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Abstract. Presented research was directed to effective signal recovery
problem for computer-aided medical diagnosis. Extracted and visualized
information covered in sensed data of imaging systems supports interpre-
tation according to ”second look” procedure. The integrated framework
of compressive sensing was used to optimize CT acute stroke diagno-
sis. Previously studied nonlinear approximation of the sparse signals in
adjusted dictionaries was extended with variational approach to extract
more precisely the content components. Proposed methodology adjusts
optimized fidelity norms and regularizing priors to semantic question of
image-based diagnosis. Preliminary experimental study was performed
to provide selected proof-of-concept results for designed CT hypodensity
extractors.
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1 Introduction

Images are naturally compressible in a sense that the sorted magnitudes of the
transformed image coefficients decay quickly to zero according to the power law.
In other words, images are approximately sparse in transform atoms (i.e. elemen-
tary signal-representing templates). Consequently, image and signal processing
predominantly is based on sparse signal model founded on last decade achieve-
ments of harmonic analysis, approximation theory and wavelets. Sparse-Land has
emerged as one of the leading concepts in a wide range of applications: denoising,
restoration, feature extraction, detection, source separation, compression etc. [1].

Moreover, another competing or extending framework, i.e. variational image
processing succeeded in developing an explosively fast speed [2], exploits signal
sparsity as regularization prior. Rather than viewing images as being sparse in
some basis, they are viewed as minimizers to certain energy functionals includ-
ing adequate regularizers. The classic example is restoring a noisy image using
total-variation regularization [3]. Variational image processing treats an image
as a reality function whose sampling or sensing corresponds to the matrix form



of a given discrete image. It enables use of useful concepts of functions, i.e. ge-
ometry, shapes, edges, smoothness etc., to achieve sub-pixel level accuracy in
high-resolution image processing.

Compressive sensing (CS) integrates sparse signal models with variational
image processing to reliably recover images acquired from just a few linear mea-
surements. In general, CS (sometimes called sparse recovery) exploits the spar-
sity and smoothness/regularity of an unknown signals to be sensed by relatively
small number of incoherent linear measurements selected a priori. Exhaustively
developed theory assures, under respective conditions of high incoherence of mea-
surement matrix, the signal recovery with relatively high resolution and enough
accuracy. Generally, image recovery is optimization procedure (where output is
a minimizer of certain functional constituting convex problem) with relaxation
of important sparsity prior in terms of more computationally tractable norms,
greedy alternatives and adaptively formulated semantic criteria of the accuracy.

Medical image recovery means diagnostic information recovered from data
acquired in medical imaging systems to be clearly percepted by experts making
correct interpretation. Sparse information recovery (generally based on image
acquisition, preprocessing to improve the quality, extraction of imaged content
possibly followed by automatic object/pattern recognition and even image in-
terpretation) assumes images being sparse in some basis/frames to separate and
reconstruct all necessary information to redundant image domain.

1.1 Acute stroke diagnosis

To verify presented concept of image content recovery for more effective diag-
nosis, two important applications of computer-aided diagnostic imaging were
considered. Recognition of ischemic stroke symptoms in CT images and detec-
tion of directional breast cancer lesions in mammograms.

Stroke as one of the most frequent and most devastating event among human
diseases is the first cause of permanent disability (over 40 years old) worldwide
and the third most frequent cause of death. The diagnosis of acute stroke it-
self is clinical with assistance from the imaging techniques which determine the
subtypes. The main method of instrumental stroke diagnosis is computed to-
mography (CT) widely applicable because of fast, accessible and inexpensive
examinations. CT differentiates very well hemorrhagic and ischemic forms of
stroke because fresh blood extravasated into brain parenchyma or pericerebral
spaces is visible at once as seen at Figure 1. Moreover, CT remains an invaluable
method for the detection of hemorrhagic complications, the intermediate signs
of necrosis and the emerging threat of uncontrolled intracranial pressure increase
followed by herniation and death.

