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Abstract—Human group activities detection in multi-camera
CCTV surveillance videos is a pressing demand on smart
surveillance. Previous works on this topic are mainly based on
camera topology inference that is hard to apply to real-world
unconstrained surveillance videos. In this paper, we propose a
new approach for multi-camera group activities detection. Our
approach simultaneously exploits intra-camera and inter-camera
contexts without topology inference. Specifically, a discriminative
graphical model with hidden variables is developed. The intra-
camera and inter-camera contexts are characterized by the
structure of hidden variables. By automatically optimizing the
structure, the contexts are effectively explored. Furthermore, we
propose a new spatiotemporal feature, named vigilant area (VA),
to characterize the quantity and appearance of the motion in an
area. This feature is effective for group activity representation
and is easy to extract from a dynamic and crowded scene. We
evaluate the proposed VA feature and discriminative graphical
model extensively on two real-world multi-camera surveillance
video data sets, including a public corpus consisting of 2.5 h of
videos and a 468-h video collection, which, to the best of our
knowledge, is the largest video collection ever used in human
activity detection. The experimental results demonstrate the
effectiveness of our approach.

Index Terms—Activity detection, context, group activity,
human activity.

I. Introduction

THE PAST few decades have witnessed a rapid prolif-
eration of surveillance cameras and have resulted in a

tremendous explosion of surveillance videos. The detection
of human activities in surveillance videos attracts increasing
attention from academia, industry, and security agencies, and
so on. In recent years, intensive research has focused on vision-
based human activity detection [1]–[3]. Most of these works
are constrained in single-camera views and focus on detecting
actions of a few individuals, usually one or two individuals,
such as hand-waving and hugging in [4] and [5], and Ob-
jectPut and CellToEar in TRECVid [6]–[8]. However, today,
CCTV surveillance is set up with camera networks in almost
every public area such as airports, campuses, and government
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buildings for safety and security purposes. The motivation is
straightforward; the multi-sensor system can provide better
views and monitor larger areas. Therefore, modeling activities
under multiple cameras becomes increasingly demanding. On
the other hand, group activity detection has recently attracted
increasing attention. Here, group activity refers to the interac-
tions among a group of persons; in particular, no less than three
persons. The modeling of group activities has great potential
for many applications, such as smart video surveillance and
human computer interface.

Motivated by the above observations, this paper focuses
on detecting group activities in multi-camera surveillance
videos. Previous works on multi-camera activity analysis are
mostly based on inter-camera topology inference [9]–[12].
Inter-camera topology is the explicit relationship of multiple
cameras, including connectivity of disjoint views and time
dependence of one object moving from one camera to another.
These methods rely on accurate tracking results [10], [11]
or clustering areas under different cameras based on visual
cues [9], [12]. Unfortunately, they are hard to apply to real-
world unconstrained surveillance videos. The unconstraint
aspects include: 1) crowded scene and low video quality,
which leads to unreliable tracking results and 2) nonconstant
human crowd flow. Different from the surveillance videos
of underground station, where the majority of passengers
follow a regular route according to a fixed channel, human
crowd monitoring over an open scene such as a building with
many exits and entrances often leads to unpredictable crowd
activities.

In this paper, we propose a novel approach for multi-camera
group activity detection without camera topology inference.
Our approach implicitly exploits intra-camera and inter-camera
contextual information at the same time. While the intra-
camera context encodes the relationship of motions captured
by one camera, the inter-camera context captures visual cues in
multi-camera views under a given group activity. Fig. 1 shows
an illustration of our approach. More concretely, we first
propose an effective group activity feature called VA, which
stands for vigilant area. VA is a region-based feature that
describes the quantity and appearance of the motion (vigi-
lance) in an area. This feature is robust and easy to extract
from a dynamic and crowded scene without reliance on
any tracking. Then, we develop a discriminative graphical
model with hidden variables that govern whether the low-
level features, i.e., VAs are included in the determination
of a certain group activity. The intra/inter-camera contexts
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Fig. 1. Illustration of our proposed multi-camera group activity detection approach.

are interpreted by the structure of hidden variables, i.e., the
connections among them. Different from the existing latent
graphical models, such as hidden Markov models (HMM)
and hidden conditional random field (HCRF), which assume
a predefined and fixed structure for the latent variables (e.g.,
chain structure or tree structure), the proposed model does
not fix the structure of the latent variables, but optimizes it
during learning and inference. Through automatic inference
of the nonfixed structure of hidden variables, the proposed
model can explore the intra/inter-camera contexts intelligently
for activity detection.

We apply our proposed approach to perform group activity
detection on two real-world multi-camera surveillance video
data sets, including a 468-h video corpus collected by nine
cameras with a total footage duration of 468 h and the publicly
available UCR VideoWeb dataset1 [13], which contains 2.5
h of surveillance videos. Experimental results show that: 1)
our proposed VA feature is more effective for group activity
representation than local spatial-temporal descriptor such as
motion scale invariant feature transformation (MoSIFT) [7]
and the recently proposed dense trajectory feature [14] on
real-world unconstrained surveillance videos; 2) our approach
outperforms the state-of-the-art methods; and 3) multi-camera
contexts are beneficial to group activity detection.

The main contributions of this paper are as follows.

1) We propose a novel approach for group activity detection
in multiple-camera surveillance videos by exploiting the
intra/inter-camera contextual information.

2) The intra/inter-camera contexts can be automatically
inferred and well explored by our proposed discrimina-
tive graphical model without the requirement of camera
topology inference.

3) We propose a novel spatiotemporal group activity fea-
ture, termed as VA, which does not rely on tracking and
is thus applicable to a vast array of surveillance videos
with various qualities.

The remainder of this paper is organized as follows. In
Section II, we review existing works on activity analysis in
surveillance videos. We introduce our proposed feature VA and
its corresponding quasi-ShapeContext descriptor in Section III.
In Section IV, we describe our group activity detection model

1Available at http://www.ee.ucr.edu/ amitrc/vwdata.php.

in detail, including model formulation in Section IV-A, and
inference and learning in Section IV-B. We report experimental
results in Section V, followed by conclusions in Section VI.

