
Applicability of NoSQL Databases to Mobile

Networks: Case Home Location Register

Rasmus Paivarinta1 and Yrjo Raivio2

1 Ixonos Plc,
P.O.Box 284, FI-00811 Helsinki, Finland

rasmus.paivarinta@ixonos.com

http://www.ixonos.com
2 Aalto University, School of Science

P.O.Box 15400, FI-00076 AALTO, Finland
yrjo.raivio@aalto.fi

http://csi.aalto.fi

Abstract. Cloud computing is slowly reaching mobile networks. Ex-
perts have doubts that cloud technologies can guarantee carrier grade
service level, but the situation is rapidly changing. First of all, Infras-
tructure as a Service (IaaS) offers a complete computation platform,
where instances can be virtually hosted either locally, remotely or in a
hybrid fashion. Secondly, NoSQL (Not only SQL) databases are widely
used in internet services, such as Amazon and Google, but they have not
yet been applied to telecom applications. This paper evaluates, whether
cloud technologies can meet the carrier grade requirements. The home
location register (HLR) is benchmarked using IaaS cloud computing plat-
forms and the HBase NoSQL database system. The main measurements
are carried out in the Amazon Elastic Compute Cloud (EC2). The dis-
cussion section evaluates and compares the results with other similar
research. Finally, the conclusions and proposals for the next research
steps are given.

Keywords: NoSQL, IaaS, home location register, performance, SLA

1 Introduction

Telecommunications operators are used to running their embedded computer
systems on proprietary platforms. Typically operators have not shared infras-
tructures either, but have purchased their own networks. However, this situation
is slowly changing. The first step has been taken by the Mobile Virtual Net-
work Operators (MVNO), who have outsourced some part, or even the whole
network, to network vendors. MVNOs have also utilized shared radio access net-
works (RAN) to avoid high initial investment costs. Recently, due to saturated
revenues, cost pressures on operability and introduction of flat network architec-
tures, such as Long Term Evolution (LTE), also dominant operators have shown
interest in network sharing initiatives.

2 Rasmus Paivarinta and Yrjo Raivio

Moreover, unlike the past, mobile networks are based on commercial com-
puters equipped with the Linux operating system. Mobile software can be easily
ported into cloud platforms as such, resulting in shorter integration projects
and lower capex costs. Parallel to this, CPU and data storage performance are
still developing almost exponentially [4]. This paradigm shift will open novel
opportunities for cloud technologies in the telecom sector [7, 23].

It is probable that mobile networks will not change from private and propri-
etary servers to public clouds in the short term, but telecom networks definitely
include areas where cloud options can have a role. Especially mobile application
servers and backend support systems might suit cloud computing well. The main
drivers for the successful introduction of cloud technologies imply a large varia-
tion in traffic patterns or massive data volumes. In addition, telecommunication
networks are normally designed based on the peak load, meaning that during
off-peak periods systems have a lot of unused capacity. Cloud computing thus
offers a natural technology for resource sharing.

However, there are still concerns whether cloud computing meets the carrier
grade requirements [15]. Service level agreements (SLA) in areas such as high
availability (HA), latency and transactions per second, are strict in several tele-
com services. One of the most critical mobile network functionalities is the home
location register (HLR). HLR is the core element of the mobile system, and for
example, is responsible for subscriber authentication and roaming functionali-
ties. HLR also incorporates a risk for single point of failure, resulting in very
high SLA requirements.

The paper evaluates, whether cloud technologies can meet the strictest tele-
com SLA requirements. HLR is used as a use case, although it is clear that the
HLR, being the crown jewel of the operator, will not be the first functionality
that operators would outsource to the cloud. However, the HLR presents ex-
act SLA requirements, and also benchmark data and tools are available from
the existing systems. HLR behavior in the cloud is studied by using two cloud
technologies. First of all, all computation is placed into the Infrastructure as a
Service (IaaS). IaaS can be applied locally, remotely and in both ways, referring
to private, public and hybrid clouds, respectively. Secondly, the HLR benchmark
tool, called Telecommunication Application Transaction Processing (TATP), is
implemented in the HBase cloud database, which is based on NoSQL technology.

The paper is organized as follows. Firstly, Section 2 presents the background
data for the applied technologies. Then, Section 3 describes the measurement
setups. The results are shown using in Section 4 with an emphasis on the public
cloud environment. The main criteria are latency and transactions per second.
Next, the results are discussed, critically reviewed, and also a short business
comparison is given in Section 5. Finally, Section 6 summarizes the paper and
proposes future research ideas.

