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ABSTRACT

We propose a new image forgery detection technique which fuses
the outputs of two very diverse tools, based on machine learning
and block-matching, respectively. The machine-learning tool builds
upon some local descriptors recently proposed in the steganalysis
field, which are selected and merged based on an ad hoc measure
of reliability. The block-matching tool leverages on the patchmatch
algorithm for fast search of candidate matchings. Both tools are fine-
tuned so as to optimize their fusion which, in turn, exploits the re-
spective strengths and weaknesses of each tool. The proposed tech-
nique ranked first in phase 1 of the first Image Forensics Challenge
organized in 2013 by the IEEE Signal Processing Society.

Index Terms— Digital forensics, forgery detection, machine
learning.

1. INTRODUCTION

Digital image forensics is gaining a great deal of attention in the
scientific community, and image forgery detection is probably one
of the hottest topics in this field. A large number of approaches
have been proposed in recent years, and not always they are tested
on public dataset or the source code is made available to guaran-
tee reproducible research. In these conditions, it is difficult to as-
sess objectively such methods and figure out their performance in
real-world applications. Driven by these considerations, the IEEE
Information Forensics and Security Technical Committee (IFS-TC)
launched a detection and localization forensics challenge, the First
Image Forensics Challenge, with three main goals [1]

• to provide the community with an open data set and protocol
for evaluation of the latest forensics techniques

• to evaluate the current state-of-the-art techniques with respect
to their ability to detect image forgeries

• to set forth a standardization protocol as a common compari-
son ground truth for new techniques

In this paper1 we describe the strategy we followed to tackle phase 1
of the Challenge, devoted to image forgery detection.

The challenge comprises several original images captured from
different digital cameras with various scenes either indoor or out-
door. No information was provided on the number and types of
cameras. The forged images comprise a set of different manipulation
techniques such as copy-move and splicing with different degrees of
photorealism.

1The present paper extends the technical report presented at the IEEE In-
ternational Workshop on Information Forensics and Security (WIFS) held in
Guangzhou in November 2013, in the special session devoted to the Foren-
sics Challenge.

Given the nature of the dataset, we realized very soon that a
fusion of different tools was necessary. Indeed, real-world image
forgery detection can be extremely challenging because of the wide
availability of powerful photo-editing tools which allow for different
types of manipulations, and considering the large variety of operative
conditions encountered in practice, including compression, blurring,
distortions, etc. No single method can be expected to work satis-
factorily in all these cases, and in fact the literature confirms [2, 3]
that a suitable fusion of tools can largely improve detection perfor-
mance over single methods, especially in adverse and unpredictable
conditions.

In recent years, we have developed image forensics techniques
based on camera sensor noise, a.k.a. PRNU (photo response non-
uniformity) noise [4, 5, 6], and on local descriptors [7, 8]. Therefore,
we decided to follow both these approaches, with the aim of fusing
decisions at the end of the process. In addition, we included a third
line of development based on block matching even though this is
applicable only to a fraction of the forged images, those presenting
copy-move forgeries.

Unfortunately it was very soon clear that the PRNU-based ap-
proach was bound to be of little use. Lacking any information on the
cameras used to take the photos, we had to cluster the images based
on their noise residuals. This lowered significantly the reliability
of this tool which had to be eventually discarded in the fusion. On
the contrary, techniques based on local descriptors appeared from the
beginning very promising, and we pursued actively this line of devel-
opment, drawing also from the relevant literature in the steganalysis
field. Complementing such techniques with the copy-move detector,
tuned so as to guarantee very high specificity, led us eventually to
obtain very good results.

In the next two Sections we will describe the proposed splicing
detector based on local descriptors and copy-move detector based on
fast matching. Then, Section 4 describes the decision fusion strat-
egy and the numerical results. Eventually, we draw conclusions in
Section 5.

2. SPLICING DETECTION

Several feature-based techniques have been proposed in the last
decade for splicing detection. Major efforts have been devoted to
find good statistical models for natural images in order to select
the features that guarantee the highest discriminative power. Often,
in order to capture more meaningful statistics, transform-domain
features have been used, as in [9] where the image undergoes block-
wise discrete cosine transform (DCT) with various block sizes and
first-order (histogram based) and higher-order (transition probabil-
ities) features are collected and merged. Given the good results
obtained in terms of detection accuracy, an expanded Markov-based
scheme in DCT and DWT domains is followed in [10]. Interestingly,
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the method proposed in [9] was inspired by prior work carried out
in steganalysis which, despite the obvious differences with respect
to the forgery detection field, pursues a very similar goal, that is, de-
tecting seemingly invisible alterations of the natural characteristics
of an image. A Markov-based approach has been also recently used
in [11].