However, there are serious problems with very early discovery of ischemic
stroke in CT. In the first hours of ischemic stroke image interpretation is often
ambiguous, indirect and not obvious. CT scans (without contrast enhancements;
specificity= 96%) during the first 24 hours after the onset in the most cases with
ischemic stroke is almost normal. Only direct finding enabling ischemia recog-
nition is the extent of hypodense tissue on baseline CT significantly facilitating



Fig. 1. Ischemic stroke (left) and haemorrhagic stroke (right) manifestation on CT
scans.

stroke diagnosis. However, such noticeable lowering of brain attenuation coeffi-
cients is often perceptually hidden because of unstable technological conditions
of image acquisition, distorted linearity, degraded contrast resolution, artifacts,
noise etc. Therefore, acute stroke diagnosis needs computerized support to ex-
tract reliable signs of stroke, first of all hypodensity.

This introductory paper with preliminary results presents carried out re-
search background as review of CS-based fundamental adjusted to CT stroke
recovery problem. Possible optimization of the image recovery with high enough
accuracy of diagnostic components was considered, according to reliable require-
ments of concrete diagnostic imaging. We proposed use of variational approach
(VA) to recover separated components of information improving diagnosis of
CT acute stroke. Following such concept, we designed and verified fundamental
principles of computerized CT stroke diagnosis in order to separate the hypo-
density as most important, direct sign of ischemia. Proposed concepts extends
image model of sparsity in wavelets to variational recovering of hypodensity
distribution.

Adaptation of the optimization criteria was directed to local minima of de-
noised image function (functional image model) to approximate a variation of
tissue density in CT brain images. The framework of compressive sensing was
used to verify several concepts of hypodensity extractors.

2 Framework of the proposed method

Let’s start from compressive sensing problem to explain fundamentals of pro-
posed method. The essential advantages of CS concept applied for medical im-
age recovery are as follows: -reduced sensing cost (mostly radiation dose for
CT because of reduced number of measurements), -sensing based on sparsify-
ing dictionaries (possible content-dependent adaptivity to selected information
components), -image recovery based on variational approach (possibly content-



oriented), -image processing with the VA to approximate adaptively diagnostic
components.

2.1 Sensing with sparse image models

Sparsity of unknown images is exploited to recover the image information from
relatively small number of linear measurements, significantly fewer than required
by Nyquist-Shannon theorem. Sparsity means that information contained in a
signal/image is much smaller than its effective bandwith. However, in most cases
of natural signals we have transform’s economical signal representation in some
dictionary (base, frame) Φ. Additional necessary condition is incoherence be-
tween sensing matrix (i.e. real imaging modality model) and sparsifying Φ. For
example noiselets Ξ [4] are useful to measure sparse signals because they have
pseudorandom dense representation and the signals compact in the wavelet do-
main are spread out in the noiselet domain.

Long term study has proved sparsity of CT brain images in wavelet or
wavelet-like bases [5]. Selected sparsyfing transforms were applied to optimize
sparsity with satisfactorily fidelity criterion. Further research was directed to
other multiscale and local base/frame with nonseparable kernels in 2D/3D space
were verified to optimize approximately sparse representation as content sparse
representation. The lineal and nonlinear approximation procedures were used to
extract target function of informative components like nonzeros of highly sparse
representation. Unrepresented noise, artifacts and other uninformative signal
components were excluded from reconstructed image information. Selected re-
sults were presented in section 4.

2.2 Problem to be solved

Ill-posed inverse problem of image recovery refers to noisy (η) sensing with full-
rank measurement matrix A ∈ RM×N of

y = Ax(r) + η (1)

where compressed (e.g. low resolution or feature-oriented) or degraded measure-
ment vector y of M observations is used to recover x̃ with high enough resolution
N ≫ M as reliable approximation of unknown real x(r) (possibly with infinitive
resolution physically but pragmatically limited to content clarity criteria). The
measurement matrix A is linear operator of underdetermined system having in-
finitely many solutions. In case of noiselet-based sensing of the signals sparse in
wavelet basis, we have A = ΞΦ. In order to estimated unique and well-defined
solution additional criteria are necessary. Moreover, such criteria could be fitted
to content model and specific characteristics of the images.

2.3 Criteria of the solution

Inversion of the problem (1) is a variational minimization in the following adap-
tive form



x̃ = argmin
x

κ(x)F (x) + λ(x)P (x) (2)

with κ-weighted criterion of the fidelity F (x) to the observations (usually l2
norm-based) and λ-weighted prior P (x) ∈ R that determines regularity of the
solution. The prior is low for the image features one is interested in.

Important optimization metrics to assess the efficacy of recovering procedures
include: recovery accuracy, computational complexity (possible linear or convex
programing) and convergence speed. Fidelity criteria need to take into account
the highly structured features of natural/medical images and evident properties
of the human visual system (HVS).