II. Related Work

Vision-based human activity detection has been intensively
studied in the past past decades [1]–[3]. A lot of existing works
mainly focus on modeling activities in single-camera views,
including activities of a few individuals (e.g., hand-waving and
walking) and group activities with multiple participants (e.g.,
walking-in-group and stand-talk). Recently, CCTV surveil-
lance has been set up with camera networks in almost every
public area for safety and security purposes. Modeling activi-
ties under multiple cameras has attracted increasing attention.
In this section, we first review previous works on single-
camera activity analysis, and then introduce recent research
efforts on multi-camera activity analysis.

A. Activity Analysis in Single-Camera Views

The challenge of detecting human activity in surveillance
video arises from severe cluttered background and occlu-
sion [8]. Most existing activity detection methods rely on
spatiotemporal features that interpret the visual content of
activities. With the spatiotemporal features, many existing
machine learning methods can be employed for activity de-
tection [2]. These features can be divided into two categories:
global representation [6], [15], [16] and local representa-
tion [7], [14], [17]. In global representation, instead of locating
the entire human body, partial localization of a human body
part such as head [6] or multi-candidate regions for the actual
body is done for preprocessing [15]. For example, Zhu et al.
[6] detected and tracked the human head in a given video
sequence. An enlarged region around the tracked head was
cropped as the region of interest. A spatiotemporal descriptor,
which temporally integrates the statistics of a set of response
map of image gradients and optical flows, was then extracted
from the region to capture the characteristics of human actions
in terms of their appearance and motion patterns. Hu et al. [15]
proposed to crop multiple regions of human body from the
frames. These regions were then represented by the motion
history image (MHI) feature [18]. However, the cropped
regions contain noises that are not action instances. To address
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this problem, they developed a multi-instance learning model,
which is expected to learn human actions from the noisy
instances. However, it is difficult to segment body parts when
occlusion exists in the scene [16]. Alternative approaches to
segmenting body parts based on analyzing 3-D volumes based
on various features, like a histogram of gradient, a histogram
of optical flow [19], or 3-D SIFT [20]. Dollar et al. [19]
proposed a spatiotemporal feature detector, which was espe-
cially designed to extract space–time points with local periodic
motions, obtaining a sparse distribution of interest points from
a video. A small 3-D volume, called a cuboid, was then
associated to each interest point. Each cuboid captures a visual
appearance of the interest point’s neighborhoods. A library of
cuboid prototypes was then constructed by clustering cuboid
appearances with k-means. As a result, each action was mod-
eled as a histogram of cuboid types detected in 3-D space–time
volume while ignoring their locations. Scovanner et al. [20]
designed a 3-D variant of the SIFT descriptor, similar to the
cuboid features in [19].

On the other hand, local features based on spatiotemporal
interest points have shown to encourage capacity in represent-
ing activities. The local interest points are expected to be not
only scale-invariant in the spatial domain but also in the tem-
poral domain. The best characteristic of such scale-invariant
local interest points is that they require no tracking [7]. A
wealth of local spatiotemporal features have recently been
developed. A survey of them is provided in [3], while an
overall evaluation of some local features can be found in [17].
Several works extracted local features from every frame and
concatenated them temporally to describe the overall motion
of human activities [14], [21]–[23]. For example, Chomat and
Crowley [21] proposed to use local appearance descriptors
to characterize an action. They employed the motion energy
receptive fields together with Gabor filters to capture motion
information from a sequence of images. More specifically,
local spatiotemporal appearance features describing motion
orientations were detected per frame. Multi-dimensional his-
tograms were then constructed based on the local features and
used to represent actions. Zelnik-Manor and Irani [22] uti-
lized local spatiotemporal features at multiple temporal scales.
Multiple temporally scaled video volumes were analyzed. For
each point in a 3-D XYT volume, they estimated a normalized
local intensity gradient. A histogram of these space–time gra-
dient features was then computed per video. Similarly, Blank
et al. [23] calculated local features in each frame. Instead of
utilizing optical flows, they calculated appearance-based local
features at each pixel by constructing a space–time volume
whose pixel values are the solutions to the Poisson equation.
Wang et al. [14] recently proposed a dense trajectory feature.
They sampled dense points from each frame and tracked the
points based on displacement information from a dense optical
flow field. Some global smooth constraints were then imposed
among the points in dense optical flow fields, leading to more
robust trajectories than tracking or matching points separately.
Some other approaches extracted sparse spatiotemporal local
interest points from 3-D volumes [19], [24]–[27]. These local
spatiotemporal features possess robustness to noise, camera
jitter, illumination changes, and background movements.

Beyond the detection of relatively simple activities of a
few individuals, the recognition of group activity with mul-
tiple participants (e.g., fighting and gathering) has gained
increasing interests in recent years [28]–[35]. One approach
focuses on modeling the interactions between the participants.
Lan et al. [30] established a discriminative graphical model
with a variant structure to infer the interactions. Instead of
modeling the interactions explicitly, a second approach tries
to extract features that encode interaction information. Ni
et al. [29] used different types of causality filters and the
corresponding responses were considered as group activity
features. In particular, three types of localized causalities,
including self causality, pair causality, and group causality,
were exploited to characterize the local interaction/reasoning
relations within, between and among motion trajectories of
different humans, respectively. Each type of causality was
expressed as a specific digital filter, whose frequency responses
then constituted the feature representation space. Each video
segment of a certain group activity was encoded as a bag of
localized causalities/fitlers. Xiang et al. [34] adopted the pixel
change history (PCH) to measure the multi-scale temporal
changes at each pixel and then formed discrete events based
on detected changes in each video frame. The connected
component method was adopted to group the changed pix-
els. The interactions were embedded in each cluster. The
third approach collaboratively uses the contextual information
related to participants. For example, Marszalek et al. [28]
pointed out that human actions are frequently constrained by
the purpose and the physical properties of scenes and demon-
strate a high correlation with particular scene classes. They
discovered relevant scene classes and their correlation with
human actions. Such contextual information was then used
to improve activity detection. Recently, Ryoo and Aggarwal
[35] proposed a stochastic methodology for the recognition
of group activities. Their system maintained probabilistic
representation of a group activity, describing how individual
activities of its group members must be organized temporally,
spatially, and logically. In order to recognize each of the
represented group activities, the system searched for a set of
group members that has maximum posterior probability. A
hierarchical recognition algorithm utilizing a Markov chain
Monte Carlo-based probability distribution sampling was de-
signed to detect group activities and find the acting groups
simultaneously.