The same path is followed in the forgery detection technique
proposed in [12], based on an approach proposed for steganalysis
in [13, 14]. The major contribution consists in deriving the features
based on some co-occurrence matrices computed on the thresholded
prediction-error image, also called residual image. In fact, model-
ing the residuals rather than the pixel values is very sensible in these
low-level methods (not based on image semantic), since the image
content does not help detecting local alterations and should be sup-
pressed altogether. In the context of forgery detection, in particular,
considering that splicing typically introduces sharp edges, it is rea-
sonable to characterize statistically some edge image, which can also
be the output of a simple high-pass filter, like a derivative of first or-
der. As a further advantage, the residual image has a much narrower
dynamic range than the original one, allowing for a compact and
robust statistical description by means of co-occurrences.

The processing path outlined above, already proposed in [13],
can be therefore summarized in the following steps

1. computation of the high-pass residuals;

2. truncation and quantization;

3. feature extraction based on co-occurrence matrices of se-
lected neighbors;

4. design of a suitable classifier on the training set.

Given its compelling rationale, and the promising results obtained in
the literature, we chose to adhere strictly to this path. Even so, a large
number of design choices are necessary, beginning from the high-
pass filter, to end with the classifier, which impact heavily on the
performance and require a lengthy development and testing phase.
Fortunately, we could rely on the precious results described in a
recent work on steganalysis [15], where a large number of models
have been considered, analyzed, and made available online to the
research community [16]. Specifically, in [15] a number of differ-
ent high-pass filters have been considered, both linear and nonlinear,
with various supports, different quantization and truncation strate-
gies for the residues have been implemented and, based on some
preliminary experiments, the use of some selected groups of neigh-
bors for co-occurrence computation has been suggested. There is no
doubt, as the Authors of [15] themselves point out, that better design
choices are possible and should be pursued when aiming at differ-
ent goals, but the wealth of models they provide allows for the rapid
development and optimization of a specific processing chain, which
can be then improved, as we did in this research, under some specific
respects.

2.1. Implemented method

In [15] 39 different high-pass filters are proposed, which work on the
grayscale version of the original image obtained by standard conver-
sion. All such filters are quite simple, since their goal is to highlight
minor variations w.r.t. typical behaviors. Two examples among the
simplest are the first order horizontal linear filter

ri,j = xi,j+1 − xi,j

and the first order symmetric nonlinear filter

ri,j = min[(xi,j+1 − xi,j), (xi+1,j − xi,j)]

Fig. 1: A training image with its ground truth and an example resid-
ual image.

Fig.1 shows the effect of applying one of such filters to a training
image of the challenge.

Residuals are in general real-valued and, although typically
small, are defined on a wide range. To enable their meaningful
characterization in terms of co-occurrence they must be quantized
and truncated. Following [15] we use

r̂ij = truncT (round(rij/q))

with q the quantization step and T the truncation value. We use
T = 2 to limit the matrix size and consider exclusively q = 1,
both to reduce complexity, and to limit the risk of overfitting to our
training set. Each quantized residual can eventually take on 5 values,
from -2 to +2. We then compute co-occurrences on four consecutive
pixels along the same row or column, obtaining 625 entries, which
can be highly reduced thanks to symmetries.

In the classification phase we depart significantly from the refer-
ence technique, due to the overfitting problem mentioned before. In
fact, each individual model comprises 169 features for linear filters
and 325 for non linear ones, a number large but still manageable with
the training set available in the challenge, comprising about 1500
images (450 fake and 1050 pristine). Merging all models, however,
would lead to a much larger number of features, too large to carry
out a meaningful training. In [15] this problem was dealt with by
means of an ensemble classifier, but the training set was about ten
times larger.

We decided therefore to test each model individually, relying
heavily on cross validation to gain a reasonable insight into their ac-
tual performance. In each experiment, we selected at random 5/6 of
the pristine images and 5/6 of the fake ones to train a SVM classifier.
The remaining images of each class were then used to test the trained
classifier. To reduce randomness, each experiment was repeated 18
times, selecting the training and test set at random, and results were
eventually averaged. Fig.2(top) shows the results for the 39 models
considered, in terms of expected score, defined as

S =
Pr(F̂ |F ) + Pr(P̂ |P )

2

with P [F ] indicating the event “image pristine[fake]” and P̂ [F̂ ] the
event “decision pristine[fake]”, respectively. For several models the
predicted score is in the order of 94%, hence very promising. To fur-
ther improve results, we tried to merge the features of a limited num-
ber of models, up to four, not to exceed the number of training im-
ages. Results are reported in Tab.I in terms of score obtained before
and after merging. The merging does not seems to guarantee any im-
provement over the best single-model classifier, moreover, the score
exhibits a non-monotonic behavior as more models are merged, ring-
ing an alarm bell on stability.
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Fig. 2: Scores (top) and AUC (bottom) for all models.

