
Nogood-based Asynchronous Distributed Optimization
(ADOPT-ng)

Marius C. Silaghi
Florida Institute of Technology

msilaghi@fit.edu

Makoto Yokoo
Kyushu University

yokoo@is.kyushu-u.ac.jp

ABSTRACT
This work proposes an asynchronous algorithm for solving

Distributed Constraint Optimization problems (DCOPs) us-

ing a new kind of nogoods, namely valued nogoods. The

proposed technique is an extension of the asynchronous dis-

tributed optimization (ADOPT) where valued nogoods en-

able more flexible reasoning, leading to important speed-up.

Valued nogoods are an extension of classic nogoods that as-

sociates each nogood with a threshold and optionally with

a set of references to culprit constraints.

DCOPs have been shown to have very elegant distributed

solutions, such as ADOPT, distributed asynchronous over-

lay (DisAO), or DPOP. These algorithms are typically tuned

to minimize the longest causal chain of messages, as a mea-

sure of how the algorithms will scale for systems with re-

mote agents (with large latency in communication). Among

the mentioned techniques, DPOP performs very well for the

chosen metric (requiring a number of such sequential mes-

sages linear in the number of agents), but in general has

exponential space requirements. DisAO and ADOPT have

the advantage of needing only polynomial space. ADOPT

has the property of maintaining the initial distribution of

the problem. ADOPT needs a preprocessing step consisting

of computing a depth first search (DFS) tree on the agent

graph. We show that valued nogoods reduce the practi-

cal importance/need of this preprocessing since independent

subproblems are now dynamically detected and exploited.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-

telligence—Multi-agent systems

General Terms
Algorithm

Keywords
Distributed Constraint Optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

1. INTRODUCTION
Distributed Constraint Optimization (DCOP) is a formal-

ism that can model naturally distributed problems. These

are problems where agents try to find assignments to a set of

variables subjects to constraints. The natural distribution

comes from the assumption that only a subset of the agents

has knowledge of each given constraint. Nevertheless, in

DCOPs it is assumed that agents try to maximize their cu-

mulated satisfaction by the chosen solution. This is different

from other related formalisms where agents try to maximize

the satisfaction of the least satisfied among them [22].

Several synchronous and asynchronous distributed algo-

rithms have been proposed for distributedly solving DCOPs.

Since a DCOP can be viewed as a distributed version of the

common centralized Valued Constraint Satisfaction Prob-

lems (VCSPs), it is normal that successful techniques for

VCSPs were ported to DCOPs. However the effectiveness

of such techniques has to be evaluated from a different per-

spective (and different measures) as imposed by the new

requirements. Typically research has focused on techniques

in which reluctance is manifested towards modifications to

the distribution of the problem (modification accepted only

when some reasoning infers it is unavoidable for guaran-

teeing to reach solutions). This criteria is largely believed

valuable and adaptable for large, open, and/or dynamic dis-

tributed problems. It is also perceived as an alternative

approach to privacy requirements [15, 21, 26, 17].

A synchronous algorithm, synchronous branch and bound,

was the first known distributed algorithm for solving

DCOPs [7]. Stochastic versions have also been pro-

posed [27]. From the point of view of efficiency, a distributed

algorithm for solving DCOPs is typically evaluated with re-

gard to applications to agents on the Internet, namely where

latency in communication is significantly higher than local

computations. A measure representing this assumption well

is given by the number of cycles of a simulator that lets each

agent in turn process all the messages that it receives [23].

Within the mentioned assumption, this measure is equiva-

lent for real solvers to the longest causal chain of sequential

messages, as used in [18].

From the point of view of this measure, a very efficient cur-

rently existing DCOP solver is DPOP [12, 11], which is lin-

ear in the number of variables. However, in general that al-

gorithm has message sizes and local computation costs that

are exponential in the induced width of a chosen depth-first

search tree of the constraint graph of the problem, clearly

0
We thank Benjamin Pflanz, Boi Faltings, Rina Dechter,

Adrian Petcu and reviewers for useful comments.

 1389

invalidating the assumptions that lead to the acceptance of

the number of cycles as efficiency measure.

Two other algorithms competing as efficient solvers

of DCOPs, are the asynchronous distributed optimiza-

tion (ADOPT) and the distributed asynchronous overlay

(DisAO). DisAO works by incrementally joining the sub-

problems owned by agents found in conflict. ADOPT im-

plements a parallel version of A* [16]. While DisAO is typi-

cally criticized for its extensive abandon of the maintenance

of the natural distributedness of the problem at the first

conflict (and expensive local computations invalidating the

above assumptions like DPOP [4, 8, 1]), ADOPT can be

criticized for its strict message pattern that only provides

reduced reasoning opportunities. ADOPT also works only

on special orderings on agents, namely dictated by some

Depth First Search tree on the constraint graph.