B. Activity Analysis in Multi-Camera Views

Existing works on group activity analysis in multi-camera
views are mainly based on camera topology inference, which
relies on inter-camera tracking, intra-camera tracking, or both.
The topology includes overlapping fields of view (FOV), time
dependency, and causality of activities captured by cameras.
Generally, there are two kinds of topologies: 1) the topology
of the geographical location and FOV of cameras [36] and 2)
the topology of the semantic scene (or content topology) of
cameras [9]. The first is beyond our research and the geological
topology is known in advance in our case. The other kind of
topology is significant since even if the geographical topology
is fixed, the content that the camera is recording may change
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Fig. 2. Illustration of extracting VA descriptors from a video clip. A vigilance surface is constructed for each vigilance area.

over times. The crux is to discover the relations between two
cameras. The solution to find the start and end zone in each
camera [37], the temporal relation [10], or both [11].

Based on the topology of cameras, group activity is rep-
resented as trajectories [10], tracked blobs [38], or region
clusters [9], [12]. Wang et al. [10] adopted a latten Dirichlet
allocation model to cluster the trajectories into activities. They
first tracked objects in each camera view independently. The
positions and velocities of objects along trajectories were
computed as features. Then, an LDA model was used to group
trajectories, which belong to the same activity but may be
in different camera views, into one cluster, and also model
the paths that are commonly taken by objects across multiple
camera views. Chang et al. [38] used a hierarchical agglomer-
ative clustering algorithm to group the individual actions into
group-level activities. Alternatively, Chen et al. [12] proposed
a fixed tree-type time dependency probabilistic graph model
to infer the post probability of observations in a semantic
region, where low accumulative log-likelihood value indicates
an anomalous activity. Their method optimized time-delayed
dependencies globally. A cumulative abnormality score was
introduced to replace the conventional log-likelihood score for
gaining more robust anomaly detection.

The above methods implicitly assume that humans can
be tracked accurately and the flow of a human crowd is
constant. However, in a general surveillance setting, such
assumptions are always invalid. Therefore, activity analysis
based on camera topology is challenging and even infeasible
in unconstrained multi-camera surveillance.

III. Activity Content Representation

Occlusion often exists in real-world surveillance videos
with dynamic and crowded scenes. It is thus infeasible to
obtain accurate tracking of activities. Many popular features
that rely on tracking will lose their power [29], [31]. Therefore,
there is a compelling need to design a new feature that does
not depend on tracking to represent the visual content of
group activities in dynamic and crowded scenes. We pro-
pose here a new spatiotemporal feature, termed VA. The VA
feature describes the quantity and appearance of foreground
motions (vigilance) in an area. The detection of VA benefits
from some effective fast computer vision techniques such
as background subtraction and morphological operation. As

we will discuss later, VA is effective in representing group
activities in dynamic and crowded scenes, and is easy to
extract without the requirement of tracking results. Fig. 2
illustrates the pipeline of VA extraction. Given a video clip,
we first quantize it into blocks of space–time cubes. We
then calculate the accumulate number of foreground pixels in
each space–time cube to characterize the quantity of motion
(vigilance) in a time interval. Afterward, we represent the
motion information within a video clip as a vigilance image,
where each pixel corresponds to a space–time cube in the
video clip, and its intensity is the vigilance of that cube. Each
connected component in the vigilance image that is sufficiently
large are chosen as a VA. Finally, to represent the shape and
motions of each VA, we map the VA into log-polar coordinate
to obtain a Quasi-ShapeContext descriptor.

Next, we will first introduce the details of VA detection and
then present our quasi-ShapeContext descriptor.

A. Vigilant Area Detection

Without loss of generality, we only describe the detection
of VAs in a video clip of one camera and the process can be
easily extended to video clips from other cameras.

Given a video clip, the foreground is first detected using a
background subtraction method [39]. Note that the length of
the video clip is essential for the time scale and we should set
it to a reasonable value. According to the taxonomy in [34], we
set different time scales τ for different activities. The setting
of τ is described in Section V-A. We denote a video clip as
v(x, y, t), t ∈ [0, τ] where (x, y) and t are space and time
coordinates, respectively. The video clip is then divided into
space–time cubes in size of 10×10×τ pixels. In a space–time
cube, the number of foreground pixels represents its intensity
of motions. We name the intensity of motion as vigilance. The
vigilance of a certain space–time cube is calculated as

vig(m, n) =
∑

pixels in the cube (m,n) I(x, y, t)

{
I(x, y, t) = 0, if pixel(x , y, t) is background
I(x, y, t) = 1, if pixel(x , y, t) is foreground

(1)

where vig(m, n) is the vigilance of the (m, n)th space–time
cube in the video clip.

Different from the MHI [18] and PCH [34] representations,
there is no damping factor to discriminate pixels over time
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Fig. 3. Illustration of VA detected from sample video clip of Queuing,
Discussing, GroupWalking.

because we assume that the temporal space is homogeneous in
group activities. For example, people walking to the right and
people walking to the left are considered the same activity as
people walking. To eliminate the noise in the foreground such
as reflection on a static object surface and minor luminance
changes, we force the vigilance of a cube to be zero if it is
smaller than η% of total 10 × 10 × τ pixels (η is set to 1 in
our work).

After obtaining the vigilance of all the cubes in a video
clip, we normalize the vigilance into the range of [0, 1] and
represent them in a gray-level image, called the vigilance
image, where each pixel corresponds to a cube and its intensity
is the vigilance of this cube. Suppose the video clip is divided
in to M × N cubes; the resultant vigilance image is in size
of M × N. We then detect VAs from the vigilance image.
Specifically, morphology operations such as dilate and erode
are used to separate the connected components in the image.
We remove components whose area in vigilance image is less
than 8 pixels. The reason is that isolated small components are
always caused by individual movement while connected large
components are caused by a group activity. This threshold is
empirically set to be small (i.e., 8 pixels) to alleviate the influ-
ence of the perspective distortion. As you can perceive, each
component is our VA. The centroid of a VA indicates where
the movement is and the contour describes what it looks like.
Fig. 3 illustrates the VAs detected from sample video clips.