To improve robustness, we considered a different measure of
performance. For each SVM classifier, we displaced the separating
hyperplane along the orthogonal direction, and built the correspond-
ing ROC. Then we computed, for each model, the Area Under the re-
ceiver operating Curve (AUC), because a large AUC implies not only
a good performance in the best operating point, but also robustness
w.r.t. changing conditions. Fig.2(bottom) shows results. Although
there is a clear correlation, the top-score models do not coincide with
the top-AUC models. We then tried merging the best models selected
with this latter criterion, obtaining the results reported in Tab.II. This
time, performance improves monotonically with merging, providing
a gain of about 1% over the best individual model,

Eventually, our SVM classifier uses the merging of all the fea-
tures of models 17, 31, 34 and 36, and is trained over the whole
phase-1 training set.

Model Type Score AUC Score/merg.

3 NL, 1st order 0.9429 0.9724 0.9429

4 NL, 1st order 0.9403 0.9693 0.9154

12 NL, 2nd order 0.9389 0.9685 0.9415

11 NL, 2nd order 0.9371 0.9595 0.9163

Table 1: Score obtained by the top-score individual models, and by
their merging.

Model Type Score AUC Score/merg.

36 linear, 3rd order 0.9289 0.9765 0.9289

34 linear, 1st order 0.9316 0.9751 0.9462

17 NL, 3rd order 0.9369 0.9736 0.9481

31 NL, square 5× 5 0.9371 0.9727 0.9531

Table 2: Score obtained by the top-AUC individual models, and by
their merging.

3. COPY-MOVE DETECTION

Many algorithms for copy-move forgery detection have been pro-
posed in the literature [18]. They are typically based on feature
matching: a search is carried out over the whole image to discover
identical or very similar regions, which may be therefore due to a
copy-move forgery. The basic approach is to scan all blocks of the
image in sliding-window fashion [19, 20] which, however, may re-
quire a very large processing time. A popular alternative consists in
finding in advance some keypoints, typically associated with major
image structures, and match only the feature vectors associated with
them. Leveraging on the distinctive geometrical structure of such
keypoints [21], the features may be invariant w.r.t. various types of
distortions, thus increasing the robustness of the matching. Nonethe-
less, since keypoints cannot be extracted in homogeneous regions
of the image, all copy-moves involving this kind of regions, e.g.,
hiding an aircraft by copying a fragment of sky, remain fully unde-
tected. More in general, it has been shown experimentally [18] that
techniques based on dense nearest neighbor fields (NNF) provide a
higher accuracy, therefore we focused on this class.

A simple and pretty general detection algorithm based on this
approach might comprise the following steps

1. computation of a dense NNF;

2. segmentation of the field in regions characterized by homo-
geneous displacement vectors;

3. selection of pairs of candidate matching regions;

4. elimination of wrong candidates based on matching error, and
other criteria.

The last step is especially important as it modulates the trade off
between missing detections and false alarms. If the copy-moves in-
volves a mere translation of regions, with no further processing, any
forgery of reasonable size can be detected easily, since it is very dif-
ficult to find identical regions in a pristine natural image. On the
other hand, when some forms of processing takes place, such as re-
sizing, rotation, change of intensity, compression, the original and
copied regions might differ significantly. Therefore, by setting a low
threshold on matching error we detect only a part of all possible
copy-moves, those with little or no distortion but, on the other hand,
eliminate false alarms. With a larger threshold, more copy-moves
are detected, but the risk of false alarms increases considerably.

3.1. Implemented method

As outlined before, our first processing step is the computation of a
dense NNF based on block matching. Performing the exact compu-
tation for each block of the image is exceedingly burdensome, so we
resort here to PatchMatch, an iterative algorithm recently proposed
for image editing applications [23, 24]. Patchmatch provides a very
accurate and regular NNF, but we chose it primarily for its rapid con-
vergence, which makes it about 100 times faster than exact methods,
allowing us to process in reasonable time a large database of images.

We use 7×7 pixel patches, a size that guarantees a good com-
promise among accuracy, resolution and speed. All image pixels
are preliminarily adjusted to unitary norm, in order to single out
copy-moves also in the presence of some intensity adjustments. Af-
ter computing the NNF, we carry out a filtering on both horizontal
and vertical components of the NNF to identify regions with homo-
geneous displacement. Choosing an appropriate prediction filter, we
can also identify regions where displacement vectors slowly increase
or decrease linearly, thus identifying also copy-moves with moderate
resizing.
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Fig. 3: Four training images with copy-move forgeries, their ground
truth, and detection maps output by our method.

