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ABSTRACT
Extracellular molecules trigger a response inside the cell by
initiating a signal at special membrane receptors (i.e., sources)
which is then transmitted to reporters (i.e., targets) through
various chains of interactions among proteins. Understand-
ing whether such a signal can reach from membrane recep-
tors to reporters is essential in studying the cell response to
extracellular events. This problem is drastically complicated
due to the unreliability of the interaction data. In this paper,
we develop a novel method, called PReach (Probabilistic
Reachability), that precisely computes the probability that
a signal can reach from a given collection of receptors to a
given collection of reporters when the underlying signaling
network is uncertain. This is a very difficult computational
problem with no known polynomial-time solution. PReach
represents each uncertain interaction as a bivariate polyno-
mial. It transforms the reachability problem to a polynomial
multiplication problem. We introduce novel polynomial col-
lapsing operators that associate polynomial terms with pos-
sible paths between sources and targets as well as the cuts
that separate sources from targets. These operators signifi-
cantly shrink the number of polynomial terms and thus the
running time. PReach has much better time complexity than
the recent solutions for this problem. Our experimental re-
sults on real datasets demonstrate that this improvement
leads to orders of magnitude of reduction in the running
time over the most recent methods.
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1. INTRODUCTION
Major discoveries in biology have revealed the complexity

of living organism at the cell level and beyond. A multitude
of molecules such as proteins or genes interact to sustain the
various functions served within cells. These interactions are
often modeled as biological networks, where molecules are
represented as nodes and interactions as edges. Among a
diversity of biological networks, signaling networks describe
how extracellular molecules trigger a response inside the cell.
This often takes place by initiating a signal at special mem-
brane proteins, (i.e., receptors). This signal travels through
chains of interactions among proteins, until it reaches a tran-
scription factor (i.e., reporter). The transcription factor then
materializes the cell response as increase or reduction of the
production of other proteins. Understanding this mecha-
nism is of utmost importance since its malfunctioning is the
cause of many disorders such as cancer, type 2 diabetes, neu-
rodegeneration, Alzheimer, congenital malformations, obe-
sity and osteoporosis [22, 24, 25].

One of the first steps in studying signaling networks is to
establish their topologies. A common way to discover the
physical interaction data is to use large scale experiments
like yeast-two-hybrid and co-immunoprecipitation assays [9,
12]. These techniques produce high throughput results but
they also introduce many false positives. The data produced
are therefore uncertain. In other words an interaction may
or may not take place with some probability.

Another known form of uncertainty in signaling networks
is whether the underlying interactions hold under extreme
conditions like severe trauma and burn injury. Research
shows that stresses from such conditions affect more than
80% of cellular functions and pathways, resulting in a ge-
nomic storm [40]. Therefore even for curated signaling net-
works, an uncertain model encompassing such conditions is
of utmost importance.

In the rest of the paper, we will use the term probabilis-
tic network to denote a network with at least one uncertain
reaction. To quantify the level of uncertainty, some recent
interaction databases like MINT and STRING provide con-
fidence values for each interaction [35, 7]. Various other
methods have been proposed for rigorous assessment of the
quality of the interaction data [37, 3].

In order to tell which external factors lead to various kinds
of alterations in cell functions, it is very important to know
whether a signal can reach from a receptor to a reporter



which is the problem considered in this paper. For exam-
ple, the MAPK signaling network is responsible for onco-
genesis; the tumor necrosis factor (TNF) is linked to jun
proto-oncogene (c-Jun) transcription factor and the knowl-
edge about this connection is very important in cancer and
neurodegenerative diseases research [20]. In what follows we
define the computational problem we address here.

Problem statement. In this paper, we address the prob-
lem of finding whether a signal travels from a source (a given
set of receptors) to the intended target (a given set of re-
porters) when each edge is subject to failure with a different
probability, independently of the state of other edges.

We formally define a probabilistic signaling network as a
directed graph G = (V,E, P ), where V is the set of nodes
(i. e. proteins), E is the set of edges (i.e. interactions) and
P is a function that associates to each edge the probability
of the existence of the interaction it represents. We assume
that each edge exists independently of all other edges. This
assumption is commonly used in the literature for similar
problems[7, 35]. This problem applies to undirected net-
works by replacing each undirected edge with two edges in
opposite directions.

The problem tackled in this paper is #P-complete [11] One
way to appreciate the difficulty of the problem is to realize
that a probabilistic network represents a large number of
possible configurations of deterministic networks, depending
on the presence or absence of each probabilistic edge. More
precisely, a network with n probabilistic edges yield 2n possi-
ble network configurations, as each one of the n edges may be
present or absent. For instance, the probabilistic network in
Figure 1 yields 32 alternative topologies (two of them shown
at the bottom of Figure 1). An exact solution for the de-
scribed problem would be to naively consider all of the 2n

possible cases. Also attesting to the difficulty of the prob-
lem is the fact that many approximate solutions have been
proposed, for example based on Monte Carlo sampling. We
elaborate on this in Section 2.
Contributions. In this paper, we develop a novel method,

called PReach (Probabilistic Reachability), that solves the
problem described above exactly. PReach is inspired by
the probability generating functions. In a recent study, we
showed that these functions can be employed for aligning
probabilistic networks [36]. We associate a polynomial func-
tion to each edge in the given network, defined by the edge
probability. We call these polynomials the edge polynomi-
als. We prove that the solution to the problem is given by a
subset of the terms of the polynomial obtained as the mul-
tiplication of all the edge polynomials. We avoid excessive
growth of the number of terms of the resulting polynomial
by collapsing combinations of terms that we already know
are solutions, and those that cannot lead to solutions, into a
single term each. We also show that the order in which the
edge polynomials are multiplied dictates how soon we can
collapse the polynomial terms. Thus, it affects the speed at
which the final polynomial grows. We develop a strategy
to order the edge polynomials to maximize the number of
collapsed terms (thus to minimize the polynomial size).