Strictly convex minimized function guarantees a unique and computationally
tractable solution, what means that squared Euclidean norm l22 (i.e. measure
of energy) and l1 are preferable. However, highly desired in signal processing
is sparsity of the signals, especially for image recovery. It forces minimization
of pseudo-norm ∥x∥0 = #{i;xi ̸= 0} what is classical problem of combinato-
rial search but generally NP-hard. Imposing certain matrix A conditioning, i.e.
incoherence and restricted isometry property (RIP), convex optimization with
l1 or simple greedy algorithms give the sparsest solution of l0-based optimiza-
tion. Other way of problem relaxation is solving lp-minimizing problem where
∥x∥p =

∑
i

(
|xi|p

)1/p but every choice 0 < p < 1 gives a concave functional [6]
Fidelity criteria are mostly designed with l2 norm primarily but other norm

are possible as follows

– typically least squares (LS), i.e. squared l2 as ∥y−Ax∥22; integrated with TV
prior is preferable for images corrupted by Gaussian noise with satisfactory
edges preserving;

– recursive last squares (RLS) that minimizes weighted linear least squares
cost function assuming deterministic signal model, able e.g. to estimate con-
sistently the sparse signal’s support and its nonzero entries [7];

– mean square error (MSE) or l2 in the constrained form ∥y −Ax∥2 ≤ τ [8,
9];

– l1-norm, used with TV prior is useful for removing impulsive noise [10, 11];
– general lp fidelity constraint, i.e. ∥y−Ax∥p ≤ τ where p ≥ 1 and τ is chosen

depending on the noise pth moment E(∥η∥p); for uniform quantization noise,
p = ∞ is good choice [12];

– Dantzig selector [13] that uses indication function of ∥A∗(y −Ax)∥∞ ≤ τ ,
where A∗ is adjoint of A; the Dantzig selector is robust against measurement
errors and more adaptive in a sense of fidelity criteria - with l1 prior can be
recast as a linear program.

Fundamental priors considered to recover medical image are as follows:

– based on derivatives of the image to impose some smoothness on the recov-
ered image:
• the Sobolev prior which is l2 norm of the gradient approximated with a

finite difference scheme P (x) =
∑

i ∥▽ xi∥2; it favors uniformly smooth
images;



• the total variation (TV) prior as P (x) =
∑

i ∥ ▽ xi∥1; it assumes x ∈
l1(Ω) (Ω is image domain) and favors piecewise constant images with
edge discontinuities of small perimeters [3]; TV functional is non-differentiable
but still convex and causes sparsity of the solution [14];

• the weighted TV model (WTV) with certain discretization of TV with
anisotropic weights defined for 5×5 support of 4/8/16 pixel neighborhood
[15];

– sparsity prior while #(supx) ≤ K ≪ M with unknown support distribution;
NP_hard solution requires relaxation
• to convex l1 minimization (i.e. Laplacian prior) with computationally

tractable implementations;
• to lp : 0 < p < 1 minimization;
• in a form of greedy algorithms.

– sparsifying decompositions that produce sparse representation of natural sig-
nals; it is based on a reliable theory of sparse signal models what means that
the signals can be well-approximated as a linear combination of only a few
elements (vectors) from adaptively adjusted basis or dictionary; we have
• orthogonal/biorthogonal bases of tensor wavelets, redundant curvelets

with nonseparable kernels, contourlets, complex wavelets etc.;
• SVD, KLT and others signular/independent vector extractors [16].

2.4 Recovery algorithms

The l1 minimization is fundamental approach to recover a sparse signal from
limited number of measurements. It provides a useful framework to perform
accurate recovery by means of convex optimization problems. Stable signal re-
covery in noise is possible under a variety of common noise models, e.g. uniformly
bounded noise or Gaussian noise. Both the RIP and coherence are useful to es-
tablish performance guarantees in noise. l1 -based relaxation of l0 pseudonorm
is realized in standard decoder of basis pursuit (BP) with LS fidelity criterion
for noiseless and noisy data (well known realizations of lasso or extended with
fidelity criteria of the Dantzig selector).