Applicability of NoSQL databases to Mobile Networks 3

2 Background

This section highlights the background of the key cloud computing components,
namely IaaS and NoSQL. The chosen NoSQL technology, HBase, and the bench-
mark tool, TATP, are briefly described.

2.1 IaaS

An IaaS provides the most natural approach for the research. The existing tele-
com network elements, using the Linux operating system, can be easily ported
as such into the IaaS platforms. Compared to the Platform as a Service (PaaS)
or Software as a Service (SaaS) alternatives, IaaS offers the best flexibility for
its users. Unlike IaaS, PaaS service providers, such as Google App Engine or Mi-
crosoft Azure, require that the software is tailored for the associated platform.
On the other hand, SaaS provides a complete service that does not allow run-
ning your own code. In addition, IaaS supports a large selection of open source
software solutions that are compatible with the commercial IaaS market leader,
Amazon Elastic Compute Cloud (EC2) 3 By selecting the IaaS approach, the
users can avoid the vendor or system lock-in, a feature that is much appreciated
by the operators.

From commercial, public IaaS cloud vendors EC2, being a market leader, was
a natural choice. On the private cloud side, the selection process was a lot more
difficult. There are several alternatives in open source software IaaS platforms.
The most well known, EC2 compatible, projects are called Eucalyptus4, Open-
Nebula5 and OpenStack 6. As one of the more mature projects, Eucalyptus was
selected for the private cloud platform, but for future research, OpenNebula and
OpenStack are worth closer consideration.

Interoperability and backward compatibility of the software are essential fea-
tures. Amazon EC2 and Eucalyptus provide an attractive duopoly, where soft-
ware can be ported with minor efforts from one entity to another. The good
interoperability basically enables two different scenarios. First of all, companies
may develop their product using their own cloud, and at once a stable phase
has been achieved, the software can be commercialized using a public cloud.
The second possibility is to utilize a hybrid model, where private and public
clouds complement each other, enabling load balancing functionalities. This is a
valid scenario also in telecom applications, where the traffic peaks are a common
challenge.

2.2 NoSQL

Distributed databases have been at the forefront of cloud computing since the
beginning, although the term NoSQL was invented much later. It is an umbrella

3 http://aws.amazon.com/ec2/
4 http://open.eucalyptus.com/
5 http://www.opennebula.com/
6 http://openstack.org/

4 Rasmus Paivarinta and Yrjo Raivio

term for a family of databases that typically do not implement the SQL interface,
but are designed scale horizontally to support massive data. Originally the need
to create a new kind of database stemmed from the data storage requirements
of the first globally scale internet services. Soon, in addition to internal use at
social media sites and internet companies, NoSQL solutions became available as
services for all developers.

The main differences between a NoSQL and a SQL, i.e. a Relational Database
Management System (RDBMS), in a data model are provided interfaces, trans-
action guarantees and scalability. NoSQL differs fundamentally from the SQL
databases that form the basis of telecom database systems. Generally RDBMS
is optimal fo online transaction processing (OLTP), and NoSQL for online ana-
lytics processing (OLAP) [2]. While a SQL database confirms ACID (atomicity,
consistency, isolation, durability) requirements, NoSQL databases typically sup-
port BASE (Basically Available, Soft state, Eventually consistent) principles
[17].

The modern history of the NoSQL movement as an effort to store web scale
data can be seen to have begun in 2003 when Google published details on its
Google File System (GFS) [8]. Later in 2006, the company published an article
describing Bigtable [5], a distributed storage system built on top of GFS. Im-
itating Google’s efforts, the Apache Software Foundation (ASF) has developed
open source clones, called the HBase [3] and Hadoop Distributed File System
(HDFS) [19].

HBase and HDFS were chosen for a closer examination due to three reasons.
First of all, HBase supports consistent transactions when updating a single row at
a time. Secondly, it has a modular design and proven basis, thanks to underlying
HDFS and ZooKeeper layers. Thirdly, HBase has active community and support
from strong internet companies such as Yahoo. Yahoo has also developed a
benchmark tool for cloud storages, including HBase [6].

