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Abstract— This paper presents a system that gives a robot
the ability to diminish its own disturbing noise (i.e., ego
noise) by utilizing template-based ego noise estimation, an
algorithm previously developed by the authors. In pursuit of an
autonomous, online and adaptive template learning system in
this work, we specifically focus on eliminating the requirement
of an offline training session performed in advance to build
the essential templates, which represent the ego noise. The
idea of discriminating ego noise from all other sound sources
in the environment enables the robot to learn the templates
online without requiring any prior information. Based on the
directionality/diffuseness of the sound sources, the robot can
easily decide whether the template should be discarded because
it is corrupted by external noises, or it should be inserted into
the database because the template consists of pure ego noise
only. Furthermore, we aim to update the template database
optimally by introducing an additional time-variant forgetting
factor parameter, which provides a balance between adaptivity
and stability of the learning process automatically. Moreover,
we enhanced the single-channel noise estimation system to be
compatible with the multi-channel robot audition framework
so that ego noise can be eliminated from all signals stemming
from multiple sound sources respectively. We demonstrate that
the proposed system allows the robot to have the ability of
online template learning as well as a high performance of noise
estimation and suppression for multiple sound sources.

I. INTRODUCTION

The main necessities of mobile robots are to obtain

information about the environment by their own and to move

their bodies to accomplish useful tasks. Autonomous and

online learning of new capabilities/models is their ultimate

target because 1) these capabilities/models are too complex

to hand-code, 2) they can change in real-time and real-world

conditions and, 3) human involved teaching becomes costly

both in time and money. Teaching the robot its ego noise, the

own noise generated by its motors and fans, is an example of

such a task suffering from the above mentioned constraints.

Although general research about the auditory

(diffuse/directional) noise estimation techniques date

back to a few decades ago, ego noise estimation just

recently started to attract interest due to the emergence of

robot audition. It has been shown that the estimation of ego

noise is crucial in suppressing this noise and consequently

achieving good performance in various applications of

robot audition such as, Automatic Speech Recognition

(ASR) [1] and Sound Source Localization (SSL) [2]. The

main difficulty of dealing with ego noise is that firstly the
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acoustic properties of the motor noise such as the power

and frequency characteristics in the spectrum are similar to

the properties of sounds of interest such as music or speech,

and secondly ego noise is a near-field signal. Therefore,

standard solutions designed for far-field signal processing

do not work adequately. Moreover, the locations and number

of the active motors cannot be assumed to be fixed.

Sawada et al. [3] used semi-blind signal separation to

obtain ego noise estimates by attaching noise sensors,

e.g. Non-Audible Murmur (NAM) microphones inside the

robot, but this method requires additional hardware to be

mounted inside the robot. Conventional noise estimation

techniques [4], [5] fail in estimating the non-stationary

ego noise because they are neither able to discriminate

ego-motion noise from non-stationary speech signals, nor

fast enough to track the rapid changes in ego noise. In

contrast to stationary noise estimation methods, template

estimation is a better suited method because it represents

the motion data using a sequence of observations. Based

on these observations, it is possible to associate either a

motion command [6] or discrete time series data representing

the angular state of motors [1], [7] with another discrete

time series data representing the ego noise spectra in the

form of templates. The learned associations can then be

used to predict an arbitrary sequence of associated data.

The so-called Template-based Estimation (TE) has multiple

advantages over the conventional stationary noise estimators

such that they are not dependent on Signal-To-Noise Ratio

(SNR), not prone to Voice Activity Detection (VAD) errors,

and the adaptation latency to the actual noise is theoretically

zero. The drawbacks of standard TE [1], [6], [7], i.e.,
constantly growing size of the template database, inability to

update the database autonomously and incapacity of coping

with changing environmental noise portion in the recorded

templates are tackled in our prior work [8]. However, one

huge problem still remained, that is how to eliminate the

offline training session and human involvement completely.