B. Quasi-ShapeContext Descriptor

Each VA detected above includes two types of information:
vigilance and shape. Thus, the descriptor of VA should encode
the shape of the contour and its internal layout while account-
ing for small local affine deformations. The affine deformation
problem stems from different camera views and different
moving pattern (e.g., walking vertically or horizontally in a
view). Therefore, VAs representing the same group activity
may be rotated and scaled.

Inspired by the shape context descriptor [40], we design
a log-polar representation to be the VA descriptor. Given
detected VAs in a video clip, we first calculate all the first
principal components {λi} of them and take the logarithm of
the largest major component λ∗ = max

i
λi to be the upper

bound of the log-axis. The upper bound of polar axis is set to
2π. For each VA, we transform it into the log-polar coordinates
[0, log λ∗] × [0, 2π] centered at the centroid and partition the

space into 60 bins (12 angles and 5 radial intervals). Then,
every pixel in the VA is allocated into its corresponding bin.
The value of each bin is calculated as the maximal vigilance
within it. As a result, each VA is described as a 60-dimensional
descriptor. This vector is normalized by linearly stretching its
values to the range of [0, 1] in order to be invariant to the
differences in background.

The idea behind our quasi-ShapeContext descriptor is two-
fold.

1) In polar coordinates, it can be found that relative ori-
entation and the logarithm of relative distance between
points are invariant to scales. Therefore, the VA descrip-
tor is invariant to different camera views.2

2) The maximal vigilance value is most informative on the
motion within a bin and the uniform partition makes
the descriptor more sensitive to the motions close to
the centroid than those far away. Specifically, since the
log function is more sensitive to the closer distance, the
uniform bins record the motions in small area nearby
the centroid and that in large area far away, and finally
treat these motions equally. Therefore, motions nearby
the centroid contribute more to its corresponding bins
than motions far away.

IV. Multi-Camera Group Activity Detection

In this section, we introduce the proposed discriminative
graphical model for multi-camera group activity detection. Our
model aims to predict the group activity occurring in a set
of video clips collected from multiple cameras in the same
time interval. For the sake of simplicity, we use the term
video bundle to refer to a set of video clips collected from
multiple cameras in the same time interval in the remaining
parts of this paper. The content of a video bundle can be
represented by a set of VA descriptors extracted from the
video clips within the bundle. Fig. 4 shows an illustration
of video bundles and their corresponding VA descriptors.
Different from the existing latent graphical models, such as
HMM [41] and HCRF [42], which assume a predefined and
fixed structure for the latent variables (e.g., chain structure or
tree structure), the proposed discriminative graphical model
optimizes the nonfixed structure of the latent variables during
learning and inference. Through automatic inference of the
nonfixed structure, the intra/inter-camera contexts are intelli-
gently explored for activity detection.

Next, we will present the mathematical formulation of our
discriminative graphical model, and show that this model
captures the intra-camera and inter-camera contexts. We will
then describe the inference and learning procedure of the
proposed model.

A. Formulation

Let X and Y denote the feature and label space, respec-
tively. The training set is denoted by {(xi, yi)}Ni=1. xi ∈ X is

2Note that spatial scaling in one single-camera view is not an important
issue because the monitored area of a single camera is limited in our data.
In some other applications such as far-field video surveillance, VAs can be
extracted from multiple spatial scales.
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a set of VAs {xi1, xi2, · · · , xin} extracted from the ith video
bundle, where n is the number of VAs in this bundle. The
number of VAs can vary across bundles; for convenience of
notation, we omit the dependency on the bundle index and
simply refer to the number of VAs as n for every bundle.
yi ∈ {+1, −1} is the corresponding label indicating whether
this bundle captures a particular activity.

Given the training samples, the task is to learn a classifi-
cation function f : X → Y from these samples. However,
the label yi associated with xi does not directly indicate the
latent semantics of VAs xij . Thus, we introduce an intermediate
hidden variable hij for each VA xij , where hij ∈ H and
H is a set of possible hidden states. This gives rise to a
set of hidden variables hi = {hi1, · · · , hin} for each sample
xi. Intuitively, hij assigns a subactivity label to xij , where
the subactivity corresponds to certain motion patterns that
are commonly shared with different activities. For exam-
ple, one subactivity might correspond to moving slightly in
short-term but continuously in long-term that is commonly
observed in the activity Studying, Discussing, and Queuing.
The subactivity corresponding to radical moving is shared
by GroupWalking and DoorOpening. Therefore, such hidden
variables implicitly capture the latent semantic meanings of the
low-level features. There are connections among some hidden
variables and these connections essentially encode the intra-
camera and inter-camera contexts. Concretely, the connections
among VAs from the same camera encode the intra-camera
context, while the connections among VAs from different
cameras characterize the inter-camera context. For a sample
x, we use an undirected graph G = (V, E) to represent its
hidden variables h = {h1, h2, · · · , hn}, where the vertices
correspond to the hidden variables and the edges (j, k) ∈ E
denote connections between variables hj and hk. As we will
discuss later, the structure of graph G, i.e., the connections
between hidden variables, is automatically inferred.

Given the definitions of labels y, samples x, hidden variables
h, and the context graph G = (V, E), we formulate our activity
detection model as a linear discriminative function [30] as

F (x, h, y,G; w) = wT �(y, h, x;G) (2)

where w is the model parameter and �(y, h, x;G) is a real
valued feature function.

This model makes it feasible to incorporate the association
between VAs and their hidden variables, the relation between
hidden variables and labels, and the connection between
hidden variables in a single unified formulation. To encode all
of this information, we decompose the overall feature function
�(y, h, x;G) into three components according to the relations
between these variables

F (x, h, y,G; w) =
∑
i∈V

wT
xhφxh(xi, hi) +

∑
i∈V

wT
hyφhy(hi, y)

+
∑

i,j∈E
wT

hhφhh(y, hi, hj)

(3)
where φxh captures the association between each VA and its
hidden variable, φhy associates the hidden variables to activity
label, and φhh features the inter-relationship between each

Fig. 4. Illustration of video bundles and their corresponding VA descriptors.

pair of linked hidden variables. The model parameters w are
the combination of three parts, w = {wxh, why, whh}. In the
following, we give the details of these three potentials.