2.3 HBase

The entire software stack, on which HBase runs, is modeled after the Google
Bigtable. An HBase database table is divided into regions based on row keys.
The nodes in an HBase cluster are called region servers because they store
information in regions. In addition, the cluster has one active master and possibly
several backup masters that will compete to become a master in case the active
master goes down. HBase ultimately stores data in HDFS DataNodes and utilizes
ZooKeeper for reliable coordination of the distributed system. An HBase master
manages region servers by assigning regions to them. On top of the regions,
containing actual client data, the system manages the ROOT and META regions.
The ROOT region is assigned first and it has a mapping data to all the META
table regions. The META regions in turn keep track of the actual user table
regions handled by the region servers. The master registers the server hosting
the ROOT region and registers itself to the ZooKeeper quorum. [3]

A ZooKeeper provides a file system-like abstraction for its data tree where
the nodes are called znodes. The ZooKeeper clients that are usually servers in

Applicability of NoSQL databases to Mobile Networks 5

some distributed system, such as HBase, read and write znodes through a client
API. Znodes can be used to store actual payload information, but more often
they are used only for storing metadata and configuration data. The ZooKeeper
guarantees that all writes to the service are linearizable, and further it guaran-
tees a FIFO order for all requests from a given client. Researchers at Yahoo!
evaluated the performance of different sizes of ZooKeeper clusters, loading it
with 35 client machines simulating 200 simultaneous clients. As expected from
the design decisions made, the reads scale with the size of the cluster, whereas
the performance of the writes decreases due to the atomic broadcast. A cluster
of 5 servers executed close to 35 000 operations per second under a load of 50
percent reads and 50 percent writes, where each operation consisted of a read
or write of 1 KB of data. [12]

HBase stores data in the Hadoop Distributed File System (HDFS), which
is consequently a prerequisite for all HBase deployments. Each HDFS cluster
has a single master called a NameNode that manages the metadata of the file
system. In particular, it keeps track of the mapping of the fileblocks to the
DataNodes storing them. The namespace of the file system is of the typical sort
with files and directories. In the NameNode, inodes that include information
about permissions and quotas, represent these files and directories. The inodes
and the list of blocks belonging to each file define the state of the NameNode
known as the image. In normal operation, the HBase master runs on the same
server with the NameNode.

2.4 TATP

The Telecommunication Application Transaction Processing (TATP) benchmark
aims to measure the performance of a database under load which is typical in
telecommunication applications. In particular, it is modelled after the type of
queries that are processed in HLR on a GSM network. The benchmark tool is
described in detail in the literature [20, 21]. TATP encompasses seven different
transactions of which three are reads and four are writes. The description gives
probabilities at which each of the transactions is executed in the client. Broadly,
80 percent are reads and 20 percent are writes.

The database industry has been dominated by RDBMSs for several decades,
and it still is. Accordingly, TATP benchmark is heavily dependent on SQL, and
does not provide functionality to test other kinds of database systems. However,
we have taken action and implemented a comparable benchmark for HBase.
The schema in TATP consists of four inter-relational tables. When modelling
the schema for HBase, the tables were denormalised and finished off with just
one table. Denormalisation is a popular approach when designing data models
for NoSQL databases.

6 Rasmus Paivarinta and Yrjo Raivio

3 Measurement Setup

This section describes the measurement environment, including a high level view
on the mobile architecture and a short description of the benchmark tool trans-
actions. The latter part of the section gives details of the measurement setups.

3.1 Environment

The test environment simulates a real mobile network, where one HLR was
loaded by one or several Mobile Switching Centers (MSC). The TATP bench-
marking tool emulates the real signalling traffic between the MSCs and HLR.
See Fig. 1 for the model. The focus in the measurements was on the SLA, latency
and transactions per second. HA measurements were beyond the scope of the
research. All measurements were repeated a few times and the diagrams shown
are based on average results.

It is noteworthy that the telecom level HA requirement, 99.999 percent, can
be achieved by using independent IaaS clusters. For example, utilization of two
different Amazon EC2 zones, both with an HA value 99.95 percent, yields to-
gether an HA value 99.9999 percent. Similar results can be achieved by using
hybrid models.

Fig. 1. HLR test environment

3.2 TATP Transactions

The original TATP benchmark database representing HLR includes four different
tables called Subscriber, Access Info, Special Facility and Call Forwarding. Sub-
scriber table includes the basic customer data, while Access Info table describes
the access type. Special Facility table defines the services subscribers are enti-
tled to, and finally Call Forwarding table reveals forwarding rules. MSC Clients
use seven different transactions that either read or write data. The transaction

Applicability of NoSQL databases to Mobile Networks 7

Table 1. TATP transactions [20].

