provided. In total, the

training set contains 5348 samples (each consists of four

images), and the testing set contains 2402 samples. Each

image is cropped and scaled to the size of 24-by-24 pixels

for our experiments.



0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Error Level (years)

C
u

m
u

la
ti

v
e

 S
co

re
 (

%
)

 

 

RUN

MLP

QM

RPK

(a) Female@Yamaha.

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Error Level (years)

C
u

m
u

la
ti

v
e

 S
co

re
 (

%
)

 

 

RUN

MLP

QM

RPK

(b) Male@Yamaha.

Figure 3. Cumulative scores of human age estimation results for QM, MLP, RUN [19], and RPK algorithms at error levels from 0 to 20
years on the two configurations of the YAMAHA aging database. Note that the results for the first three algorithms are obtained from [19],

which achieved the best reported results on this database.

Table 1. MAEs (year) of different algorithms on the YAMAHA database.
Female@Yamaha Male@Yamaha

Range RPK RUN [19] QM [19] MLP [19] Range RPK RUN [19] QM [19] MLP [19]

0-9 1.83 11.21 11.97 14.33 0-9 1.61 9.86 13.42 14.08

10-19 3.93 6.23 9.58 8.85 10-19 3.62 7.52 10.33 9.46

20-29 5.27 7.95 9.29 9.70 20-29 4.65 8.85 10.21 9.35

30-39 6.73 8.17 9.85 9.66 30-39 5.62 7.76 9.35 8.60

40-49 6.73 8.64 10.45 8.78 40-49 5.06 8.67 11.71 9.10

50-59 5.37 9.43 10.15 9.53 50-59 5.12 11.10 13.38 10.08

60-69 4.39 11.12 13.49 10.88 60-69 3.66 12.49 15.99 13.44

70-93 5.22 15.56 19.66 16.52 70-93 5.73 16.60 20.44 19.69

Average 4.94 9.79 11.80 11.03 Average 4.38 10.36 13.10 11.72

Table 2. MAEs (year) of different algorithms on the FG-NET ag-

ing database. Note that BM below signifies the bilinear model used

in [18].

Range RPK RUN [19] QM [19] MLP [19]

0-9 2.30 2.51 6.26 11.63

10-19 4.86 3.76 5.85 3.33

20-29 4.02 6.38 7.10 8.81

30-39 7.32 12.51 11.56 18.46

40-49 15.24 20.09 14.80 27.98

50-59 22.20 28.07 24.27 37.20

60-69 33.15 42.50 37.38 49.13

Average 4.95 5.78 7.57 10.39

BM [18]: 5.33 AGES [5]: 6.77 WAS [6]: 8.06

4.1.3 Experimental Setups

In this work, we used two measures to evaluate algorith-

mic performance. The first one is the Mean Absolute Error

(MAE) criterion as used in [6] [8] . MAE is defined as the

average of the absolute errors between the estimated labels

and ground truth labels, i.e., MAE =
∑Nt

i=1 |âi − ai|/Nt,
where âi is the estimated age or pose for the ith testing sam-

ple, ai is the corresponding ground truth, and Nt is the total

number of the testing samples. Another popular measure

is the cumulative score [6] defined as: CumScore(θ) =
Ne≤θ/Nt × 100%, where Ne≤θ is the number of samples

on which the absolute errors are not higher than θ.

For these two aging databases, the patch size is set as

6-by-6 pixels, and for each image, the patches are densely

sampled pixel by pixel within the image plane. The GMM

contains 512 Gaussian components.

For the CHIL head pose database, there exist four images

for each sample, hence the CHIL database is larger than the

other two databases. To speed up the process, we train four

GMMs for these four images respectively, and finally com-

bine them to compute the supervectors. The patch size is set

as 5-by-5 pixels, and each GMM contains 256 components.

For all the experiments, the column number of matrix V ,

the number of reference image sets (M ), the parameters δ1

and δ2 are fixed empirically.

4.2. Human Age Estimation Results

4.2.1 YAMAHA Aging Database

Figure 3 depicts the cumulative scores from RPK and the

other three comparison algorithms, and Table 1 lists the de-

tailed MAEs of these algorithms. Notice that:

1. The MAE of human age estimation is substantially re-

duced from 9.78 years (best reported result [19]) to

4.94 years for the female subset, and 10.36 years (best

reported result [19]) to 4.38 years for the male subset.

On average, an MAE reduction of more than 50% is

achieved compared with the best results ever reported.