1) Association Between a VA and Its Hidden Variable:
This potential models the hidden semantic of a VA. It is
parameterized as

wT
xhφxh(xi, hi) =

∑
s∈H

wT
xh,s · δ [[hi = s]] · xi (4)

where δ [[hi = s]] is the indicator function that takes on value
1 if the argument holds true and 0 otherwise, H is the set
of all possible hidden labels, and the parameters wxh are
the concatenation of wxh,s for all s ∈ H. This potential
function recharacterizes the VA descriptor xi with a weighting
factor wxh,s dominated by a hidden state h. Recall that each
dimension of a VA descriptor x represents the vigilance of a
part of vigilance area, the hidden label is expected to boost
the vigilance values related to the corresponding subactivity
while inhibiting those unrelated ones via the weight wxh.

2) Relation Between Activity Label and Hidden Variables:
This potential is designed for modeling the compatibility
between hidden variable hi and activity label y

wT
hyφhy(hi, y) =

∑
l∈Y

∑
s∈H

wT
hy,ls · δ [[hi = s]] · δ

[[
y = l

]]
. (5)

The relatedness of the hidden variables to the activity label
y is recorded in the parameter why. For example, when we
detect activity Studying, the hidden variables assigned to the
VAs whose hidden states are the subactivity implying slow
but continuously moving will contribute more potentials, i.e.,
have larger weights why than those whose subactivity is rapid
moving.
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3) Connection Between Hidden Variables: As mentioned
before, we encode the intra-camera and inter-camera con-
texts through the structure of the hidden variables, i.e., the
graph G = (V, E). The intra-camera contextual relationship
is reflected by the connections of the hidden variables corre-
sponding to the VAs from the same camera, while the inter-
camera contextual relationship is expressed by the connections
of the hidden variables of VAs from different cameras. We
parameterize the interaction between a pair of linked hidden
variables by using the following potential function:

wT
hhφhh(y, hi, hj)

=
∑
l∈Y

∑
p∈H

∑
q∈H

wT
hh,lpq · δ

[[
hi = p

]] · δ
[[

hi = q
]] · δ

[[
y = l

]]
.

(6)
Given a particular activity label y, this potential function favors
the interactions among different hidden variables that reveal
reasonable context.

B. Learning and Inference

We now first describe the inference of the optimal activity
label y for a new sample given the model parameter w, and
then elaborate the learning of the model parameters w from
training samples.

1) Inference: Suppose the model parameters w have been
learned; the inference is to find the optimal activity label y for
a new sample x. In particular, the label y can be inferred as

y∗ = arg max
y∈Y

F (x, y, h∗
y,G∗

y ; w) (7)

where h∗
y are the optimal states of hidden variables given a

particular y, G∗
y is the optimal structure of the hidden variables

given y. Note that the optimal structure G∗
y essentially inter-

prets the intra-camera and inter-camera contexts. Specifically,
h∗

y and G∗
y are inferred according to a particular y as

< h∗
y,G∗

y >= arg max
hy,Gy

F (x, y, hy,Gy; w). (8)

This crucial optimization problem is, in general, NP-hard
because it involves a combinatorial search. In order to approx-
imate the solution, we solve (8) using a coordinate descent
algorithm similar to a latent support vector machine [43].

Step 1: Holding the graph structure Gy fixed, optimize the
hidden variables for the pair (x, y)

hy = arg max
h′

F (x, y, h′,Gy; w). (9)

Step 2: Holding hy fixed, infer the graph structure Gy

Gy = arg max
G ′

F (x, y, hy,G ′; w). (10)

We use loopy belief propagation to optimize hy in (9). How-
ever, solving (10) is still NP-hard because the enumerations
of all graph structures are exponential to the number of
vertices. In order to tackle this problem, we need to make
reasonable assumptions to approximate the exact solutions.
We control the sparsity of the graph by a threshold d, where
d ∈ {0, 2, ..., n − 1} refers to the degree of vertices [30].
Trivially, d = 0 indicates that the hidden variables are totally

independent and d = n − 1 implies that the graph is fully
connected. Generally, higher degree leads to a more complicate
model, and may result in over-fitting and divergence in loopy
belief propagation. Then, the optimization in (10) can be
written as an integer linear programming

max
z

∑
i∈V

∑
j∈V

zijwT
hhφhh(y, hi, hj)

s.t. ∀i, j,
∑
i∈V

zij ≤ d,
∑
i∈V

zij ≤ d, zij = zji, zij ∈ {0, 1} (11)

where zij = 1 indicates (i, j) ∈ E and 0 otherwise. We further
approximate the solution of (11) by relaxing constraint zij ∈
{0, 1} to zij ∈ [0, 1] and then rounding the solution to its
closest integers.

After obtaining the optimal hidden states h∗
y and the optimal

graph structure G∗
y for all possible y, we can optimize the label

of a new sample x according to (7).
2) Learning: Now we describe how to learn the parameter

w from a set of training samples {(xi, yi)}Ni=1. The task of
learning w can be formulated as a constrained optimization
problem as

min
w,ξi

1
2 ‖w‖2 + C

N∑

i=1
ξi

s.t. ∀i, F (xi, yi, h∗
yi
,G∗

yi
; w) − F (xi, ȳi, h∗

ȳi
,G∗

ȳi
; w) ≥ 1 − ξi

ξi ≥ 0

(12)

where ȳi = Y\yi and ξi is a penalty for margin violations of
samples. C is a constant that controls the tradeoff between
training error minimization and margin maximization.

The inequality constraints in (12) can be rewritten as the
following equivalent equality constraints:

∀i, ξ̄i = max{0, 1 − F (xi, yi, h∗
yi
,G∗

yi
; w) + F (xi, ȳi, h∗

ȳi
,G∗

ȳi
; w)}.

(13)

Therefore, the constrained problem in (11) is equivalent to an
unconstrained optimization problem as

min
w

1
2 ‖w‖2 + C

N∑

i=1
max(0, 1 − Fyi

(w) + Fȳi
(w)) (14)

where Fyi
(w) = F (xi, yi, h∗

yi
,G∗

yi
; w) and Fȳi

(w) =
F (xi, ȳi, h∗

ȳi
,G∗

ȳi
; w).