Transaction name Type % Tables

Get-Subscriber-Data Read 35 Subscriber

Get-New-Destination Read 10 Special Facility,
Call Forwarding

Get-Access-Data Read 35 AccessInfo

Update-Subscriber-Data Write 2 Subscriber,
Special Facility

Update-Location Write 14 Subscriber

Insert-Call-Forwarding Write 2 Call Forwarding

Delete-Call-Forwarding Write 2 Call Forwarding

distribution is known from real networks. Table 1 summarizes the transactions,
their types, distribution and effected tables. [20].

The TATP version ported for HBase is implemented using Java. It consists of
a main program which provides a CLI to the user and separate entities for creat-
ing a table, populating it and running the benchmark. The benchmark module
spawns a number of client threads according to user input. The client threads ex-
ecute queries according to the TATP probability distribution and report results
back to the benchmark module which writes them to a common file periodically.

3.3 Initial Setup

The rewritten version of TATP was tested in several small HBase clusters. The
focus was in transactions per second capability. Running the benchmark is in-
teresting, especially because the results can be compared to existing reports on
SQL database performance. One such article [10] reports a throughput of ap-
proximately 5500 transactions per second. The performance level was achieved
for 200 000 subscribers using carrier grade hardware from the year 2006 and an
in-memory database. However, comparing measurement results obtained from
different benchmarks testing different databases running on top of different in-
frastructures head-to-head, is not particularly meaningful. Therefore we use the
results in the white papers only to set up a base line so that we know, whether
the first results of running HBase in a HLR setting are on the same scale with
recent commercial HLR databases.

In the initial measurements the environment was the following. The HBase
version 0.20.6 and Hadoop 0.20.2 were run on a multitude of test setups, which
all were considerably smaller than what HBase is designed for. Amazon Small
EC2 had 1.7 GB memory on a Ubuntu Lucid 10.04 32 bit server. Eucalyptus had
also 1.7 GB memory on top of a Ubuntu Lucid 64 bit desktop. Local communi-
cation was based on a 100 Mbit/s LAN, and the PCs were equipped with Intel
Core 2 Duo processors and 8 GB memory. All setups consisted of a four virtual
machine (VM) instance cluster. One instance was a dedicated master running the
Hadoop Master Server and HDFS NameNode, two instances were running the

8 Rasmus Paivarinta and Yrjo Raivio

HBase Region Server and HDFS DataNode processes, and the fourth machine
was running a single HLR benchmark process and collecting the results.

In the hybrid setup the HBase Region Servers and HDFS DataNodes were
split into both EC2 and Eucalyptus, while the HBase Master, HDFS NameNode
and benchmark client were running on a local Dell Optiplex 960 desktop. A
noteworthy result itself is that we were able to run HBase and HDFS with
default settings on Amazon Small EC2 instances without problems.

3.4 Final Setup

The final measurement setup was decided to be based on Amazon EC2 only.
It was already beforehand clear that a hybrid IaaS architecture is not optimal
for a centralized database system. Furthermore, during the research process it
was found that Eucalyptus is not the best platform for a hybrid cloud. The
main reason is the lack of necessary management tools for remote instances.
In contrast, OpenNebula and OpenStack support these functionalities, and for
that reason those IaaS alternatives should be researched more in the hybrid
context. On the other hand, private cloud measurement results were mainly
limited only by the local hardware applied, having a small difference to the
usual HLR environment.

In the later experiments, we investigated the effect of load, replication, database
size and node failure on performance by running HBase on a cluster of six Large
EC2 instances as shown in Fig. 2. As the characteristics of EC2 instance types
are sometimes modified, it is purposeful to specify here that the large instances
used in the experimentation were virtual machines with 7.5 GB of memory and
two virtual cores with two EC2 compute units, each running a 64-bit Ubuntu
Server version 10.04. In addition to one master and four slave nodes, one large
instance was hosting the benchmark clients.

Fig. 2. Final setup

Applicability of NoSQL databases to Mobile Networks 9

4 Measurement Results

The results section gives the initial measurement result, followed by the main
results. The main measurement results, concentrating in the latency and perfor-
mance factors, are concluded by a brief cost analysis.

4.1 Initial Results

The initial test results are shown in Fig. 3. All transactions per second mea-
surements were made with a database size of 200 000 subscribers. As described
above, the comparison of different IaaS platforms with each other is not useful,
but on the other hand, the results can be used for getting the big picture of
the system. Compared to the four year old carrier grade numbers, the results
were encouraging. The Amazon Large EC2 cluster achieved roughly 15 percent
performance of the carrier grade system. Even the local, Eucalyptus based IaaS
cluster managed to produce reasonable results. Plain workstation and legacy
cluster measurements were made to gather experiences of running the bench-
mark setup in different environments.