The learning process, which continues over the entire

lifespan of a robot without human intervention, is called

life-long learning and it is successfully applied for various

tasks such as robot navigation/manipulation [9] and object

recognition/categorization [10] in robotics. In this paper we

pursue to endow a humanoid robot the ability of life-long

learning of templates for template-based ego noise estimation

by introducing online learning. The robot learns and updates

the templates completely autonomously and in an adaptive

manner. This online learning algorithm is a natural extension

of the incremental learning [8] method and allows the robot
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to learn its ego noise not only in isolated and prepared

training conditions, but also in daily environments even in

the presence of other noise sources such as humans.

The first contribution of the paper is the introduction

of the idea of distinguishing ego noise from other types

of sound sources using its directivity properties. Based on

the instantaneous multi-channel audio spectrum, the robot

can easily decide whether the template should be discarded

because it is corrupted by external noises, or it should be

inserted into the database because the template consists of

pure ego noise. Secondly, we aim to update the template

database optimally by introducing a time-variant forgetting

factor, which provides a balance between adaptivity and

stability of the learning process. In contrary to previous

template-based suppression methods [1], [6], [7], which

can be only applied to a single sound source, we thirdly

propose a system, which is able to separate the estimated

ego noise contaminating each individual sound source. This

novel approach is used to suppress the ego noise on multiple

sound sources. Finally, we demonstrate that the proposed

system allows the robot to have the ability of online learning

as well as improved noise estimation/suppression quality for

multiple sound sources.

II. EGO NOISE ESTIMATION

In this section we outline the basic architecture of the ego

noise estimation system as the flowchart in Fig. 1 depicts.

We focus on the major points only. For a more detailed

description the reader is advised to consult [1], [8].
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Fig. 1. Flowchart of the proposed ego noise estimation system

A. Template Acquisition

In our prior work [1], we designed a template generation

method (the first block in Fig. 1). It utilizes encoders of

the J number of joints, which measure the angular position

(θ(l)) and velocity (θ̇(l)) of each joint in every frame, l.
The resulting feature vector of the template has the form

of
−→
F (l) = [θ1(l), θ̇1(l), . . . ,θ j(l), θ̇ j(l), . . . ,θJ(l), θ̇J(l)]. The

feature vector is assigned to the ego noise spectral energy

vector denoted as
−→
N (l) with N(k, l,m) indicating the spectro-

temporal energy in frequency bin k, time frame l, and the

microphone (channel) m. This data block,
−→
T (l) = [

−→
F (l) :−→

N (l)], is called a parameterized template. In contrary to [1],

which was based on a single-channel data, having multiple

channels (m> 1) allows us to separate ego noise with respect

to the sound source it contaminates (cf. Sec. III).

B. Template Estimation

The core of this block is an instance-based, non-parametric

classification technique known as the Nearest Neighbor (NN)

algorithm. Basically, the spectral energy vector
−→
N x stored in

the template
−→
T x of a large template database TTT with

−→
F x

having the shortest distance to
−→
F (l) and x being the index

of the x-th element in the database is selected as the ego

noise estimate
−→̂
N (l) [1]. How the template database TTT is

created/updated is the function of the fourth block, template

learning, and will be explained in Sec. II-D in detail.

C. Interfering Noise Detection

This block determines whether the current audio signal is

corrupted by external noise sources, i.e., any sound except

ego noise, such as music, speech, or the extracted template

belongs to a pure ego noise signal. Keeping in mind that the

ego noise behaves rather like a diffuse signal in the near-

field, we put the interfering noise sources into two categories:

directional and diffuse noise sources.

To detect the former type of sources, we propose to

use a multi-channel sound source localization method. In

order to predict the Directions of Arrival (DoA) of sound

sources, we use a popular adaptive beamforming algorithm

called MUltiple Signal Classification (MUSIC) [11]. It

detects the DoA by performing eigenvalue decomposition

on the correlation matrix of the noisy signal. It separates

subspaces of undesired interfering sources and sound sources

of interest, and finds the peaks in the spatial spectrum.