Since ξ̄i is nonconvex and nonsmooth, we use a nonconvex
bundle method [44] to solve the optimization problem in (14).
In order to apply the bundle method, we need to calculate the
subgradient g(w) of ξ̄i in (13).

Calculating subgradient g(w). The subgradient g(w) of ξ̄i

is given as

g(w) =

{
0, if 1 − Fyi

(w) + Fȳi
(w) < 0

∇wFȳi
(w) − ∇wFyi

(w), otherwise.
(15)

Next, we describe how to compute ∇wFyi
(w), and ∇wFȳi

(w))
can be calculated in a similar way.

Let < h∗
y(w),G∗

y (w) > be the optimal solution of (8)
explicitly parameterized by w, then

∇wFyi
(w) = �(yi, h∗

yi
, xi;G∗

yi
) − wT ∇w�yi

(w) (16)
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Fig. 5. Layout for the nine cameras and sample video frames from them.

where �yi
(w) = �(yi, h∗

yi
(w), xi;G∗

yi
(w)). By the definition of

derivative, we have

∇w�yi
(w) = lim

||
w||→0

�yi
(w + 
w) − �yi

(w)


w
(17)

where �yi
(w + 
w) = �(yi, hyi

∗(w + 
w), xi;G∗
yi

(w + 
w)).
Note that < h∗

yi
,G∗

yi
> are discrete and w is continuous.

These properties assure that we can always find a sufficiently
small ||
w|| �= 0 such that

< h∗
yi

(w + 
w),G∗
yi

(w + 
w) >=< h∗
yi

(w),G∗
yi

(w) > . (18)

Therefore, the numerator on the left-hand side of (16) is zero
and the subgradient g(w) can be finally written as

g(w) =

{
0, if 1 − Fyi

(w) + Fȳi
(w) < 0

�ȳi
(w) − �yi

(w), otherwise
(19)

where �ȳi
(w) = �(ȳi, h∗

ȳi
, xi;G∗

ȳi
).

With the subgradient g(w) of ξ̄i, the optimal model pa-
rameters w can be learned by solving the unconstrained
optimization problem in (13) using the nonconvex bundle
method provided by the subgradient.

V. Experiments

In this section, we evaluated our proposed VA feature
and the discriminative graphical model for multi-camera group
activity detection on two real-world CCTV surveillance video
data sets, including a 468-h video corpus collected by nine
cameras with a total footage duration of 468 h and the publicly
available UCR VideoWeb data set [13], which contains 2.5 h
of surveillance videos.

A. Data Set Description

468-h video data: This data set contains nine fixed and
uncalibrated cameras set up on the first floor ceiling at an
academic building located in a university campus. We col-
lected videos by the cameras from 8:00 am to 9:00 pm in four
days, and obtained 4 × 9 × 13 = 468 h of videos in total. It is
worth noting that our data set is larger than any other known
surveillance video data set to our best knowledge (e.g., 50-h
videos for training and 49-h videos for testing in TRECVid

TABLE I

Description of Five Activities of Interest

Activity Description
Studying A group of students study at the table.
Queuing A group of students queue for using a public resource.
GroupWalking A group of students walk through an area.
DoorEntering A group of students enter an area through a door.
Discussing A group of students discuss with each other.

data set [8], 153-h videos in [9] and 177-h footage in [12]). The
video stream has a size of 640 × 480 pixels at the frame rate
of 4 f/s. As shown in Fig. 5, the coverage of the nine cameras
includes one main entrance and one secondary entrance to
the building, two corridors outside three research laboratories,
and one public student studying hall. This data set is more
challenging than the video corpus recorded from underground
station. Besides the low frame rate, another challenge is that
the crowd flow in our videos is not constant, and people
may enter or exit from an unmonitored area freely. We define
five group activities of interests, each involving behaviors of
no less than three persons. The five activities are Studying,
Queuing, GroupWalking, DoorEntering, and Discussing. The
detailed descriptions are listed in Table I.

As illustrated in Fig. 4, we first divided the entire video
streams into video bundles according to duration τ specified
in Table II. Here, τ is the window size when detecting a given
activity on a video stream. For example, for the activity study-
ing, we set τ to 30 s and divided the video stream into a set of
video bundles of 30 s durations. Then, we invited annotators
to manually label the groundtruth of the activities on these
bundles. In particular, τ is set by observing the duration of
activities in the training samples. The approximately minimal
and maximum durations of the five activities are 30 s and 3 h
for Studying, 30 s and 10 min for Queuing, 15 s and 20 s for
GroupWalking, 5 s and 10 s for DoorEntering, and 30 s and 2
h for Disucssing, respectively. We here set τ as the minimum
duration of each activity to avoid including irrelevant content
into the segmented video bundles that are positive samples
with respect to a particular activity. If τ is set to be too
large, for example, longer than the maximum duration of
the activity, many positive video bundles will include much
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TABLE II

Details of the Training Data in the 468-H VIDEO Data Set

Activity # of Positive # of Negative Duration τ

Studying 1153 11 530 30 s
Queuing 530 5772 30 s
GroupWalking 628 6420 15 s
DoorEntering 680 6800 5 s
Discussing 573 5800 30 s

irrelevant content. In other words, only a small portion of a
positive bundle is truly positive. On the other hand, if τ is set
as too small, for example, much shorter than the minimum
duration of an activity, many positive samples will be not
able to characterize the activity comprehensively. We chose
the video bundles in the first three days for training and the
rest as testing samples. We adopted the down-sample strategy
to down-sample the negative samples in the training set. This
strategy has been widely used to facilitate classifier learning
in activity detection [45], [46]. Specifically, we filtered out
negative samples that are completely static and then conducted
temporal down-sampling on the negative samples to make the
ratio between the numbers of positive and negative training
samples at about 1:10. The details of the training data are
listed in Table II.