Our experimental results on real datasets demonstrate up
to 10,000 times improvement in running time over the com-
peting method when the competing method could run till
completion. PReach scales up to larger networks easily. On
such networks, it returned the results in minutes when the
competing method failed to complete. We also perform bi-
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Figure 1: A probabilistic network (top) and two of the de-

terministic networks corresponding to it (bottom). Each of

the deterministic networks is obtained from the probabilistic

network with some probability determined by the probabili-

ties of the edges that are included or not in the deterministic

network. The expression above each deterministic network is

the probability of observing it.

ological validation experiments for our method. Our vali-
dation experiments show that the highly reachable proteins
in the examined networks have important roles in biological
functions like cytoneme morphogenesis and mitotic nuclear
pore complex reassembly.

The rest of the paper is organized as follows. Section 2 dis-
cusses relevant background. Section 3 describes our method
in its mathematical and algorithmic formulation. Section 4
presents the experimental evaluation of PReach and com-
pares it with a recent existing method. Section 5 concludes
the paper with a brief discussion.

2. BACKGROUND AND RELATED WORK
In the literature, the reachability problem in probabilistic

networks has been studied mostly in the context of network
reliability [17, 1, 39, 23]. The common drawback of all the
available methods is that they do not scale well with growing
network size.

A major class of existing methods is based on enumer-
ating paths or cuts [30, 14], sometimes combined with the
inclusion-exclusion method [39, 23]. One of the most recent
solutions (and possibly the most relevant one from the point
of this paper) that fall into this category is used by a method
called SPINE [27]. This method aims to infer signaling and
regulatory pathways. As a part of this goal, it computes the
reachability probability between pairs of nodes. SPINE uses
the inclusion-exclusion method to compute the reachability
probability without error in order to reconstruct signaling
pathways. SPINE assigns an activation/inhibition attribute
to each protein in such a way that the network can satisfy
the maximum number of observed gene knockouts. For a
given knockout pair, it first calculates the probability that
the target node is affected by the knockout gene using the
inclusion-exclusion principle. After finding the reachability
probability, it provides a linear programming formulation
to assign the attributes to proteins. In this paper, we will
compare the performance of PReach with the approach used
in SPINE for calculating the reachability probability, since
both methods compute this probability precisely. The time



complexity of this method is O(2N ) with N being the num-
ber of all simple paths from the source to the target. As
we present in our experimental results (see Section 4) this
method does not work for many real networks even for those
with less than 40 interactions.

Due to the computational difficulty of the problem, some
methods resort to Monte Carlo approximations rather than
computing precise probabilities [19, 10, 8, 21]. The disadvan-
tage of these methods are (i) they do not produce an exact
result and (ii) they need too many iterations to obtain a
low error margin. Some of them focus on how to deploy a
sampling policy or plan to reduce the sampling error. Zhu
et al. [41] tried to overcome the need for a large number of
samples by proposing a dynamic Monte Carlo simulation.
This methods uses pruning based on some effective bound-
ing techniques and if the pruning fails, it uses the dynamic
Monte Carlo simulation.

A related, yet slightly different problem is the connected-
ness reliability problem. This problem seeks the probability
that a network is connected (i.e., all the nodes are reachable
from all the remaining nodes), under the assumption that
each edge is subject to failure with the same probability p.
A version of this problem is the s-t connectedness reliabil-
ity, in which one seeks to find the probability that a target
node t is reachable from a source node s. Both versions
are known to be #P-complete [29, 6]. The time complexity
of connectedness reliability was shown to be exponential in
Ω(m/ log2 m) [16].

Probabilistic networks have been analyzed in the past via
polynomial manipulation. The reliability polynomial, a par-
ticularization of the Tutte polynomial, has received wide at-
tention [28, 5]. This model, however, is limited to a single
parameter, representing the probability that any edge in the
network fails. Thus it is limited to deal only with global
properties of the network, such as whether it is connected
or not. It cannot encode more specific information, such
as s-t connectivity. The multivariate Tutte polynomial was
proposed as a generalization for the case in which each edge
has a different failure probability, but again is limited to
all-nodes reliability [34]. In the field of biological networks,
some of the authors have proposed a detailed, comprehensive
model based on probability generating functions for proba-
bilistic alignment [36].

3. METHOD
In this section we describe our method. First, we build

the mathematical foundation of our method (Section 3.1).
We then establish the relationship between this theory and
probabilistic networks (Section 3.2). We then use this rela-
tionship to model the reachability problem in probabilistic
networks (Section 3.3) Finally, we present the PReach algo-
rithm that solves the reachability problem on probabilistic
networks (Section 3.4).

3.1 A special class of polynomials
In this section, we develop an expressive polynomial class,

called the xy-polynomial, and the basic algebra that operates
on it. As we will demonstrate in Sections 3.2 and 3.4, these
polynomials naturally describe the topologies of all the de-
terministic instances of a given probabilistic network. Thus,
the reachability problem in a given probabilistic network will
turn into a simple evaluation of this polynomial. We start by
introducing the notation that will help present our method.

Consider two sets of n variables X = {x1, . . . , xn} and
Y = {y1, . . . , yn}. Also consider the set of indices U =
{1, . . . , n}. Each subset S of U determines a subset of X
and a subset of Y : {xi|i ∈ S} and {yi|i ∈ S}, respectively.
We denote the product of the variables in these two subsets
with xS =

∏
i∈S xi and yS =

∏
i∈S yi. Next, we introduce a

class of polynomials, called the xy-polynomials, that play an
important role in our method.

Definition 1. Let Θ be a subset of U . Let S1, . . . , Sk be
k different subsets of Θ, where k is a positive integer. Let x∗

and y∗ be two free variables. Let a1, . . . , ak be real numbers.
Similarly, let b and c be two real numbers. An xy-polynomial
over Θ is a polynomial of the form F =

∑k
i=1 aixSiyΘ\Si +

bx∗ + cy∗

Notice that in the above summation, each term — except
for the free variables — contains each of the indices j ∈ Θ
either as a product term xj or yj . The following example
clarifies this.