A consequent source tracker system performs a temporal

integration in a given time window and a final thresholding

is applied to determine the position and (importantly to us)

the existence of the directional sound source, if any.

If the noise is not a directional noise such as background

noise, MUSIC is unable to detect it, but the explicit detection

of the diffuse noise is not a crucial issue to the overall

estimation system at all because the templates already

contain the accumulated diffuse noise of background and ego

noise. They can adapt to the changes in the diffuse noise by

using the online template learning method presented in the

next section. Thus, from now on, “interfering noises” will

refer to the directional noise sources.

D. Template Learning

The main goal of the last block of Fig. 1, as proposed

in [8], is to learn templates incrementally and include them to

the template database. For this purpose, the output of the NN

algorithm in the template estimation block can be interpreted

as the similarity of the input pattern to the estimated pattern.

This measure, also known as the relative confidence level,
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allows us to determine if each observed template is a

previously known template or a new template to be learned.

Based on the comparison of a given fixed distance threshold,

dt , with dmin(
−→
F (l),

−→
F x) having the smallest vectoral distance

between the current template
−→
F (l), and x-th vector

−→
F x in TTT ,

the current template is either used to update the old template

or it is inserted into the database as a new template. When

the similarity is low, the template is treated as a missing

template and inserted into TTT ; otherwise the adaptive update

mechanism is active. In conjunction with the interfering noise

detection block, this block builds up an autonomous and

online learning system.

In [8], the contribution of past templates were reduced

by introducing a fixed forgetting factor (η = 0.9), which

computed the weighted average of the old and current

template by laying the focus more on recently-acquired

templates and less on earlier observations.

We introduce a time-variant forgetting factor to enhance

the balance between adaptivity (learning quality) and

stability (robustness against errors and unexpected transient

noises, e.g., mechanical jittering and shuddering sounds). The

former is achieved by using lower η(l), whereas higher η(l)
enables stability. Its computation is as follows:

η(l) =

1

1+ exp(−σ1dmin(
−→
F (l),

−→
F x))

+
1

1+ exp(−σ2ε(l))
2

,

(1)

ε(l) = ∑K
k=0 ||N(k, l,1)|2 −|N̂(k, l,1)|2|)

∑K
k=0 ||N(k, l,1)|2| , (2)

where ε(l) is the normalized noise estimation error of the

first microphone signal, σ1 and σ2 are tilt values for the

sigmoid functions. To reduce the computational cost, we

selected m = 1 as a single representation of all channels.

So, η(l) takes values between 0.5 and 1. When either the

estimation error regarding the features, dmin(l), or regarding

the spectra, ε(l), is large, η(l) increases. As a consequence,

the contribution of the new erroneous template is reduced.

The pseudo-code of the final online learning algorithm is

shown below.

Algorithm 1 Learning of templates

if dmin(
−→
F (l),

−→
F x)≥ dt then

[Fnew( j, l) : Nnew(k, l,m)]← [Fcurr( j, l) : Ncurr(k, l,m)]
else

[Fold( j, l) : Nupd(k, l,m)] ← [Fcurr( j, l) :

η(l)Nold(k, l,m)+(1−η(l))Ncurr(k, l,m)]
end if

This block also checks if the requirement of a limited

database size is violated, thus it makes sure that the size

limitations are not exceeded.

III. SYSTEM ARCHITECTURE

The proposed multi-channel noise reduction system is

illustrated in Fig. 2. The audio signals are firstly subject to

SSL modules and then to the ego noise estimation modules.