The performance of a hybrid setup, consisting of Small Eucalyptus and EC2
instances, was better than with a Small EC2. The results prove that a hybrid
IaaS can be made, and that the throughput is roughly the average of the building
blocks. The first experiments also revealed that the bottleneck in the measure-
ments was the single benchmark client. In the main measurements this bottleneck
was removed by using several parallel clients. In the real networks one HLR is
connected to several MSCs, too.

Fig. 3. Initial results

10 Rasmus Paivarinta and Yrjo Raivio

4.2 Main Results

The experiments analyzed here and presented in Fig. 4 and Fig. 5 illustrate a load
curve typical for I/O heavy systems. The throughput improves to a certain limit
when client processes, i.e. load increases, are added, but after the limit latency
grows dramatically. The point of maximal curvature is known as the knee. Our
benchmark collects the latency distribution for each of the seven transaction
types of TATP separately. Therefore, the response time values shown in the
figures are the 95th percentile values perceived by the worst performing client
process from the heaviest transaction type.

Replication is a standard way of achieving durability of data in NoSQL
databases. Fig. 4 shows the results of the experiment where the goal was to
assess the effect of replication on performance. The table was populated with
200 000 subscribers. First of all, the throughput results show that 16 client
processes are close to the knee, e.g. a point where the results turn worse. Sec-
ondly, we notice that the replication factor does not have a major impact on
the throughput. Also the response time holds almost steady independent of the
replication factor. We assume that the performance penalty of replication is vir-
tually nonexistent, because even if writes become heavier, reads are scaled across
the replicas, which balances the results in a read heavy benchmark.

Fig. 5 presents the effect of the amount of subscribers in the database on
performance. The results were gathered when the replication factor was set to
three. As expected, the performance gradually decreases as the table size grows.
Looking at the results from 16 concurrent client processes, increasing the table
size from one to five million subscribers decreases the throughput 32 percent and
lengthens the response time 36 percent.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 500 1000 1500 2000 2500 3000 3500 4000 4500

La
te

nc
y

(m
s)

Throughput (transactions / s)

Replication 1
Replication 2
Replication 3

1 client

4 clients

8 clients

16 clients

30 clients

Fig. 4. Impact of replication factor and number of clients

Applicability of NoSQL databases to Mobile Networks 11

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000 3500 4000

La
te

nc
y

(m
s)

Throughput (transactions / s)

200 000 subscribers
1 000 000 subscribers
5 000 000 subscribers

1 client

4 clients

8 clients

16 clients

1 client
4 clients

8 clients

16 clients

1 client

4 clients
8 clients

16 clients

Fig. 5. Impact of database size and number of clients

To verify that the HDFS replication gives protection from node failures, we
studied the effect of killing one slave node in the middle of a benchmark run.
The measurement was done with a database size of 1 million subscribers and
replication factor two. Fig. 6 shows the effect of one failing node 10 seconds after
the launch of the run as perceived by four client processes. The throughput val-
ues are gathered once a second for each client and the results are stacked in the
presentation. In this sample the distributed database quickly recovers from the
failure and continues serving clients within two seconds. The perceived recovery
time in the experiment would be too much for real-time telecommunications ap-
plications, but it could be improved by tuning the parameters related to timeout
mechanisms.

4.3 Results vs. Requirements

In order to give an idea of the load generated by the modified version of TATP,
the performance testing tool bundled with HBase was also run on the test setup
of six large EC2 instances. We run the performance test on the master node using
16 client threads and disabled MapReduce for it. By default, the test populates
a table with one million rows of 1 kB each. In our experiment the random Read
test took 1492 seconds, which leads to a throughput of 5.36 Mbit/s per client
thread, and an aggregated throughput of 85.8 Mbit/s.

The 3GPP has defined the HLR performance requirements in their general
specification [1]. According to that each subscriber produces on average 1.8 mo-
bility related and 0.4 call handling related transactions per hour. Together this
yields 2.2 transactions per hour per subscriber. With this information and the
total number of subscribers, a requirement curve for transactions per second
can be defined. Pulling together the requirements for HLR performance and the

12 Rasmus Paivarinta and Yrjo Raivio

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
 /

s)

Time (s)

Fig. 6. Recovery time from node failure

measurements from the HBase benchmark leads us to the conclusion that up to
4 million subscribers could in theory be supported by six large EC2 instances.
Measurement results and comparable requirements are shown in Fig. 7.