Example 1. Assume that Θ = {1, 2, 3, 4}. This implies
that x1x3y2y4 + 2y1y2y3y4 + 3y∗ is an xy-polynomial. How-
ever, the two polynomials x3x4 and x1x2x3x4y4 + 4x∗ + y∗

are not valid xy-polynomials. This is because the former one
has a term that is missing the variables with indices 1 and
2 (i.e., x3x4 has indices 3 and 4 only). The latter one has
a term that has more than one variable with the same index
(i.e., x1x2x3x4y4 contains both variables x4 and y4).

Let Θ be a subset of U . Let P(Θ) be the power set of Θ.
Consider a set S ∈ P(Θ). Consider a predicate R defined on
P(Θ). Next, we define a set indicator function χ : P(Θ) →
{0, 1}, such that χ(S) = 1 if S satisfies R and χ(S) = 0
otherwise. We define an operator, called the x-collapsing
operator, with respect to a set indicator function χ. This
operator is applied to an xy-polynomial F . It replaces all
the terms in F of the form axSyΘ\S with ax∗ if χ(S) = 1.

The y-collapsing operator is defined analogously. We will
denote the set indicator function for the y-collapsing operator
with ω : P(Θ) → {0, 1}. The following definition presents
these concepts formally.

Definition 2. (collapsing operator) The x-collapsing
operator, applied to an xy-polynomial over Θ,
F =

∑k
i=1 aixSiyΘ\Si +bx∗ + cy∗, with respect to set indi-

cator function χ is defined as

ρxχ(F ) =
∑k
i=1 aixSiyΘ\Si(1−χ(Si))+

(
b+

∑k
i=1 aiχ(Si)

)
x∗

+cy∗

We call the result of the collapsing operator the collapsed
polynomial. Notice that the xy-polynomials are closed under
the x- and y-collapsing operations.

We observe a special pair of set indicator functions (χ, ω)
when χ(S)ω(Θ \ S) = 0 for all S ∈ P(Θ). The x- and
y-collapsing operators using such indicators χ and ω never
collapse the same term since we never have χ(S) = 1 and
ω(S) = 1 for the same set S. We also assume that χ and ω
also satisfy the property that if they evaluate to 1 for a set S,
then they evaluate to 1 for any superset of S. The collapsing
operators ρxχ() and ρyω() satisfying this property commute
with each other. In other words, ρyω(ρxχ(F )) = ρxχ(ρyω(F )).
We can combine the successive application of two operators
into a single one, the collapsing operator. We denote the
resulting operator with the notation ρχ,ω(F ) = ρyω(ρxχ(F )).



Example 2. Let χ(S) = 1 if 2 ∈ S and 0 otherwise. Let
ω(S) = 1 if {1, 2} ⊂ S and 0 otherwise.
ρχ,ω(3x1x2x3y4 + 2x1x3y2y4 + 4x3x4y1y2 + 5y∗) = 3x∗ +

2x1x3y2y4 + 9y∗. This is because the first term contains x2,
so it collapses to 3x∗. Also the third term contains y1 and
y2, so it collapses to 4y∗.

We define the multiplication of xy-polynomials as regu-
lar polynomial multiplication with a minor difference; any
variable multiplied with x∗ or y∗ is absorbed into x∗ or y∗

respectively. In other words, for any S, T ⊆ U , xSyTx
∗ = x∗

and xSyT y
∗ = y∗. In particular, x∗x∗ = x∗, y∗y∗ = y∗.

We formally define the multiplication of two xy-polynomials
below.

Definition 3. (xy-product) Given U = {1, . . . , n}, let
Θ1 and Θ2 be two disjoint subsets of U . Let S1, . . . , Sk be
subsets of Θ1, and T1, . . . , Tr be subsets of Θ2. Consider two
xy-polynomials, F1 over Θ1 and F2 over Θ2, such that F1 =∑k
i=1 αixSiyΘ1\Si + b1x

∗ + c1y
∗, F2 =

∑r
i=1 βixTiyΘ2\Ti +

b2x
∗+ c2y

∗. We define the xy-product F1�F2 as F1�F2 =∑k
i=1

∑r
j=1 αiβjxSixTjyΘ1\SiyΘ2\Tj

+
(
b2
∑k
i=1 αi + b1

∑r
i=1 βi + b1b2

)
x∗

+
(
c2
∑k
i=1 αi + c1

∑r
i=1 βi + c1c2

)
y∗+(b1c2 + c1b2)x∗y∗

Example 3. (2x1y2 + 2y1y2 + x∗)� (x4y3 + 3x∗ + y∗) =
2x1x4y2y3 + 6x∗+ 2y∗+ 2x4y1y2y3 + 6x∗+ 2y∗+x∗+ 3x∗+
x ∗ y∗ = 2x1x4y2y3 + 2x4y1y2y3 + 16x∗ + 4y∗ + x∗y∗

The following theorem establishes a very useful result on
the interplay between x-y polynomial multiplication and col-
lapsation.

Theorem 1. If F1 and F2 are xy-polynomials and χ and
ω are two set indicator functions, then ρχ,ω(F1 � F2) =
ρχ,ω(ρχ,ω(F1)� ρχ,ω(F2))

We see that to obtain the collapsed polynomial of an xy-
product of two polynomials it is not enough to multiply the
collapsed versions of the two factors; we need to apply the
collapse operator again. To see this, suppose that a term
xS is collapsed in F1 � F2 on the right hand side of the
equality in Theorem 1. Some of the indices in S come from
F1 and others from F2. Let S1 and S2 denote the indices in
S appearing in F1 and F2 respectively (i.e., S = S1 ∪S2 and
S1 ∩ S2 = ∅). We have xS = xS1xS2 . Suppose that χ(S1) =
χ(S2) = 0 and χ(S) = 1. Then on the right hand side
neither xS1 nor xS2 are collapsed in F1 and F2, respectively,
so another application of the collapsing operator is necessary
on the xy-product. A rigorous proof can be found in our
online technical report [11].