All matches obtained in perfectly flat areas, as in presence of
saturation, are removed to reduce false alarms; likewise, very small
regions are also deleted automatically through morphological filter-
ing. Eventually, after elimination of unsuitable candidates, the image
is classified as fake if at least one duplicated region is detected. To
find also rotated copy-moves, we simply repeat the procedure for a
number of rotations of the image, taking advantage of PatchMatch
speed. Our experiments showed that a sampling step of 15 degrees
guarantees accurate detection.

Fig.3 shows three images with copy-move forgeries, the corre-
sponding ground truth, and the detection map output by our method.
Note that the forgery is easily detected, and the map is quite accurate,
even when original and copied regions are partially overlapping.

4. DECISION FUSION AND RESULTS

We implemented three forgery detection tools based on quite differ-
ent approaches, local descriptors, block matching, and sensor noise.
The latter tool, however, was discarded right away due to its poor de-
tection performance. On the contrary, the local descriptor tool guar-
antees already an excellent performance on the training set, with a
missing detection rate of 7.10%, and a false alarm rate of 2.29%.

It might seem difficult to improve upon such results through the
fusion with a relatively weak copy-move detector. For sure, the latter
cannot reduce the overall false-alarm rate, since its “pristine” deci-
sion means only that there is (probably) no copy-move forgery, but
a splicing could still be present, so is basically useless. However, it
can help reducing the missing-detection rate, by revealing all those
copy-move forgeries that have escaped the previous detector, very
likely because they are too small to impact on the descriptor. To this
end, however, it is necessary that it be extremely specific, assuring
that its “fake” decision is very reliable, and no new false alarm is

introduced. Based on these considerations, we fine-tuned the copy-
move detector by setting a very low threshold, thus detecting basi-
cally only rigid-translation forgeries, with little tolerance for other
forms of processing. By so doing, we were able to detect the large
majority of the copy-move forgeries in the training set with only 5
false alarms out of 1050 pristine images. Given these premises, the
fusion rule consists in a simple OR of the decisions: an image is de-
clared fake whenever any of the tools does so, and pristine only if
both tools agree on that. With this rule, the score on the training set
raises from 0.9530 to 0.9738.

Turning to the test set, comprising a total of 5713 images in-
cluding an unknown number of fakes, groups participating in the
Challenge had the opportunity to receive a limited feedback by sub-
mitting their classification once a day. Scores were then computed
on a randomized subset of the test set to avoid disclosing valuable
information through the system. The results on the test set were
consistently worse, by about 2-3 percent point, than those obtained
by cross validation on the training set. Despite the randomness of
the feedback procedure, this fact indicates clearly some mismatch
between training and test set and, therefore, a likely plateau for per-
formance. Indeed, our final score, computed now on the whole test
set, was 0.9421 as opposed to the 0.9738 on the training set. Note
that the score obtained by running individually the two approaches is
0.8130 for the copy-move detection and 0.9150 for the method based
on local descriptor. The described strategy allowed us to rank first
in phase 1 of the Challenge. Interestingly, the scores of the first four
groups, shown in Tab.III, were very close to one another suggesting
that the plateau mentioned above has been probably reached.

# Leader Team Score

1 Luisa Verdoliva grip 0.9421

2 Guanshuo Xu havefun 0.9373

3 Xinqi Lin hyrup 0.9346

4 Licong Chen Chen 0.9323

5 Khosro Bahrami Fake Bluster 0.8574

6 Dev Sh ITD 0.8240

Table 3: Final ranking (first six teams) for phase 1 of the Challenge.

5. CONCLUSIONS

We feel there are quite a few lessons to learn from this experience.
Under a strictly technical point of view, exploring locally the

statistical features in the images is arguably the state-of-the-art ap-
proach in forgery detection. In particular, our implementation, with
the selection and fusion of several different models based on their
estimated AUC, provides a very competitive performance. Nonethe-
less, the fusion of more tools can further improve performance, es-
pecially when the additional techniques are very specific and can
address reliably some niche problems, such as the detection of small
rigid copy-moves. The copy-move detection technique provided ex-
actly this result, also thanks to the fast PatchMatch search algorithm.

Under a wider point of view, we believe that this Challenge, with
its large corpus of images and well-defined performance evaluation
protocols, represents an important step for the growth of this field. It
is worth remembering that the Challenge website [1] remains open
for all interested research groups, who can download the images and
constantly submit new results.
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