In the experiment each subscriber added 3.7 kB to the database size leading
to a total of 18.5 GB for 5 million subscribers. This is still in the area that can be
handled in main memory, and therefore existing HLR solutions can support such
deployments using an in-memory database. Similarly to most NoSQL databases,
HBase does not support transactions, which span multiple rows, but on the other
hand HBase guarantees that a single row remains consistent at all times. In
an HLR all transactions read or update a single subscriber, and therefore the
database was modelled so that all data related to a single subscriber is on one
row.

4.4 Cost Evaluation

Following the ideas presented by Walker [22], we propose a simple model to
help decide whether to run a database in the cloud or in a hosted rack space.
A third alternative would be to place the servers in private premises, but in
that case the cost structure becomes very complex, because costs related to
factors such as the property, security, UPS, generators, etc. should be taken into
account. Entire studies have been made in this area and one of the most insightful
ones is written by Greenberg et al. [9]. However that article focuses on a large
data center, whereas our case example is an individual application running on a
relatively small cluster. Therefore, we simply take the cost of hosted rack space,
server hardware and disk replacements as the basis for our formula. On the other
hand, the Equation 1 can be applied to servers within private premises only if
the αhosting is modified to account for the above mentioned infrastructure costs.

Applicability of NoSQL databases to Mobile Networks 13

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

200 000 1 000 000 2 000 000 3 000 000 4 000 000 5 000 000

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
 /

s)

Subscribers

HLR performance requirements
Measurements from 6x EC2 Large cluster

Fig. 7. Results vs. requirements

Cm = nservers ∗ (αhosting + βhardware + γdisks) (1)

betahardware = p ∗

i
12

(1 + i
12

)m

(1 + i
12

)m
− 1

(2)

γdisks = Ψ
R

12
∗ ǫ (3)

In Fig. 8, we present the results calculated from using the Equation 1 com-
pared with current EC2 pricing. The hypothetical cluster has six nodes and, in
the case of hosting it in a rented rack, each node costs 2000 euro, while a rack
unit costs 80 euro/month including the internet connection. The factor γdisks in

Table 2. Parameters in the formula presented in Equations 1-3

Parameter Unit Description

Cm euro Monthly cost of running servers in hosted environment
nservers Number of servers
αhosting euro Monthly cost of hosted rack space per server (1U)

βhardware euro Amortized monthly cost of a server
i Interest rate
p euro Price of a server
m months Amortization period in months

γdisks euro Monthly cost of replacement hard disks
Ψ Quantity of hard disks per server
R Annual replacement rate (ARR)
ǫ euro Price of a hard disk

14 Rasmus Paivarinta and Yrjo Raivio

Equation 1 adds in the cost of replacing failed hard disks similarly to Walker’s
model. The extensive research of 100 000 hard disks carried out by Schroeder
and Gibson [18] discovered that a realistic annual replacement rate (ARR) is
around 3 percent and therefore we use the value for R in the calculation. How-
ever, even if a reasonable service fee for the disk replacements is included, γdisks

is not a significant cost factor in this model. The price of the servers βhardware is
amortized using the standard annuity formula and an interest rate of 5 percent
over a period of time. It is shown on the x-axis.

Amazon EC2 provides two alternative payment options: simple hourly costs
per server or a one-time fee and reduced hourly costs. Amazon calls the latter a
reserved instance purchasing option. Fig. 8 presents the data points for the costs
of reserved instance plans for either a period of 12 or 36 months. The one-time
fee amortized for the respective period in the same fashion as βhardware and the
hourly costs are simply multiplied by the number of hours in a month. All prices
were converted from US dollars to euros using a coefficient of 0.75.

Interestingly, monthly cost of running a Double XL instance with 34.2 GB
of memory is 700 euro with a three year reserved instance contract, whereas a
comparable carrier grade server such as Oracle Netra X4270 could be purchased
for 8000 euro, which yields a monthly amortization cost of 240 euro. Comparison
of the specification and pricing of EC2 instances with S3 storage service yields
the result that storing data on the hard disk of an instance instead of S3 may
be smart in some cases. On the other hand, S3 provides many features that an
administrator would have to add in the case of using an instance, and hence S3
can be regarded as having a higher value service.