3.2 Probabilistic networks as xy-polynomials
So far we have defined the xy-polynomials and the key op-

erators on them. In this section, we explain how we model
probabilistic networks and the reachability problem consid-
ered in this paper using these polynomials.

Let G = (V,E, P ) be a probabilistic network with E =
{e1, . . . , en}. For each edge ei ∈ E, let pi = P (ei) be the
probability that ei exists and qi = 1 − pi be that it is ab-
sent. We start by transforming a single edge of G into a
polynomial.

Definition 4. (Edge polynomial) We define the edge
polynomial for each edge ei ∈ E as the first degree polyno-
mial of two variables xi and yi, Fi(xi, yi) = pixi + qiyi.

Consider a set of edges E′ ⊂ E. We define the product of
the edge polynomials of the edges in E′ as the edge aggre-
gation polynomial. The following definition introduces this
formally.

Definition 5. (Edge aggregation) The edge aggre-
gation polynomial of the set of edges E′ is the polynomial
F =

∏
ei∈E′ Fi(xi, yi).

Following from Definition 5, the edge aggregation polyno-
mial for the given set of edges E′ is
F =

∑
E⊂E′

∏
ei∈E pixi

∏
ej∈E′\E qjyj

Example 4. The edge aggregation polynomial of the set
{e2, e3} in Figure 1 is F (x2, x3, y2, y3) = (p2x2+q2y2)(p3x3+
q3y3) = p2p3x2x3 + p2q3x2y3 + p3q2x3y2 + q2q3y2y3.

Notice that the edge aggregation polynomial defined above
is an xy-polynomial with b = c = 0. An edge aggregation
polynomial has two important properties. First, each term
contains the product of the existence probability (i.e., pi) for
a subset of edges of E′ and the absence probability (i.e., qi)
for all the remaining edges in E′. Thus, each term’s coeffi-
cient is the probability to observe a specific network instance
where only the edges corresponding to the xi variables ex-
ist. In other words, a term precisely models a subnetwork.
For instance in Example 4, p2q3x2y3 models the subnetwork
where e2 is present and e3 is absent. The coefficient p2q3 is
the probability that e2 is present and e3 is absent. Second,
each possible subnetwork (i.e., all subsets of edges in E′) ap-
pears as exactly one term in the aggregation polynomial. For
instance in Example 4, the two edges in E′ yield four possi-
ble subnetworks (i.e., each edge is absent or present). The
edge aggregation polynomial has four terms, each modeling
one of these subnetworks.

When E′ = E we call the resulting polynomial the graph
polynomial. The graph polynomial is an exhaustive repre-
sentation of all the deterministic instances that could be gen-
erated by the probabilistic network model, along with their
probability of realization. For instance, consider the prob-
abilistic network in Figure 1. In its graph polynomial, the
term that contains x3x4x5y1y2 corresponds to the network
instance that only contains edges e3, e4 and e5 (bottom-left
network in Figure 1). The coefficient of each term is the
probability that the deterministic network corresponding to
that term is realized. For example, the probability of ob-
serving the deterministic network shown on the bottom-left
of Figure 1 is p3p4p5q1q2. Using the possible worlds seman-
tics [31], the probability that the network satisfies any pred-
icate can be computed by summing the probabilities of the
possible deterministic worlds in which the network satisfies
the predicate. This is equal to the sum of the coefficients
of the polynomial terms corresponding to the deterministic
networks that satisfy the given predicate.

3.3 Modeling reachability in probabilistic net-
works

We are now ready to describe how we use xy-polynomials
to find the probability that a given target node t can be
reached from a given source node s. To achieve this, we
need a predicate that can characterize the event that t can
be reached from s in a deterministic network instance. We
do it by considering a special deterministic instance of the
network G = (V,E, P ) in which all edges in E exist with



certainty. We denote this network with G = (V,E). We
compute two pieces of information from G. The first one is
the set of all possible simple paths from s to t. The second
one is the set of all possible minimal s-t cuts. An s-t cut is a
subset of edges of the given network such that their removal
from the network disconnects s from t. We say that an s-t
cut is minimal if none if its subsets is an s-t cut. We denote
the set of paths and the set of cuts with Ψ = {π1, . . . , πk}
and Φ = {κ1, . . . , κl} respectively. For example in Figure 1,
{e1, e2} is a path and {e1, e3} is a minimal s-t cut. In this
example, {e3, e4} is not an s-t cut because t is still reachable
from s after removing e3 and e4. Also, {e1, e3, e4} is not a
minimal s-t cut because it has a subset (i.e., {e1, e3}) that
is also an s-t cut.

We are now ready to present our main result, which is the
mathematical foundation of the PReach algorithm. It shows
that, given a probabilistic network and a start and a target
node, by applying the collapsing operator, we can reduce the
graph polynomial to only two terms; one of them containing
only the variable x∗ and the other only y∗. It uses Ψ and
Φ to construct the x-collapsing and y-collapsing operators.
The coefficient of x∗ is the probability that the target node
is reachable from the start node and the coefficient of y∗ is
the complement of the coefficient of x∗. We give the proof
in our online technical report [11].

Theorem 2. Let G = (V,E, P ) be a probabilistic network
and F be the graph polynomial for G. Let s, t ∈ V be two
nodes of G. Let Ψ be the set of all simple paths from s to t
and Φ the set of all minimal s-t cuts in Ḡ. For all π ∈ Ψ
and κ ∈ Φ, let Ind(π) and Ind(κ) be the set of indices of the
edges in π and κ respectively. Define set indicator variable
χ(S)=1 if ∃π ∈ Ψ such that Ind(π) ⊆ S and 0 otherwise.
Similarly, define ω(S)=1 if ∃κ ∈ Φ such that Ind(κ) ⊆ S
and 0 otherwise.

If Ψ 6= ∅, then the collapsed graph polynomial with respect
to χ and ω is ρχ,ω(F ) = γx∗ + (1 − γ)y∗, where γ is the
probability that t is reachable from s.