Moreover, there is a variety of greedy methods to recover sparse signals.
Greedy algorithms abandon exhaustive search for a series of locally optimal
single-term updates. They rely on iterative approximation of the signal nonze-
ros (i.e. signal support with refined coefficients), either iterative identifying the
support until a convergence criterion is fulfilled or subsequent signal estima-
tion to provide matching to the measured data. Both essential approaches are
applied, greedy pursuits (e.g. Orthogonal Matching Pursuit - OMP with itera-
tively adding new components that are estimated to be nonzeros) and greedy
thresholding algorithms with element pruning steps (nonzero elements are re-
moved iteratively from further analysis, e.g. the Iterative Hard Thresholding -
IHT).

In greedy pursuit, starting from x(0) = 0 a k-term aproximant x(k) is it-
eratively constructed by providing a set of active columns of A successively



expanded at each next stage. The column selected at successive stage maxi-
mally reduces the residual l2 error in approximating y from the currently active
columns. An important example of such greedy strategy is the OMP, where the
approximation for x is updated by projecting y orthogonally onto the columns
of A representing current support estimate.

The Compressive Sampling Matching Matching Pursuit (CoSaMP) [17] keeps
the nonzero support and either adds and remove alements in each iteration; new
x estimate is restricted to new smaller support. Alternative approach for recovery
of sparse signals is combinatorial algorithms [18].

2.5 Medical information recovery

Image edges, ridges and textures of specific ROI (Region of Interests) or denoised
approximation signal (stroke case) tendency play decisive role in content-oriented
medical image recovery. Accurate visual perception of extracted diagnostic in-
formation (lesion symptoms, signatures or any specific features experienced as
direct or indirect sign of pathology) is key condition of correct image inter-
pretation. Thus separation and noticeable extraction of diagnostic components
significantly improves medical image recovery.

Instead of local image filtering or transform coefficient thresholding, one can
use variational processing embedded in optimization procedure of semantic im-
age recovery. Limited number of measurements in CS scheme adequately models
acquisition limitations of real imaging systems with respect to potentially con-
tinues, noiseless image model as reliable function of interests. Random matrices
simulating acquisition process enable modeling of acquisition limitations due
to radiation dose, time and resolution-limits, movement and physical artifacts,
technological noise, unstable detector sensitivity and contrast etc. Weighted pri-
ors of the iterative recovery are important tool to control semantic recovery of
diagnostically improved medical images.

Adaptiveness of the recovery was mainly concentrated on models of sparse,
locally limited signal segments of interests able to cope with the space-varying
context; instead of an access to the whole sensed data to compute the solution,
only local data are used to estimate adaptively and locally sparse solution [19].

3 Proposed method

Consequently, the design of adaptive image recovery was formulated according
to the following adaptive optimization procedure

x̃ = arg min
x,c(·)

κ(x)∥y −Ax∥p + µ(x)∥Φx∥1 + λ(x)TV (x) (3)

with matrix Φ sparsifying signal x and three signal-dependent criteria of adapted
fidelity with priors of sparsity and smoothness represented by functional vector
c(·) = [κ(·), µ(·), λ(·)].



The fidelity metric ∥y−Ax∥p should highly correlate to image accuracy for
diagnostic and clinical procedures. First of all the specificity includes empha-
sized regions of interests or selected image components, e.g. high frequency rep-
resentatives (e.g. signatures of breast cancer in mammograms) or local intensity
maxima/minima (stroke case). Image fidelity criterion truncated to extracted
a priori or a posteriori information was considered to be adaptive according to
specific medical imaging problem (formal semantic model).

Furthermore, instead of fixed prior, the regularization could be enhanced by
using a family of weighted prior model P (x)(µ,λ) adapted to l1 and TV speci-
ficity because of image edge, intensity and texture distribution related to con-
tent and diagnostic significance. Weighting parameters should be adapted to the
noise level and reliability of estimated image model. The possible integration of
sparsity estimate (l1-like or greedy iteration) with TV smoothness prior (e.g.
matched to 2D, 3D context models and edge specificity) and adjusted fidelity
of reconstruction to optimize image recovery was studied. Initial results of such
optimization realized in preliminary study were presented.

Adaptive recovery of diagnostic image content is based on two fundamental
assumptions: a) as accurate as possible basic iterative image reconstruction ac-
cording to respectively selected fidelity criterion and priors (a priori adaptation),
b) semantic model of extracted information (a posteriori adaptation).