2. Our proposed patch-kernel based regression frame-

work performs perfectly in the age range of [0, 9].
This is quite different from the behavior of the other



Table 3. MAEs (degree) of the algorithms PCA, LEA, SSE and RPK on the CHIL data from the CLEAR07 evaluation.
Pan Angle Subject-1 Subject-2 Subject-3 Subject-4 Subject-5 Total Average

PCA 8.54 8.19 6.91 4.53 4.78 6.94

LEA 7.60 8.77 6.33 4.50 4.511 6.72

SSE 8.45 7.27 6.22 4.33 3.94 6.60

RPK 7.08 4.80 4.89 3.95 3.23 4.96
Tilt Angle Subject-1 Subject-2 Subject-3 Subject-4 Subject-5 Total Average

PCA 8.49 5.97 11.59 5.25 12.53 10.86

LEA 7.88 5.74 12.29 5.29 12.23 10.87

SSE 8.61 6.28 9.08 4.92 9.64 8.25

RPK 6.14 4.99 7.72 4.08 14.09 6.66
Roll Angle Subject-1 Subject-2 Subject-3 Subject-4 Subject-5 Total Average

PCA 4.66 2.59 4.20 2.86 3.30 4.01

LEA 5.41 2.59 4.06 2.90 2.91 4.07

SSE 5.55 2.22 3.72 2.38 2.34 3.42

RPK 4.51 2.38 3.24 2.16 2.57 3.02
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Figure 4. Cumulative scores of age estimation for the QM, MLP,

BM [18], and RPK algorithms at error levels from 0 to 10 years

on the FG-NET aging database. Note that the results for the first

three algorithms are obtained from [18], which achieved the best

reported results on this database.

three comparison algorithms, which perform particu-

larly poorly in this age range.

4.2.2 FG-NET Aging Database

On the FG-NET database, all the conventional algorithms

are based on warped appearance features [5]. First, 68 key

facial points are labeled for each image, and then the shape,

texture, and appearance models are trained based on all the

samples. Finally the first 200 appearance parameters [5]

from the appearance model are used to represent each face

image. For detailed information on shape, texture, and ap-

pearance models, please refer to [2]. In practical systems,

face alignment is still a tough problem, especially for the

cases with pose and expression variations as in Figure 2.

RPK works directly on original raw image features with-

out the requirement of face alignment. Figure 4 depicts the

cumulative scores from RPK and the other comparison al-

gorithms, and Table 2 lists the detailed MAEs of these al-

gorithms. From these results, we make the following obser-

vations: 1) even without face alignment, RPK still outper-

forms state-of-the-art algorithms that require precise face

alignment; and 2) the age range of [0, 9] is again the one in

which RPK has its best age estimation accuracy.

4.3. Head Pose Estimation Results

For comparison, we implemented Principal Compo-

nents Analysis (PCA), Locally Embedded Analysis (LEA)

[3], and Submanifold Synchronized Embedding (SSE)

[17] which produced the best results as reported in the

CLEAR07 evaluation. The detailed results on the three an-

gles of head pose are listed in Table 3, from which we can

observe that the RPK framework performs the best among

all the algorithms evaluated. Note that we carefully tuned

the parameters for SSE, and hence the results reported here

for SSE are a little better than those originally reported in

the CLEAR07 evaluation.

4.4. Algorithmic Analysis

In this subsection, we give an in-depth analysis of the ef-

fectiveness of the three components of the RPK framework,

namely coordinate patch representation, inter-modality sim-

ilarity synchronization, and kernel regression. Then we

evaluate the algorithm’s robustness to image occlusions.

4.4.1 Effectiveness of individual components of RPK

In this subsection, we evaluate the effectiveness of the indi-

vidual components of RPK on the YAMAHA-Female sub-

set. For each experiment, we remove one component of

RPK, and conduct the regression based on the other two

components. More specifically, when the coordinate patch

is not used, we use the free-patch instead; and when the ker-

nel regression component is removed, we predict the label

of a new datum as the label mean of the nearest Xm. De-

tailed comparison results are listed in Figure 5 as confusion

matrices, from which we can observe that: 1) the removal

of any component degrades the overall performance; and

2) the inter-modality similarity synchronization component

proves to be the most important in the whole framework.
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Figure 5. Comparison confusion matrices on the YAMAHA-Female subset for the original RPK, RPK with free-patches, RPK without

kernel regression, and RPK without inter-modality similarity synchronization (IMSS). For better viewing, please see the pdf file.
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Figure 6. MAEs (year) of RPK with occlusions of different sizes.

The blue dashed line denotes the best result reported in [19] with-

out image occlusions.

Note that RPK without kernel regression achieves better

group-based classification accuracy, but at the expense of

higher variance of the regression output, hence the overall

regression performance is much worse than that of RPK.

Apparently the kernel regression component smooths the

outputs from different reference sets.

4.4.2 Robustness to image occlusions

To demonstrate the algorithm’s robustness to image occlu-

sions, we systematically evaluate the performance of RPK

on testing images with occluded patches of different sizes

superimposed at random positions. Results are depicted in

Figure 6. When the size of the occluded patch is not larger

than 6-by-6 pixels, RPK is almost insensitive to image oc-

clusions. When the patch size is 12-by-12 pixels, the per-

formance of RPK is still much better than the best result

reported in [19] for images without occlusion.

5. Conclusions and Future Directions

In this paper, we proposed a novel patch-based frame-

work for visual regression problems and the whole frame-

work consists of three mutually complementary compo-

nents: coordinate patch representation, inter-modality sim-

ilarity synchronization, and kernel regression. Some inter-

esting future directions of this work include: 1) to extend

this framework for other visual classification tasks, e.g.,

gender recognition, expression recognition, and face recog-

nition; 2) to adopt coordinate cube, instead of coordinate

patch, for video event detection and recognition; and 3) to

use the philosophy of UBM for multi-task learning.
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