3.4 PReach: the algorithm
In Section 3.3, we showed that we can compute the reacha-

bility probability in a probabilistic network by collapsing its
graph polynomial with an appropriate collapsing operator
ρχ,ω(). The central hurdle in doing this is to compute the
graph polynomial. This is because it requires multiplying all
edge polynomials of the given probabilistic network. Given
that each edge polynomial has two unique variables, such
multiplication leads to a growth of the number of terms ex-
ponential in the number of edge polynomials. For instance,
the probabilistic network in Figure 1 has five edges. There-
fore, the product of the corresponding five edge polynomi-
als yield 25 = 32 terms. The complexity of computing the
reachability probability is dominated by the number of terms
in the graph polynomial. In this section, we describe the
PReach algorithm which computes the reachability from the
graph polynomial while dramatically reducing the number
of its terms. PReach uses the collapsing operator carefully
to reduce the size of the graph polynomial while multiplying
edge polynomials. First, we present Theorem 3 which lays
the foundation of the PReach algorithm. We give its proof
in our online technical report [11].

Theorem 3. Let G = (V,E, P ) be a probabilistic net-
work. Let E1 ⊂ E and E2 ⊂ E be two disjoint sets of

edges of G. Let F1 and F2 be the edge aggregation polyno-
mials of E1 and E2, respectively. Let χ and ω be two set
indicator functions. The collapsed edge aggregation polyno-
mial with respect to χ and ω corresponding to E1 ∪ E2 is
ρχ,ω(F1F2) = ρχ,ω(ρχ,ω(F1)� ρχ,ω(F2))

Following Theorem 3, our method first finds the set of all
paths Ψ and all minimal s− t cuts Φ between the given start
and target nodes s and t. We build the indicator functions
χ and ω from these paths and cuts respectively as described
in Theorem 2. In other words, χ() returns 1 only if the un-
derlying subset of edges contains at least one path from Ψ.
Similarly, ω() returns 1 only if the underlying subset of edges
contains at least one s-t cut from Φ. Then we compute the
graph polynomial by multiplying the edge polynomials and
reduce the size of the resulting polynomials using the col-
lapsing operator one edge at a time. Notice that Theorem 3
ensures that we can avoid computing the entire uncollapsed
graph polynomial by collapsing the product polynomial af-
ter each xy-multiplication as soon as a term contains a path
or a cut.

Example 5. Let us apply the PReach algorithm to the
network in Figure 1, where for simplicity we assume that all
probabilities are 0.5. We will compute the probability that
node c is reachable from node a. The set of all simple paths
between the two nodes is {{e1, e2}, {e3, e4}, {e2, e3, e5}}. The
set of all minimal s − t cuts is {{e1, e3}, {e2, e3}, {e2, e4},
{e1, e4, e5}}. In Table 1 we present the collapsed graph poly-
nomial after adding each edge.

As we discussed earlier, after multiplying k edge polyno-
mials, without collapsation the edge aggregation polynomial
has 2k terms. Notice however that the collapsed polynomial
remains very small throughout this example. More specifi-
cally, we obtain the first free variable x∗ in the product F1F2

since edges e1 and e2 form a path from source (i.e., a) to tar-
get (i.e., c) in Figure 1. At this step both the collapsed and
uncollapsed edge aggregation polynomials have four terms.
However, when we multiply the result with the next edge
polynomial F3, the free variable absorbs all the terms in F3.
Furthermore, this product creates the next free variable y∗

since edges e1 and e3 form a minimal s− t cut. As a result,
the collapsed edge aggregation polynomial has nearly half as
many terms as the uncollapsed one.

As we multiply the next edge polynomial F4, both x∗ and
y∗ absorb the new terms. Also edge e4 enables collapsing
some of the existing terms in either x∗ or y∗ by forming
new paths or cuts on top of the existing ones. As a result,
the collapsed polynomial has less than a quarter terms of the
uncollapsed one.

Finally, after multiplying the last edge polynomial F5, our
method collapses even more terms since including e5 intro-
duces new paths and cuts. We end up with only two terms
while the graph polynomial has 32 terms. The coefficient of
x∗ (i.e., 0.46875) in this polynomial is the reachability prob-
ability we are aim to find. The coefficient of y∗ is simply 1
minus the coefficient of x∗.

Further improvements in the algorithm. Collapsing
the terms of the edge aggregation polynomial reduces the
computational cost of the PReach algorithm greatly. Here,
we make two optimizations that will cut down this cost fur-
ther by preprocessing the given network quickly. The first
one will shrink the size of the input network by filtering and



Table 1: Computation of reachability probability from node

a to node c in the probabilistic network shown in Figure 1.

Column denoted by EP shows the number of terms in the

edge aggregation polynomial, and the column denoted by CP

shows the number of terms in the corresponding collapsed

polynomial.
Edge aggregation Collapsed polynomial #Terms

polynomial CP EP
F1 0.5x1 + 0.5y1 2 2

F1F2 0.52(x1y2 + x2y1 + y1y2 + x∗) 4 4

F1F2F3
0.53(x1x3y2 + x2x3y1 + x3y1y2)
+ 0.25x∗ + 0.375y∗

5 8

F1F2F3F4 0.54x2x3y1y4 + 0.4375x∗+ 0.5y∗ 3 16
F1F2F3F4F5 0.46875x∗ + 0.53125y∗ 2 32

merging edges whenever possible. The second one will order
the edge polynomials that go into the polynomial multipli-
cation to maintain a small number of polynomial terms.
Contract the network. PReach requires a polynomial