As explained in Sec. II-C, the output of SSL is interpreted as

a trigger in the template learning module to decide whether

to apply learning or discarding process. Also, the source

locations constitute the input of Sound Source Separation

(SSS) along with the audio spectra to separate the useful

audio signal, as well as of a second SSS module along

with the estimated multi-channel noise template to separate

the overall ego noise among all sound sources. By doing

so, spectral subtraction is applied on the spectrum of each

individual sound source using its corresponding ego noise

spectrum.
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Fig. 2. Block diagram of the proposed noise suppression system

IV. EVALUATION

A. Experimental Settings

1) Hardware Specifications: The used robotic platform

was a humanoid robot called HEARBO (Fig. 3(a)). We

used its 17 Degrees of Freedom, and an 8 channel omni-

directional microphone array on top of its head, as illustrated

in Fig. 3(b). The audio signals were synchronously captured

by a RASP-24 bits unit at a 16 kHz sampling rate, and

transmitted at 100.0 Hz. The joint sensor data was acquired

at 100.0 Hz as well. All processes were handled by an Intel

Core i5 quadcore laptop PC at 2.53 GHz, with 8 GB of RAM.

3
3

2

3

2

2

2

(a) Positions and number of moving joints

Mic #1

Mic #2
Mic #3Mic #4

Mic #5

Mic #6
Mic #7

Mic #8

(b) Close-up of the head

Fig. 3. HRI-JP humanoid robot HEARBO

2) Software Specifications: The audio spectrum was

computed using a Complex window with 512 samples with a

hop size of 160 samples. For SSS, we used Geometric High-

order Decorrelation-based Source Separation (GHDSS) [12]

algorithm. The size limit of the template database is set to

10000, which was never reached in our experiments. The

whole signal processing architecture was implemented on

HARK1, an open-source software for robot audition. The

motion generation, recording processes and the bi-directional

dataflow between HARK and the robotic platform were

handled by ROS2.

1http://winnie.kuis.kyoto-u.ac.jp/HARK/
2http://www.ros.org
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3) Experimental Setup: For the recordings and processing

we used 8 channel microphones, but for the comparison

with single-channel results only the frontal microphone #1

of the robot (see Fig. 3(b)) was used. The recordings

were performed in a noisy room with the dimensions of

4.0 m×7.0 m×3.0 m with a Reverberation Time (RT20) of

0.2 sec. We generated a training and a test set of periodic

motions consisting of predefined behaviors. The names of

the motions and the DoFs actively involved (L: Left arm,

R: Right arm, H: Head) are enlisted in Tab. I. To study

the performance of the proposed system and be able to

specifically assess the detection and estimation quality, we

needed to control the conditions. Therefore, we mixed the

interfering noise sources, i.e. speech and music signals,

which were convoluted with the impulse response of the

experimental environment, with the recorded ego noise

signals under varying SNR conditions. The ego noise files

were 60 sec long and contained multiple iterations of the

same motions. The interfering noise files were 20 sec long.

The interfering noises were mixed exactly in the middle of

the ego noise (between 20-40 sec). The evaluation of our

system for uncontrolled real-world conditions are presented

in our complementary paper [13].

B. System Evaluation

In this section, we describe the assessment methods for

each important aspect of the proposed system, namely 1)
the success rate of distinguishing ego noise from other

noise sources, 2) the quality of the estimation using the

time-variant forgetting factor and online system, and 3)
the performance of the suppression using the multi-channel

approach.

1) Interfering Noise Detection: We compared the

performance of the proposed multi-channel SSL method

(M1) with two other single-channel noise detection

algorithms that use energy-based thresholding strategies. We

selected the thresholds by i) computing the average energy

from a template database collected a priori (M2), and ii)
performing a weighted k-means clustering on the features

of the same database (M3). Whereas the former approach

(M2) was rather brute force because a fixed threshold was

used for a wide variety of motions with different energies,

the latter approach (M3) was more reasonable because it took

the similarity of the features and their corresponding energies

inside each cluster into account. Based on our preliminary

experiments, we empirically weighted the velocities 5 times

more than the positions in the feature vectors because

essentially the higher the velocities the higher is the ego noise

energy. We also empirically created k = 50 clusters. Then, we

computed a set of thresholds for each cluster by calculating

the average energy of all templates belonging to each cluster.