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60

C
os

t (
Eu

ro
 /

m
on

th
)

Amortization period (months)

6x Hosted Servers
6x Reserved Large EC2
6x Standard Large EC2

Fig. 8. Cost evaluation

Applicability of NoSQL databases to Mobile Networks 15

5 Discussion

Cloud computing offers a new perspective on mobile network optimization. Al-
though the HLR is not a primary candidate for the cloud, the results give evi-
dence that some other mobile network elements could be placed there. Applica-
tion servers, such as SMS Center (SMSC), IP Multimedia Subsystem (IMS) and
Service Delivery Platform (SDP), are examples of those. Backend processes can
provide an even better solution area [11]. Billing, customer care and maintenance
systems create a lot of data that could be computed by cloud infrastructures.
A general purpose cloud can also be provided by mobile network vendors, who
might use their large customer base to benefit from the statistical multiplexing.
The same approach can work with operators, who operate in several countries
and continentals. It can be expected that in future mobile networks, such as
Long Term Evolution (LTE), operators will compete and cooperate at the same
time, leading to network sharing initiatives.

The HLR benchmarking measurements produced a lot of information about
the cloud computing opportunities in the telecom sector. The main lesson is that
even the strict telecom SLA requirements can be achieved with both public and
private clouds. The initial measurements also revealed that to match the existing
RDBMS solutions, NoSQL databases have to fully utilize horizontal scalability.
In addition, configuration parameters must be properly tuned, enterprise class
infrastructure must be used and several client processes must be deployed.

IaaS, both private and public versions, operated according to expectations
in the measurements. Due to the short history of private clouds, they are still
developing. Amazon EC2, on the other hand, is already a mature product. The
hybrid cloud was a side track in this research. It became evident that the hybrid
cloud does not suit well to a centralized database system. In addition, the hy-
brid setup must be carefully designed to overcome configuration, management
and load balancing challenges. For certain applications a hybrid cloud can be
an interesting option to optimize the dimensioning for peak loads [14]. How-
ever, the database solutions should be centrally located backed by 2N or N+1
redundancy algorithms. Database distribution will increase latency times and
create unnecessary functional complications as well. For example, security and
regulation challenges would become high. On the other hand, a public cloud can
successfully host voice applications [23].

A brief financial comparison between Amazon EC2 and hosted rack space is
given. As a conclusion of the exercise the setup of EC2 instances reserved for a
three year period is the most attractive solution cost-wise, whereas the hosted
alternative is more cost-efficient than standard EC2 instances starting from an
amortization period of approximately 18 months. In the high-end, there is a
fair premium in Amazon prices. When it comes to I/O performance a physical
2000 euro server is very likely to outperform a Large EC2 virtual instance. It
is also worth mentioning that the EC2 pricing structure is the most versatile,
including also spot prices [13]. Secondly, unlike in clouds [9, 22], the weight of
computing power and storage is marginal in the HLR price formula. However,
in the application servers computing costs are becoming ever more dominant.

16 Rasmus Paivarinta and Yrjo Raivio

6 Conclusions

We have introduced research on how cloud computing performance meets the
SLA requirements of mobile networks. The home location register (HLR) was
chosen as an example for benchmarking measurements. The HLR benchmark
tool, originally developed for the SQL databases, was ported into the NoSQL,
HBase specific environment. The software instances were deployed on private,
public and hybrid Infrastructure as a Service (IaaS) platform. The measurement
results indicate that cloud technologies can achieve the requirements of mobile
network latency and transactions per second. Also telecom high availability (HA)
targets can be met by using parallel computing zones. It is recommended that
future studies should evaluate whether cloud technologies can be applied to
mobile application servers and backend processes. Also Long Term Evolution
(LTE) will provide interesting research opportunities on network sharing between
operators. Finally, hybrid clouds deserve attention in managing traffic peaks.

Acknowledgments. The work is supported by Tekes (the Finnish Funding
Agency for Technology and Innovation, www.tekes.fi) as a part of the Cloud
Software Program (www.cloudsoftwareprogram.org) of Tivit (Strategic Centre
for Science, Technology and Innovation in the Field of ICT, www.tivit.fi).