multiplication for each edge in the network. Thus, fewer
edges implies fewer polynomial multiplications. We reduce
the size of the input network in the preprocessing stage in
three steps, illustrated in Figure 2. The first step is the
removal of nodes that are irrelevant to the problem, along
with their edges. A node is irrelevant if (i) it is not a source
node and it has no incoming edges (i.e., is unreachable from
a source node), or (ii) it is not a target node and it has
no outgoing edges (i.e., no target node can be reached from
it). In Figure 2(a), this step removes nodes a and c and
obtains the network in Figure 2(b). The second step replaces
a path that consists of a sequence of nodes that do not have
any other incoming or outgoing edges by a single edge. The
probability of the new edge is the product of the probabilities
of the edges on the path it replaces. In Figure 2(b), this
step replaces the edges on the path s→ b→ t with a single
edge s → t and obtains the network in Figure 2(c). After
the second step, it is possible to have multiple edges with
the same direction between pairs of nodes. For instance,
in Figure 2(c), this happens after merging the edges (a, b)
and (b, c) into (a, c). The third step replaces multiple edges
with the same start and end nodes by a single edge. The
probability of the new edge is the probability that at least
one of the initial edges is present. More specifically, if the
initial edges have probabilities p1, . . . , pk, the probability of
the new edge is 1 − (1 − p1) . . . (1 − pk). In Figure 2(c),
the step merges the two edges from s to t and obtains the
network in Figure 2(d). We repeat these three steps until no
further reduction is possible.
Order the edges. The collapsing operator shrinks the

polynomial. Notice that for collapsing operator to work, the
set indicator functions should evaluate to one. Our second
improvement follows from these observations. By carefully
deciding the order in which the edge polynomials get mul-
tiplied, we can force the set indicator function to evaluate
to one early in the polynomial multiplication. We have the
following heuristic for choosing the edge ordering. Consider
each path or cut as the set of edges they contain. We or-
der all such sets by their sizes in increasing order. We first
multiply the edge polynomials in the smallest set. When we
multiply an edge polynomial, we remove that edge from all
the remaining sets. We then repeatedly pick the next small-
est set until we multiply all edge polynomials. This greedy
approach ensures that we collapse the graph polynomial as

soon as possible.
Time complexity of PReach. Let us denote the number
of edges in the probabilistic network before and after con-
tracting the network with n and n′ (with n′ ≤ n). A trivial

upper bound for the time complexity of PReach is O(2n
′
) as

it requires multiplying n′ edge polynomials. The actual time
complexity is however significantly less than this as PReach
collapses polynomials, and it depends on the network topol-
ogy.

Let Ek be the set of first k edges whose polynomials are
multiplied. Let Ψk and Φk be the set of paths and cuts in Ek
(i.e., Ψk = {πi|πi ∈ Ψ, πi ⊆ Ek} and Φk = {κi|κi ∈ Ψ, κi ⊆
Ek}). The exact time complexity of aggregating the polyno-

mials for the edges in Ek is 2k+
∑
C⊆Ψk

(−1)|C|2k−|∪πi∈Cπi|+∑
C⊆Φk

(−1)|C|2k−|∪κi∈Cκi|. The formula follows by deriv-
ing the number of terms collapsed by each subset of paths
and cuts. Let d be the maximum out-degree of a node in the
contracted network. Let σΨ and σΦ be the maximum size of
a path and a cut in the contracted network respectively. The
complexity of finding all paths is O(dσΨ). The complexity
of finding all minimal cuts is O(dσΦ).

As we demonstrate in the next section, PReach’s running
time is dominated by polynomial multiplication and collaps-
ing. We also show that PReach is many orders of magnitude
faster than the existing precise methods and the gap between
them increases with increasing network size.

4. RESULTS
This section evaluates the performance of PReach. We ex-

perimented with signaling networks taken from KEGG [18].
We have used all the signaling networks of Homo sapiens
(H. sapiens) from this database. We report results only for
networks with more than 13 edges as the problem is trivial
for small networks. In order to experiment with networks
of growing sizes we also combined subsets of these signaling
networks. We have obtained the source and targets of each
signaling network based on the hierarchical organization of
the genes [13]. We set the genes at the top of the hierar-
chy as the source nodes and the ones at the bottom as the
target. You can refer to our online technical report [11] for
the details of a listing of these networks and and their sizes.
We have extracted the confidence scores for each interac-
tion from STRING [35] and used them as edge probabilities.
STRING has confidence values in the [1,1000] interval. We
divided this number by 1000 to obtain a number in the [0,1]
interval for each interaction.

We compared PReach to the inclusion-exclusion algorithm
of Ourfali et al. [27]. Although this method does more than
solving the reachability problem, we compare against the
inclusion-exclusion approach introduced in it as the most re-
cent exact solution available for the problem. The inclusion-
exclusion algorithm did not scale to networks with more than
40 paths. We therefore improved its running time dramati-
cally by implementing our network contraction method (see
Section 3.4) as a preprocessing step to it. In all our experi-
ments, we compare against the improved implementation of
Ourfali et al. [27]

We implemented both PReach and the inclusion-exclusion
method in C++. We ran our experiments on a multiproces-
sor computer with 48 cores and 256 GB RAM and measured
the running times of both methods.



s t

ca

p3

p1 p2b

p4 p5

(a)

p3

p1 p2b

s t

(b)

p3

p1p2

s t

(c)

s t
1− (1− p1p2)(1− p3)

(d)

Figure 2: Contracting the network as a preprocessing step.

2(a): initial network. 2(b): Eliminating irrelevant nodes.

2(c): replacing paths without deviations. 2(d): replacing par-

allel edges.

Table 2: Network statistics and running time comparison

between our method (PReach) and the inclusion-exclusion

method (IE). |V |, |E| and |Ψ| denote number of nodes, edges

and paths respectively. Time is in seconds unless otherwise

specified. The values marked with ∼ are estimates we ob-

tained from the number of paths after running IE for over

one day. In parenthesis, we show the time to compute all

cuts for PReach, which is included already in the total run-

ning time of PReach. In the second row, All − Wnt indicates

all networks but Wnt. In other words it is the union of the

Hedgehog, Jak-STAT and mTOR networks.
Execution time (s)

Network |V | |E| |Ψ| IE PReach
Wnt 58 91 66 0.001 0.03 (0.01)
All − Wnt 64 100 136 17238.43 1.75 (0.02)
Wnt + Hedgehog 70 114 111 583.97 17.69 (1.3)
Wnt + mTOR 84 129 89 0.29 57.31 (3.54)
Wnt + TGF-beta 87 139 220 ∼102 yrs 1151.23 (39.13)
Wnt + Jak-STAT 77 127 81 ∼146 hrs 1805.45 (48.81)

4.1 Running time evaluation
Both PReach and inclusion-exclusion return the same re-

sult when they run till completion as they both compute the
reachability probability precisely. We first evaluate how long
it takes for them to find the result.