The following subsections shortly characterized possible realizations of the
above general concept, adjusted to specificity of CT stroke diagnosis.

3.1 General scheme of extractors

General scheme of CT stroke extractors proposed in [5] includes: -image pre-
processing to improve the quality, -initial analysis to select regions of interests
susceptible to stroke hypodensity, -approximation of hypodensity image compo-
nent, -optimization of visualized form of pathology extraction. Presented study
concentrates only on approximation of hypodensity component. The following
extractors were realized and compared in exemplar experiments.

Nonlinear approximation in sparsifying dictionaries. Such concept was
realized in our previous study with adjusted bases of orthogonal/biorthogonal
wavelets, Fourier transform (FT) and discrete cosine transform (DCT, and block
version BDCT), and frames of curvelets, contourlets, surflets, shearlets and com-
plex wavelets (CWT). Nonlinear approximation of decaying magnitudes of trans-
form coefficients orders hypodensity among small set of the highest magnitudes.
But the effects significantly depends on the matched dictionary.

VA-based image approximation. Variational approximation was realized ac-
cording to global minimization of anisotropically discretized TV with weighted
fidelity term related to input signal x(in), measured or initially reconstructed, i.e.
noisy and distorted, with important component to be approximated. Anisotropic
TV operator with adjusted pixel neighborhood Ωc is in a form of



TV (aniso)(x) =
∑

k,l∈Ωc
wk,l|xi,j − xi−k,j−l|, while optimisation procedure is

as follows

x̃ = argmin
x

κ(x)∥x(in) −Ax∥1 + TV (aniso)(x) (4)

where κ(x) was optimized with combinatorial approach using simple criterion
of maximized change of density variation estimate of ischemic region relate to
normal region. Generally approximation of locally estimated lower frequency
components is required.

Basic on algorithms presented in [20], different schemes of fidelity weighting
to strengthen hypodensity extraction was verified. The weights were estimated
as normalized factors of image intensity distribution or thresholded indicator of
significant or insignificant areas.

CS-based image recovery. This hypodensity extractor extends the optimiza-
tion procedure according to (4) with two elements:

– sparsity prior of minimized ∥Φx∥1 with adjusted wavelet orthogonal base
of coiflets with near symmetric wavelet functions and 12-tap filter banks;
second-order cone program (SOCP) with a generic log-barrier algorithm
(with Newton solver) was used as implementation1;

– possible reduction of sensed data to verify possible measurement procedure
limited to content-oriented sparsity of the images; however the required so-
lution was possible adaptive concentration of the measurements to region (or
component) of interests, only pseudo-random noiselets were verified with 1
to 10 reduction of the number of sensed data.

Therefore, realized concept of the image recovery with approximated hypo-
density was as follows

a) data sensing with reduced number of measurements M = N/10 (basing on
estimated sparsity of possible hypodensity component);

b) initial approximation of sensed data vector x(0) with Conjugate Gradients
solver of the set of linear equations (alternatively, additional fast reconstruc-
tion of Dantzig selector or CoSaMPare is possible);

c) performance of external iterative loop of l1 sparsity prior with Dantzig se-
lector (i.e. ∥ ·∥∞ fidelity term) and recast as linear program (or alternatively
log-barrier with LS fidelity term); initiate iteration index k = 1 with stan-
dard stop condition:
– calculate solution x̃(k) of l1dantzig as x̃(k) = argminx ∥x(k−1)∥1 subject

to ∥AT (y −Ax)∥∞ ≤ η,
– embedded emphasize of hypodensity component in VA-based internal

loop
• solution of x̂(k) = argminx κint(x)∥x̃(k)−Ax∥1+TV (aniso)(x) where
κint(x) are normalized intensities of successively recovered image
x̃(k), i.e. κint(x) =

xnorm+k
k+1 ,

1 http://users.ece.gatech.edu/ justin/l1magic/



• make substitution x(k) = x̂(k) and if continue, increment k = k + 1;
d) final VA-based approximation of hypodensity component

x(final) = argminx κfinal(x)∥x̃(k) − Ax∥1 + TV (aniso)(x), where κfinal(x)
is normalized vector of recovered intensity distribution x(k) thresholded to
heuristically estimated probable hypodensity range;

e) adaptive histogram-based extraction of hypodense intensity range to visual-
ize hypodensity component.