References

1. 3GPP: Technical performance objectives TS 43.005 v9.0.0 (2010)
2. Abadi, D.J.: Data management in the cloud: limitations and opportunities. IEEE

Data Engineering Bulletin, 32(1) (2009)
3. The Apache Software Foundation. HBase, http://hbase.apache.org/. (2011) Ac-

cessed 29 Aug 2011
4. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A.,

Lee, G., Patterson, D.A., Rabkin, A., Stoica, I.: Above the Clouds: A Berkeley
view of cloud computing. Technical Report no. UCB/EECS-2009-28, Electrical
Engineering and Computer Sciences, University of California at Berkeley (2009)

5. Chang, F., Dean, J., Ghemawat, S., Hsieh W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. In: 7th Symposium on Operating Systems Design and Implemen-
tation (OSDI 06), Seatle, WA, USA, 6-8 November 2006, pp. 205–218. USENIX
Association (2006)

6. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of 1st ACM Symposium on
Cloud Computing (SoCC ’10), Indianapolis, Indiana, USA, 10-11 June 2010 (2010)

7. Gabrielsson, J., Hubertsson, O., Más, I., Skog, R.: Cloud computing in telecom-
munications. Ericsson Review, vol. 1, pp. 29–33 (2010)

8. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. In: 19th Sym-
posium on Operating Systems Principles (SOSP03), New York, NY, USA, 19-22
October 2003. ACM (2003)

9. Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The Cost of a Cloud: Research
Problems in Data Center Networks. ACM SIGCOMM Computer Communication
Review, Vol. 39, no. 1 (2009)

Applicability of NoSQL databases to Mobile Networks 17

10. Gupta, N.: Enabling High Performance HLR Solutions. Netra Systems and Net-
working, Sun Microsystems Inc., version 2, 17 April 2006 (2006)

11. Hajjat, M., Sun, X., Sung, Y.-W.E., Maltz, D., Rao, S., Sripanidkulchai, K., Tawar-
malani, M.: Cloudward bound: planning for benefiticial migration of enterprise ap-
plications to the cloud. In: SIGCOMM, New Delhi, India, 30 August-3 September
2010. ACM (2010)

12. Hunt, P., Konar, M., JUnqueira, F.P., Reed, B.: Zookeeper: Wait-free coordina-
tion for Internet-scale systems. In: the 2010 USENIX Annual Technical Confer-
ence (USENIXATC’10), Boston, MA, USA, 23-25 June 2010. USENIX Association
(2010).

13. Mattess, M., Vecchiola, C., Buyya, R.: Managing peak loads by leasing cloud in-
frastructure services from a spot market. In: the 12th IEEE International Confer-
ence on High Performance Computing and Communications (IEEE HPCC 2010),
Melbourne, Australia, 1-3 September 2010 (2010)

14. Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Elastic management of
cluster-based services in the cloud. In: the 1st Workshop on Automated Control
for Datacenters and Clouds (ACDC ’09), Barcelona, Spain, 19 June 2009 (2009)

15. Murphy, M.: Telco cloud. Presentation at Cloud Asia, Singapore, 5 May 2010
(2010)

16. Nurmi, D., Wolski, R., Grzegorczyk, C.: The Eucalyptus open-source cloud-
computing system. In: the 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid 2009), Shanghai, China, 18-21 May 2009 (2009)

17. Pritchett, D.: Base: an acid alternative. ACM Queue, vol 6, no. 3, pp. 48–55 (2008)
18. Schroeder, B., Gibson G.A.: Disk failures in the real world: What does an MTTF

of 1,000,000 hours mean to you? In: 5th USENIX Conference on File and Storage
Technologies (FAST’07), San Jose, CA, USA, 14-16 February 14-16 2007. USENIX
Association (2007)

19. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop Distributed File
System. In: 26th Symposium on Mass Storage Systems and Technologies (MSST),
Incline Village, NV, USA, 3-7 May 2010. IEEE (2010)

20. Strandell, T.: Open source database systems: systems study, performance and scal-
ability. Masters thesis, University of Helsinki, Faculty of Science, Department of
Computer Science, and Nokia Research Center (2003)

21. TATP. Telecom Application Transaction Processing Benchmark, http://

tatpbenchmark.sourceforge.net/. (2011) Accessed 29 Aug 2011
22. Walker, E., Brisken, W., Romney, J.: To lease or not to lease from storage clouds.

Computer, April 2010, pp. 44-50. IEEE (2010)
23. Venugopal, S., Li H., Ray P.: Auto-scaling Emergency Call Centres using Cloud

Resources to Handle Disasters. In: 19th International Workshop on Quality of
Service (IWQoS), San Jose, CA, USA, 6-7 June 2011 (2011)