In this experiment, we compute the probability that at
least one target is reachable from a source. To do that, we
created a hypothetical source node s that has an outgoing
edge to all the actual source nodes. Similarly, we created
an artificial target node t with incoming edges from all ac-
tual target nodes. We set the probabilities of all artificially
created edges to 1. We then computed the reachability prob-
ability from s to t. We considered networks of H. Sapiens
obtained by combining different KEGG pathways. Table 2
presents the results. The time to preprocess and contract
the network as well as the time for finding all paths was
negligible (milliseconds), so we do not report them. Re-
sults demonstrate that PReach is orders of magnitude faster
than the competing method. Only on the two networks with
the least number of paths is the inclusion-exclusion method
faster than PReach. The inclusion-exclusion method is ex-
ponential in the number of paths from source to destination.
As a result, this method quickly becomes infeasible as the
number of paths grows. In [27], Ourfali et al. were able to
report results on the entire S. cerevisiae network by limiting
the length of their paths to three edges, and thus limiting
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Figure 3: Predictability of the running time for PReach

and the inclusion-exclusion method. Each circle represents

the running times for one network. The network sizes vary

between 58 and 62. x axis: running times for PReach (s).

y-axis: running time for the inclusion-exclusion method (s).

Scales on both axes are logarithmic. The circles at 105 s

running time represent all running times greater than 105 s.

the number of paths. This however leads to incorrect results
if there are paths longer than three edges. When we ran
this method after limiting the path length to three, in five
out of six experiments, it found incorrect results. The per-
centage of error was enormous; it varied between 6 to 100%.
On the other hand, paths and cuts help PReach collapse the
polynomial terms and cut down the running time dramati-
cally. Thus, a fundamental difference between PReach and
the inclusion-exclusion method is that growing number of
paths rapidly hurts the performance of the latter, while it
actually improves that of the former. Moreover, our method
does not impose an arbitrary maximum path length, which
may be difficult to determine and lead to incorrect conclu-
sions, since the magnitude of the error cannot be properly
estimated.

We observe this in our experiments; as the number of edges
grows, we expect the running time of PReach to grow. How-
ever, the paths and cuts help us collapse the polynomial
terms and cut down the running time dramatically.

The running times of both methods can grow rapidly as
they have time complexities exponential in different terms.
So their cost can grow highly when the network grows slightly.
To observe how severe this problem is, we assessed running
times of PReach relative to the inclusion-exclusion method
by growing the network size in a controlled fashion. To do
this, we slightly grew a network by adding one node at a
time in a way that preserves global properties, such as den-
sity and power law distribution of node degrees. To add a
new node to the network, we choose an existing node uni-
formly at random and assign the in-degree of the existing
node to the new node. To connect the new node to the net-
work, we randomly select nodes from the current network.
The probability that a node will be selected is proportional
to the out-degree of that node. We add an incoming edge
from each chosen node to the new one. We add the outgo-
ing edges from the new node similarly. This way the power
law characteristic of the degree distribution in the network is
preserved. Following this procedure, starting with the Wnt
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Figure 4: Reachability probabilities in KEGG signaling networks and randomly generated networks. Left: ErbB; middle: Wnt;

right: MAPK.

network of H. sapiens, which has 58 nodes, we generated 200
networks. 50 networks are generated by adding one node to
the initial network, other 50 are generated from one of the
networks obtained in the previous step by adding one more
node and so on. We ran both PReach and the inclusion-
exclusion method on each network. We report the running
times in Figure 3. We observe that, because of its exponen-
tiality, the running times for the inclusion-exclusion method
vary wildly, spanning several orders of magnitude increase,
even if the network sizes differ by four nodes at most, be-
tween 58 and 62. By contrast, PReach finishes in 100 seconds
in most of the cases with much smaller variation in running
time. In a small number of instances, the inclusion-exclusion
method is faster than PReach. Typically, this happens when
there are only a small number of paths from the source to
target nodes. Nevertheless, PReach has a small running time
even for those datasets.

4.2 Biological significance of the results
In order to assess the biological significance of our results,

we have compared the results obtained on the KEGG signal-
ing networks with results obtained on randomly generated
networks. To generate these random networks, we start with
an initial KEGG network and we shuffle the edges in a man-
ner that preserves the node count and the degree of each
node. At each step of the shuffling process, we select two
edges uniformly at random and switch the endpoints be-
tween the two edges, i. e., edges (a, b) and (c, d) become
(a, d) and (c, b). We repeat this for 100, 000 times. For each
KEGG network, each source node and each target node, we
computed the probability that the target node is reachable
from the source node. We ranked all source-target pairs
by their corresponding reachability probabilities and plot-
ted the resulting graphs in Figure 4. We omitted from the
plots the pairs with zero probability. The plots clearly show
higher reachability probability for the KEGG networks com-
pared to the randomly generated networks, especially for the
ErbB and Wnt pathways. For example, the pair ranked 40th
in the ErbB network has a reachability probability of close
to 0.9, while the pair with the same rank in the correspond-
ing randomly generated network is disconnected. The gap
between the plots for the real and shuffled networks demon-
strate that signaling networks are heavily biased towards
enabling pathways from receptors to reporters to maximize
the chances that signals can travel to reporters. Interest-
ingly, the gap between the probability values in the MAPK