In the estimation phase, the algorithm of M3 selected the

corresponding threshold for each instantaneous audio frame

of ego noise based on the similarity of the current joint status

to the cluster centers. Both methods (M2 and M3) were

able to adapt their thresholds in the run-time. Nevertheless,

they required a small prior template database to build the

initial knowledge, which also contradicts the elimination of

the offline session requirement for online learning. We also

tested two databases for M2 and M3; one acquired from

the same motions as in test motions and one from arbitrary

motions.
2) Noise Estimation: Incremental learning [8] made

it possible to correct the errors in the training set;

additionally, the proposed online system with time-variant

forgetting factor (η(l)) enables the system to quickly and

optimally adapt to partially-known or dynamically changing

environments. In [8], the “long-term” estimation performance

after numerous iterations of the same motion has been

already elaborately assessed for the offline incremental

system in relation with the threshold dmin and database

size. Thus, in this work we rather assess the “short-term”

performance of the noise estimation using the online learning

within only a few iterations, in other words the applicability

of the online system in realistic conditions.
Because the interfering noises, i.e. speech and music, were

mixed in the middle of the ego noise (between 20-40 sec),

the system uses the first 20 sec to adapt to the motion. Taking

into account that all tested motion instances last 5-20 sec, the

online system has sufficient but not extensive time to create

a reasonable database. The mixed audio signal between 20-

40 sec is used for the evaluation of the estimation on the fly.

We used empirical values for σ1 = 10 and σ2 = 10.
3) Noise Suppression: We used spectral subtraction

using a single-channel of the templates corresponding to

microphone #1 and the whole multi-channel templates to

compare the performance of the previous and proposed

system. In both cases, we used a minor spectral floor of

0.1. The assessment was undertaken using an ASR task.

C. Evaluation Criteria
This section explains the criteria used to assess each aspect

of the proposed system as described in Sec. IV-B.
1) F-measure and Accuracy: To assess the performance

of the interfering noise detection, we use common statistical

analysis criteria for detection tasks called F-Measure and

accuracy. They are computed using True Positive (TP), True
Negative (TN), False Positive (FP), False Negative (FN):

Precision =
T P

T P+FP
. (3)

Recall =
T P

T P+FN
. (4)

F −Measure =
2 ·Precision ·Recall
Precision+Recall

. (5)

Accuracy =
T P+T N

T P+FP+T N +FN
. (6)

2) Normalized Noise Estimation Error (NNEE): NNEE

computes the error of the noise estimate normalized by the

energy of the actual noise using the following formula:

ε̄ =
1

L ∑
l=1

10·log10

(
∑K,M

k=1,m=1 ||N(k, l,m)|2 −|N̂(k, l,m)|2|
∑K,M

k=1,m=1 ||N(k, l,m)|2|

)
,

(7)
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where L is the number of frames, and M is the number of

microphones.

3) Automatic Speech Recognition: The noise signals are

mixed with clean speech utterances used in a typical human-

robot interaction dialog and recorded by us. This a Japanese

word dataset includes 236 words for 4 female and 4 male

speakers. We used matched acoustic models trained with

Japanese Newspaper Article Sentences (JNAS) corpus, 60-

hour of speech data spoken by 306 male and female speakers.

Hence, the speech recognition is a word and speaker-open

test. For ASR, we used 13 static Mel-Scale Log Spectrum

(MSLS) features, 13 delta MSLS features and 1 delta power

feature. Speech recognition results are given as average Word

Correct Rates (WCR) of instances from the noisy test set.

D. Results

1) Interfering Noise Detection Performance: Fig. 4(a)

shows the results using Receiver Operating Characteristic

(ROC) curves for our binary detection system averaged

for all motions and interfering noises as the thresholds are

varied for multi-channel SSL and single-channel clustering-

based methods (SNR = 0dB). First of all, we see that the

performance of single-channel thresholding is better when

the thresholds are trained using a database consisting of

the similar motions, when compared to a database with

arbitrary motions for both M2 and M3. In other words,

the former database provides the best case scenario that the

adaptive template learning system can achieve after several

iterations. Secondly, the clustering-based detector (M3) is

better-suited to detect the interfering noise compared to a

simple averaging-based detector (M2), but both of these

methods are inferior to SSL-based detector (M1) by far.