UCR VideoWeb data: The Videoweb data set consists of 2.5
h of surveillance video. These videos are recorded by four to
eight cameras over four days at 640 × 480 resolution with the
frame rate of around 30 f/s. The average length of the video
clips is 4 min. Most activities in this footage illustrate single-
person actions (e.g., Sitting down), interactions between two
persons (e.g., Hugging), interactions between person and ob-
ject (e.g., Tossing a ball), and interactions with vehicles (e.g.,
Entering car). In our experiments, we evaluated three group
activities, including People milling together, Person joining
group, and Person leaving group. We conducted evaluation
on the videos collected in the first three days. The data in
the fourth day, which focus on the interactions with vehicles,
were not used in our experiments. We separated the videos
into segments with small duration and manually annotated
the groundtruth over these segments. The annotated video
segments were randomly split into a training set with 70%
of segments and a testing set with 30% of segments.

B. Experimental Setting

To evaluate the proposed VA feature, we compared it to two
existing spatiotemporal features, including the local spatiotem-
poral MoSIFT feature [7], which has achieved encouraging
performance in TRECVid surveillance event detection, and
the recently proposed dense trajectory feature [14]. MoSIFT
treats a SIFT key point [47] as a MoSIFT key point if and
only if this key point has sufficient motion (i.e., optical flow)
in its corresponding scale space. The MoSIFT descriptor is
a 256-dimensional vector that consists of 128-dimensional
optical flow histogram after the original 128-dimensional SIFT
descriptor. In our implementation, we compared the optical
flow between every four frames and ruled out SIFT points
with insufficient motion whose velocity is less than 1% of the

diagonal of the frame in the corresponding scale space. The
dense trajectory feature samples dense points from each video
frame and tracks them based on displacement information
from a dense optical flow field. In our implementation, 426-
dimensional dense trajectory descriptors were extracted. We
employed the k-means clustering algorithm to generate a 250-
word visual vocabulary for VA and 500-word visual vocabu-
laries for MoSIFT and dense trajectory features, respectively.
The visual vocabularies were then used to generate bag-of-
words (BoW) representation for each sample. Based on the
BoW representation, the support vector machine (SVM) [48]
was adopted as the activity detection model. For the sake
of simplicity, we named these three methods VA-BoW-SVM,
MoSIFT-BoW-SVM, and DT-BoW-SVM, respectively, where
DT corresponds to the dense trajectory feature.

For the evaluation of the proposed discriminative graphical
model (DGM), we compared our VA-DGM method to the
VA-BoW-SVM approach and the existing graphical model
HCRF [42]. The HCRF model was also built on the VA
features for the sake of fair comparison. We termed this
approach VA-HCRF. Furthermore, we compared the VA-DGM
method to its single-camera counterpart VA-DGM-S and a
state-of-the-art group activity modeling method based on a
multi-observation hidden Markov model (MOHMM) [9]. In
particular, VA-DGM-S processes the multiple camera views
independently. For an activity of interest, VA-DGM-S predicts
the presence of the activity on the samples (i.e., video bundles)
from all the cameras independently. All the samples are
then sorted together according to their confidence scores for
calculating the performance metrics described in the next
section.

For performance comparison, we adopted the widely used
performance metric receiver operating characteristic (ROC)
curve to evaluate and compare the above methods on each
activity. The horizontal axis of ROC curve represents the false-
positive rate (FPR) and the vertical axis represents the true-
positive rate (TPR), which are calculated as

TPR = TP/(TP + FN)
FPR = FP/(TN + FP)

(20)

where TP is the number of true-positive samples, FN is
the number of false-negative samples, FP is the number of
false-positive samples, and TN is the number of true-negative
samples. Based on the ROC curve, we further computed
the area under ROC curve (AUC) value. AUC describes the
probability that a randomly chosen positive sample will be
ranked higher than a randomly chosen negative sample.

The algorithmic parameters of the approaches were deter-
mined by a four-fold cross-validation on training set. For a fair
comparison, the best results of all the methods were reported.
Specifically, three parameters need to be estimated in our
DGM model: the tradeoff parameter C in (12), the degree of
vertices d in (11), and the number of hidden states. They were
respectively selected from sets {10, 100, 200, 500}, {2, 4, 6,
8}, and {5, 10, 20} via a cross-validation process. Similarly,
the tradeoff parameter C in SVM was selected from {10, 100,
200, 500}.
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TABLE III

Group Activity Detection Performance by Different Approaches in Terms of AUC Values

Approach Studying Queuing GroupWalking DoorEntering Discussing Avg. AUC

VA-DGM 0.81 0.74 0.80 0.92 0.80 0.82
VA-DGM-S 0.80 0.69 0.75 0.84 0.75 0.77
VA-BoW-SVM 0.77 0.72 0.77 0.72 0.67 0.73
VA-HCRF 0.65 0.73 0.64 0.84 0.66 0.70
MOHMM 0.62 0.63 0.62 0.71 0.64 0.64
MoSIFT-BoW-SVM 0.63 0.68 0.65 0.63 0.63 0.64
DT-BoW-SVM 0.61 0.63 0.69 0.77 0.63 0.67

Fig. 6. ROC curves and AUC scores for the detection results of Studying.

Fig. 7. ROC curves and AUC scores for the detection results of Queuing.

C. Experimental Results

1) Evaluation on 468-h Video Data: Figs. 6–10 illustrate
the ROC curves of the seven methods on the five group
activities in the 468-h video data, while Table III shows their
AUC values on each activity and the average AUC values
over all five of the activities. From these results, we can see
that the proposed VA-DGM method achieves the best overall
performance and outperforms others in all five of the activities.

Fig. 8. ROC curves and AUC scores for detection results of GroupWalking.

Fig. 9. ROC curves and AUC scores for detection results of DoorEntering.

Moreover, we can obtain the following observations.
1) Evaluation of VA feature: The superiority of VA-BoW-

SVM to MoSIFT-BoW-SVM and DT-Bow-SVM indi-
cates that the proposed VA feature is more effective
than MoSIFT and the dense trajectory feature on group
activity detection in real-world unconstrained videos.
Compared to MoSIFT and the dense trajectory fea-
ture, the proposed VA feature achieves better overall
performance and relative 14% and 9% improvements
in terms of average AUC, respectively. Especially, for
long-term group activities such as studying, the AUC
value is relatively improved by 22% and 26% compared
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Fig. 10. ROC curves and AUC scores for the detection results of Discussing.