Table 3: Top sources and targets according to PReach and

the deterministic alternative in ErbB, MAPK and Wnt. For

PReach: most common sources and targets having reachabil-

ity probability greater than 0.9. For Deterministic: sources

connected to most targets and targets connected to most

sources.
Top sources and targets

PReach Deterministic
Sources EREG, HBEGF HBEGF, BTC, TGFA,

ErbB EGF, TGFA EGF, EREG
Targets STAT5, FAK, ELK1 All tied

MAPK Sources TNF, ILA1, GLK TNF, IL1A
Targets ELK1, p53, CREB NLK, ATF4

Wnt Sources TAK1, PKA, PS-1 WNT5A, DKK1
Targets NLK, c-Myc ROCK1, PRKCA

Table 4: Common GO terms for targets having reachability

probability greater than 0.9 in ErbB, MAPK and Wnt.
Network GO ID Term name

ErbB
GO:0000209 protein polyubiquitination
GO:0007087 mitotic nuclear pore complex reassembly

MAPK

GO:0000209 protein polyubiquitination
GO:0003399 cytoneme morphogenesis
GO:0006268 DNA unwinding involved in replication
GO:0031265 CD95 death-inducing signaling complex
GO:0042598 vesicular fraction

Wnt
GO:0000209 protein polyubiquitination
GO:0042598 vesicular fraction

network and its random counterpart is less wide. This ob-
servation complies with the fact that the average in-degree
of MAPK reporters is 1.68, while it is much larger for ErbB
and Wnt. This suggests that MAPK signaling network is
more robust and less sensitive to perturbations as long as
the node degrees are preserved.

We have further investigated the results of this experiment
by examining the most common source and target proteins in
the pairs that achieved reachability probability greater than
0.9. We also devised an intuitive deterministic alternative
for measuring reachability. Using the underlying determin-
istic version of each network, we count the number of targets
that a given source can reach to, as well as the number of
sources that can reach to a given target. We also list the top
sources and targets according to this metric. Table 3 lists
such proteins for each examined network. Among the target
proteins with more than 0.9 reachability probability in ErbB
is STAT5. It plays an important role in the development and
function of B- and T-lymphocytes, which are the major cel-



lular components of the adaptive immune response [15]. One
of the highest reachable target proteins in MAPK is CREB,
which has a well-known role in cell proliferation, differenti-
ation and survival, as well as specific functions in immune
responses [38]. In Wnt, NLK is found among the highest
reachable target proteins, which positively regulates Wnt/β-
catenin signaling by phosphorylating LEF1 in neural progen-
itor cells [26]. The top ErbB sources found by PReach were
also found by the deterministic method. However, the de-
terministic method produces a tie between all ErbB targets,
providing no ranking information. In cases of MAPK and
Wnt, PReach produces top sources and targets that are dif-
ferent than the ones produced by the deterministic method.
This provides new insights about proteins of potentially im-
portant roles, which cannot be found by the deterministic
method.

We also extracted the GO annotations that are common
to the target proteins that achieve more than 0.9 reachability
probability. Table 4 lists such annotations for each examined
network. We considered all possible GO terms that exist in
at least one protein among all the target proteins. We then
eliminated nonspecific GO terms (i,e., GO-terms that are too
high in the GO-hierarchy) in order to avoid having a positive
bias towards our method. Such elimination strategy is used
in the literature for the same purpose (see [33, 36]).

For each GO term, say ti in the list of terms described
above we computed the probability to reach to that GO term
as follows. Let Xi denote the set of target proteins that are
annotated with ti. We created a hypothetical target node hi.
We also included a hypothetical edge from each node in Xi
to hi. The probability of all those edges are set to 1.0. Thus
reaching to hi means reaching to at least one protein with
annotation ti. In short, we compute the reachability proba-
bility to each ti without error as the reachability probability
to hi. The GO terms listed in this table are those with the
highest reachability probability. One of the common annota-
tions of MAPK highest-reachable target nodes is cytoneme
morphogenesis (GO:0003399). This signifies a role in shap-
ing the anatomical structure of cytonemes, which connect
adjacent cells to enable transfer of surface-associated car-
goes from cell to cell[32]. Among the common annotations
for ErbB highest-reachable target nodes is mitotic nuclear
pore complex reassembly (GO:0007087). In the context of
mitotic cell division, this signifies a role in reforming nuclear
pores which facilitate the movement of macromolecules be-
tween the nucleus and cytoplasm [4]. For the top targets
found by the deterministic method, we could not extract the
top GO annotations for ErbB targets because all the targets
are tied in ranking. For MAPK and Wnt, PReach outputs
GO terms that are different than the ones outputted by the
deterministic method. This points out different areas of in-
vestigation about more important functions of each network.

5. CONCLUSION AND FUTURE WORK
We have presented a fast and exact method for computing

the reachability probability in probabilistic networks, where
each edge represents an actual interaction with a different
probability. Our method, PReach, relies on a theory we
developed around a special class of polynomials, the xy-
polynomials, used as a representation for probabilistic net-
works. The biological significance of PReach is validated by
experimentation. Other methods that have considered this
problem in the context of signaling networks, based on the

inclusion-exclusion principle, are far behind our method in
terms of computational cost.

PReach has numerous potential biological applications on
multiple levels. On the node level, a new notion of node
centrality in probabilistic networks can be devised by mea-
suring the difference in reachability probability if the node is
removed. On the network level, network robustness can be
assessed based on difference in reachability probability after
changing interaction probabilities and/or network topology.
On the level of collective functions, reachability probability
of a biological function can be measured as that of the tar-
gets annotated by corresponding functional annotation. As
a result, we can tell which functions are more important (i.e.,
more supported) than others in a given network.

Further improvements to the algorithm are possible, suit-
able especially for large input networks. In such cases, a
divide and conquer strategy can be adopted, similar to the
method used in [2]. We can partition the initial network in
two loosely connected clusters and solve the problem for each
cluster. The looser the components are connected between
themselves, the easier it is to merge the solutions. This can
yield important benefits in terms of running time. We plan
to explore this further improvement in future work.
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