Because of weighted fidelity in variational procedure, sparsity prior was weighted
due energy concentrated on selected image component. Sparsity adjusted to
smoothing pattern controls the weights of fidelity in VA (we have greedy, in-
tegrated feedback in iterated recovery procedure). Final recovery was the inte-
gration of required component approximation with iterated reconstruction ac-
cording to controlled sparsity and fidelity constraints.

4 Preliminary results

Exemplar, representative CT image with perceptible ischemia in the right hemi-
sphere of the brain was used to characterize essential processing effects for three
proposed hypodensity extractors. The preliminary results are presented on the
following Figures: 2, 3 and 4, respectively.

Fig. 2. Nonlinear approximation applied to exemplar, representative CT image of is-
chemic stroke (original is left image in Fig. 3); first row contains the results of recon-
struction with 10% coefficients of wavelets, FT, DCT, BDCT, contourlets and CWT;
the second row contains the reconstructions with 0.07% coefficients of the same trans-
forms, respectively.

Presented sample of the effects is representative of the preliminary experi-
ments conducted on a larger group of images. At lower level of the coefficient
reduction (first raw in Figure 2), nonlinear approximation method allows image
denoising (especially for CWT), but the perception enhancement of hypodense
area is relatively insignificant. With very sparse image representation of the



Fig. 3. VA-based image approximation applied to exemplar, representative CT image
of ischemic stroke; from left to right the effects of hypodenstity extraction with different
weights of fidelity term.

Fig. 4. CS-based image recovery with iterated VA approximation applied to exemplar,
representative CT image of ischemic stroke (original is left image in Fig. 3); from left
to right the effects of hypodenstity extraction with different combinations of integrated
fidelity, sparsity and smoothness constraints.

biggest coefficients, the overall characteristics of reconstructed images is erased,
the details are lost. Moreover, distinctly highlighted the area of ischemia (espe-
cially for wavelets, BDCT and contourlets) is strongly distorted, the resulting
image is blurred, artificial, distant from the original.

In the case of the VA-based approximation, the reconstructed images preserve
the details, wherein the enhancement of hypodense area is more significant, with
clearly better perception. But at very strong approximation, only the outlines of
the structures are reconstructed, the details are lost and image is percepted as
artificial. However, smooth shape of ischemic area is reconstructed with a higher
accuracy, more precisely, suggestively.

The concept of CS-based image recovery results in clearly exposed areas of
tissue with reduced density, maintaining their shape with high precision of the
details. Other unimportant components of content disappeared, and the images
seem much better emphasize the hypodense nature of the area located in the
right hemisphere of the brain. The essential features of this area appear to be
significantly enhanced, their perception is definitely the best.

The advantages of the CS-based method was verified in selected several cases
of early stroke. CT scans of early examinations with the lack of stroke symp-
toms and follow-up CT studies with convincing symptoms of hypodensity were
processed and ad hoc visualized - see the examples in Figure 5. The pronounced
extraction of the reduced density tissue was observed in each of the cases. Such
confirmation of stroke occurrence at acute stage of symptom onset is really useful



aid of stroke diagnosis. However, the method requires optimized visualization of
extraction effects. Additionally, initial segmentation that limits effectively the ar-
eas of stroke susceptibility can give more explicit results to provide high enough
specificity of such aided diagnosis.

Fig. 5. The results of verification tests for CS-based image recovery. The upper row
contains examples of chosen CT slices – three stroke couples of acute diagnosis and
follow-up with confirmed symptom onset; lower raw shows their respective recovery
with clearly extracted hypodensity, asymmetrically distributed around the axis of the
brain, both for imperceptible early symptoms and late confirmations.

5 Conclusions

The advantage of image processing and recovery based on integrated CS frame-
work is possibility of more complex, deeper or ”genetic” signal analysis to pre-
cisely select and reconstruct hidden components of high diagnostic importance.
More degrees of freedom and possible forming of image components step-by-step,
with adjusted adaptive regularization give opportunity to extract the hypoden-
sity even in very difficult cases. However, design and optimization of such flex-
ible model of whole image recovery is neither convex not numerically tractable
problem. Instead of that we have heuristic integration problem of numerically
tractable partial subproblems.

Future research will primarily focus on the specific, fast and convergent im-
plementation of the outlined concepts. Especially, medical image applications
tend toward perfected adaptation of optimization terms according to semantic
models of diagnostic images.
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