Fig. 11. ROC curves and AUC scores for the detection results of People
Milling Together.

to MoSIFT and the dense trajectory feature, respec-
tively. The main reason is that VA feature not only
captures the accumulative motions of a group activity
but also delineates the long-term appearance of the
activity. In contrast, MoSIFT and the dense trajectory
feature are based on local description that only encodes
the instant appearance and motion of a local point.
Therefore, MoSIFT and the dense trajectory feature are
less descriptive and distinctive for long-term activities
(e.g., studying) although they are effective for short-term
events (e.g., CellToEar, pointing in TRECVid task [8],
and HandShake, Kicking [14]). In addition, MoSIFT and
the dense trajectory feature rely on the optical flow
between two continuous frames. They are not effective
in characterizing the motion information in videos with
low frame rate, which lacks temporal consistency.

2) Comparison to Existing Methods: From the comparison
results of the proposed VA-DGM approach and three
existing methods, i.e., VA-BoW-SVM, MOHMM [9],
and VA-HCRF, we can see that the VA-DGM approach
obtains the best overall performance in terms of average

AUC scores and outperforms the three existing method
in all five of the activities. Different from HCRF, which
assumes a predefined and fixed structure of latent
variables, the proposed DGM does not fix the structure
of latent variables, but optimizes it during learning and
inference. Through automatic inference of the nonfixed
structure, DGM is able to exploit the intra/inter-
camera contexts more effectively. The experimental
results show that DGM obtains about 17% relative
improvements in terms of average AUC as compared
to HCRF. Moreover, as described in Section I, most
existing group activity detection methods rely on inter-
camera topology inference based on accurate tracking
results or clustering areas under different cameras with
visual cues, such as the MOHMM method in [9]. These
methods usually cannot perform well over unconstrained
surveillance videos that contain a crowded scene and
inconstant human crowd flow. In contrast, our proposed
approach performs group activity detection without
reliance on camera topology inference.

3) Evaluation of intra-camera and inter-camera contexts:
While the VA-DGM-S method exploits the intra-camera
context by using the DGM model, the VA-DGM
approach leverages the intra-camera and inter-camera
contexts at the same time. As shown in Table III,
the improvements of VA-DGM-S over VA-BoW-SVM
indicate that our DGM model performs better than
the SVM with BoW representation. By modeling the
intra-camera context, VA-DGM-S obtains about 5.5%
improvements in terms of average AUC. From the
comparison results of VA-DGM and VA-DGM-S, we
can see that, by future exploiting inter-camera context,
VA-DGM outperforms VA-DGM-S by around 6.5% on
average AUC and performs better on all five of the
activities. Specifically, the inter-camera and intra-camera
contexts are interpreted by the optimized structure of
hidden variables in DGM. For a testing sample, its VA
descriptors are jointly modeled based on such context,
where the states and structure of hidden variables are
optimized on-the-fly to characterize the context. On the
contrary, BoW representation of VAs is just a vector
of term frequency that is assumed to be independent
and hence loses important context information. These
experimental results demonstrate that integrating multi-
camera context within the proposed DGM method can
effectively improve the activity detection performance.

2) Evaluation on UCR VideoWeb Data: This evaluation
is targeted at studying the effectiveness of the proposed VA
feature and DGM on a publicly available data set and investi-
gating the comparison to existing spatiotemporal features and
latent graphical models. Figs. 11–13 show the ROC curves
of the three group activities on the UCR VideoWeb data
set. The compared methods include the proposed VA-DGM
method, an existing latent graphical model HCRF, two existing
spatiotemporal features (i.e., MoSIFT and the DT feature), and
the baseline method VA-BoW-SVM. Table IV provides the
AUC values on each activity and the average AUC values.
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Fig. 12. ROC curves and AUC scores for the detection results of Person
Joining Group.

Fig. 13. ROC curves and AUC scores for the detection results of Person
Leaving Group.

From the performance comparison between VA-DGM and
VA-HCRF, we can see that the proposed DGM outperforms the
existing HCRF model on all the three activities. In particular,
DGM achieves 14% relative improvements over HCRF in
terms of average AUC. As mentioned before, while HCRF
adopts a fixed latent structure, the proposed DGM automat-
ically optimizes the structure during learning and inference
and thus can explore the intra/inter-camera contexts more
effectively. On the other hand, from the comparison of VA-
BoW-SVM to MoSIFT-BoW-SVM and DT-BoW-SVM, we
can see that the VA feature is more effective than the two
existing spatiotemporal features, i.e., MoSIFT and DT in group
activity detection over real-world unconstrained surveillance
videos.

VI. Conclusion and future work

In this paper, we proposed a new approach for detecting
group activities in multi-camera surveillance videos. Different
from previous works relying on camera topology inference,
our proposed discriminative graphical model can simulta-

TABLE IV

Group Activity Detection Performance by Different

Approaches in Terms of AUC Values on UCR VideoWeb Data Set

Approach Milling Joining Leaving Avg. AUC
VA-DGM 0.69 0.73 0.75 0.72
VA-HCRF 0.64 0.63 0.63 0.63
VA-BoW-SVM 0.63 0.66 0.69 0.66
MoSIFT-BoW-SVM 0.63 0.65 0.61 0.63
DT-BoW-SVM 0.64 0.66 0.60 0.63

The three group activities are Milling—People Milling Together,
Joining—Person Joining Group, and Leaving—Person Leaving Group.

neously exploit intra-camera and inter-camera contexts for
activity detection without topology inference. Moreover, an
effective spatiotemporal feature VA was developed to represent
the content of group activities. VA describes the quantity and
appearance of the motion in an area. It is easy to extract
from a dynamic and crowded scene without relying on any
tracking. Experimental results on a 468-h real-world multi-
camera surveillance video corpus and the publicly available
UCR VideoWeb data set demonstrated the effectiveness of the
proposed VA feature and discriminative graphical model on
multi-camera group activity detection. Our proposed approach
is expected to facilitate future research on group activity
detection in two aspects: 1) the proposed VA feature provides
an effective representation of group activity and is expected to
facilitate group activity modeling and 2) the proposed DGM
model exploits multi-camera context and has shown that this
context is beneficial to group activity detection. This encour-
ages future research on exploring multi-camera context. In the
future, we will exploit more kinds of contextual information,
e.g., scene layout, to improve the detection performance.
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