The final observation is that the higher the SNR, the more

accurate is the detector (see Fig. 4(b)).
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The strength of the multi-channel approach is that it

utilizes the propagation characteristics of the noise sources,

taking advantage of the ego noise being rather diffuse and the

interfering noise sources being highly directional. Fig. 5(a)

shows a spatio-temporal graph of the dance motion noise

using SSL, Fig. 5(b) shows the graph of a music signal as

an interfering noise and Fig. 5(c) depicts how the directivity

is still detectable in the noisy mixture even in a low SNR

of 0dB. On the other hand, the single-channel approach

using thresholding is solely based on the spectral energy

characteristics of the signals, which is problematic because

the ego noise is difficult to be distinguished from speech

or music signals in terms of spectral energy as can be seen

in Fig. 6. Thus, in the remainder of this paper we will use

SSL-based interfering noise detection to train the templates.
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Tab. I shows the final performance in terms of accuracy

and F-measure given a threshold value of 34 is used in the

SSL (see Fig. 5(c)). We also see that the rates are mostly

correlated to the noise level of the motions.

TABLE I

INTERFERING NOISE DETECTION PERFORMANCE

Motion Joints SNR[dB] Accuracy F-Measure
Banzai L,R -3.2 0.89 0.82
Bow L,R,H 2.9 0.98 0.97
Confused L,R,H 4.1 0.97 0.96
Dance L,R -5.1 0.95 0.93
Here L,R 0.7 0.98 0.97
No H -2.9 0.94 0.91
Point Back L,R,H -1.0 0.96 0.94
Start L,R 5.6 0.98 0.98
Wave L,R 2.5 0.98 0.97
Yes H -0.4 0.98 0.97
Overall - - 0.96 0.94

2) Noise Estimation Performance: Tab. II shows the

comparison of the estimation performance when we use the

following three techniques: (1) continuous insertion of the

templates to the database [1], (2) incremental learning of

templates with η = 0.9 [8], and (3) incremental learning

of templates with adaptive η(l). “Offline” indicates that the

database was previously created from a separate training data

of ego noise for 60 sec, whereas “online” uses the first 20 sec

of the test data to build the database and evaluates it with

noisy data in the next 20 sec autonomously.

TABLE II

EGO NOISE REDUCTION PERFORMANCE FOR ALL METHODS

Learning Method Offline Online
Continuous insertion [1] -4.43±0.63 -4.14±0.66
Fixed incremental learning [8] -4.85±0.41 -4.70±0.26
Adaptive incremental learning -5.02±0.35 -4.88±0.30

We see clearly that the adaptive incremental learning

improved the performance compared to our previous two
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Fig. 5. MUSIC spectrum in each frame during a dance motion

approaches. Furthermore, an online learning system utilizing

an interfering noise detection mechanism worked almost as

good as the offline system, which shows the validity and

applicability of the online approach.

3) Noise Suppression Performance: We evaluated the

ASR performance of the online system in two conditions:

(a) Single speaker talking from 60◦ while the robot was

moving, and (b) Single speaker talking from 60◦ while music

was being played from −60◦ and the robot was moving.

The average results over all motions are shown in Fig. 7.

1ch (noisy) and 8ch (noisy) indicate speech signals extracted

from single-channel and GHDSS applied to multi-channel

audio data, whereas 1ch (refined) and 8ch (refined) show the

same signals after ego noise suppression, respectively. We

see that the performance of single-channel noise suppression

is as good as GHDSS in (a), but the existence of the

second sound source makes it impossible for it to operate in

the environments with multiple sound sources such as (b).

However, the proposed multi-channel ego noise suppression

system improves WCRs in both conditions considerably.
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Fig. 7. ASR results

V. SUMMARY AND OUTLOOK

In this paper we proposed an online learning mechanism

for a multi-channel template-based ego noise estimation

framework, which is able to suppress the ego noise

contaminating multiple sound sources. We assessed the

learning, estimation and suppression performance of this

noise reduction method in the presence of multiple types

of ego-motion noise. The proposed time-variant forgetting

factor decreased the estimation error. We also showed that

the interfering noise detection eliminates offline training

sessions and enables online learning, which still attains

precise estimation of overall noise and high ASR accuracy

under various SNR conditions.

To achieve optimal performance, we suggest to keep

the learning/updating algorithm passively running as a

background process for longer periods while the robot is

performing its tasks or rehearsing the motions, without

taking the external noises into account. Future plans include

integrating a stationary noise estimator prior to ego noise

estimation, which is found to be useful for improving the

overall noise estimation results as suggested in [8].

REFERENCES

[1] G. Ince, K. Nakadai, T. Rodemann, H. Tsujino, and J. Imura, ”Whole
body motion noise cancellation of a robot for improved automatic
speech recognition”, Advanced Robotics, vol. 25, no. 11, pp. 1405-
1426, 2011.

[2] G. Ince, K. Nakamura, F. Asano, H. Nakajima and K. Nakadai,
”Assessment of general applicability of ego noise estimation -
application to automatic speech recognition and sound source
localization-”, Proc. of the IEEE International Conference on Robotics
and Automation (ICRA), pp. 3517-3522, 2011.

[3] H. Sawada, J. Even, H. Saruwatari, K. Shikano, T. Takatani,
”Improvement of speech recognition performance for spoken-oriented
robot dialog system using end-fire array”, Proc. of the IEEE/RSJ
International Conference on Robots and Intelligent Systems (IROS), pp.
970-975, 2010.

[4] I. Cohen and B. Berdugo, ”Speech enhancement for non-stationary
noise environments”, Signal Processing, vol 81, pp. 2403-2481, 2001.

[5] H. Nakajima, G. Ince, K. Nakadai and Y. Hasegawa, ”An easily-
configurable robot audition system using histogram-based recursive
level estimation”, Proc. of the IEEE/RSJ International Conference on
Robots and Intelligent Systems (IROS), pp. 958-963, 2010.

[6] Y. Nishimura, M. Ishizuka, K. Nakadai, M. Nakano, and H. Tsujino,
”Speech recognition for a robot under its motor noises by selective
application of missing feature theory and MLLR”, Proc. of the IEEE-
RAS International Conference on Humanoid Robots, pp. 26-33, 2006.

[7] A. Ito, T. Kanayama, M. Suzuki, S. Makino, ”Internal noise suppression
for speech recognition by small robots”, Proc. of the Interspeech 2005,
pp. 2685-2688, 2005.

[8] G. Ince, K. Nakadai, T. Rodemann, J. Imura, K. Nakamura and
H. Nakajima ”Incremental learning for ego noise estimation of a
robot, Proc. of the IEEE/RSJ International Conference on Robots and
Intelligent Systems (IROS), pp. 131-136, 2011.

[9] S. Thrun, Explanation-based neural network learning: a lifelong
learning approach, Kluwer Academic, 1996.

[10] S. Kirstein, H. Wersing, E. Körner, ”Towards autonomous
bootstrapping for life-long learning categorization tasks”, Proc. of the
International Joint Conference on Neural Networks, pp. 1-8, 2010.

[11] R. Schmidt, ”Multiple emitter location and signal parameter
estimation”, IEEE Trans. on Antennas and Propagation, vol. 34, no.
3, pp. 276-280, 1986.

[12] H. Nakajima, K. Nakadai, Y. Hasegawa, and H. Tsujino. ”Blind
source separation with prameter-free adaptive step-size method for
robot audition”, IEEE Trans. Audio, Speech, and Language Processing,
18(6):14761484, 2010.

[13] J. L. Oliveira, G. Ince, K. Nakamura, K. Nakadai, H. G. Okuno,
L. P. Reis, F. Gouyon, ”Live assessment of beat tracking for robot
audition”, submitted to IEEE/RSJ International Conference on Robots
and Intelligent Systems (IROS), 2012.

3287