It is easy to construct huge problems whose constraint

graphs are forests and that are easily solved by DPOP (in

linear time), but unsolvable with the other known algo-

rithms. It is also easy to construct relatively small problems

whose constraint graph is full and therefore require unac-

ceptable (exponential) space with DPOP, while being easily

solvable with algorithms like ADOPT, e.g. for the trivial

case where all tuples are optimal with cost zero.

In this work we address the aforementioned critiques of

ADOPT showing that it is possible to define a message

scheme based on a new type of nogoods, called valued no-

goods, that not only virtually eliminates the need of precom-

puting a DFS tree of the constraint graph, but also leads to

significant improvement in efficiency. Nogoods are at the ba-

sis of much flexibility in asynchronous algorithms. A nogood

specifies a set of assignments that conflict constraints [20].

A basic version of the valued nogoods consists in associat-

ing each nogood to a threshold, namely a cost limit vio-

lated due to the assignments of the nogood. It is significant

to note that the valued nogoods lead to efficiency improve-

ments even if used in conjunction with a DFS tree, instead

of the less semantically explicit cost messages of ADOPT.

We find that a version of valued nogoods that is associated

with a list of culprit constraints [13] produces additional im-

portant improvements. Each of these incremental concepts

and improvements is described in the following sections.

2. DFS-TREES

x1 x3

x4

x2 x5

x3

x1

x2

x5 x4

x5

x3

x1

x2

x4

a) b) c)

Figure 1: For a DCOP with primal graph depicted

in (a), two possible DFS trees (pseudotrees) are (b)

and (c). Interrupted lines show constraint graph

neighboring relations not in the DFS tree.

The primal graph of a DCOP is the graph having the vari-

ables as nodes and having an arc for each pair of variables

linked by a constraint [5]. A Depth First Search (DFS) tree

associated to a DCOP is a spanning tree generated by the

arcs used for visiting once each node during some depth first

traversal of its primal graph. DFS trees were first success-

fully used for distributed constraint problems in [3]. The

property exploited there is that separate branches of the

DFS-tree are completely independent once the assignments

of common ancestors are decided. Two examples of DFS

trees for a DCOP primal graph are shown in Figure 1.

Nodes directly connected to a node in a primal graph are

said to be its neighbors. In Figure 1.a, the neighbors of x3 are

{x1, x5, x4}. The ancestors of a node are the nodes on the

path between it and the root of the DFS tree, inclusively. In

Figure 1.b, {x5, x3} are ancestors of x2. x3 has no ancestors.

3. ADOPT
ADOPT [9] is an asynchronous complete DCOP solver,

which is guaranteed to find an optimal solution. Here, we

only show a brief description of ADOPT. Please consult [9]

for the detail. First, ADOPT organizes agents into a Depth-

First Search (DFS) tree, in which constraints are allowed

between a variable and any of its ancestors or descendants,

but not between variables in separate sub-trees.

ADOPT uses three kinds of messages: VALUE, COST,

and THRESHOLD. A VALUE message communicates the

assignment of a variable from ancestors to descendants who

share constraints with the sender. When the algorithm

starts, each agent takes a random value for its variable and

sends appropriate VALUE messages. A COST message is

sent from a child to its parent, which indicates the esti-

mated lower-bound of the cost of the subtree rooted at the

child. Since communication is asynchronous, a cost message

contains a context, i.e., a list of the value assignments of the

ancestors. The THRESHOLD message is introduced to im-

prove the search efficiency. An agent tries to assign its value

so that the estimated cost is lower than the given threshold

communicated by the THRESHOLD message from its par-

ent. Initially, the threshold is 0. When the estimated cost

is higher than the given threshold, the agent opportunisti-

cally switches its value assignment to another value that has

the smallest estimated cost. Initially, the estimated cost is

0. Therefore, an unexplored assignment has an estimated

cost 0. A cost message also contains the information of the

upper-bound of the cost of the subtree, i.e., the actual cost

of the subtree. When the upper-bound and the lower-bound

meet at the root agent, then a globally optimal solution has

been found and the algorithm is terminated.

4. DISTRIBUTED VALUED CSPS
Constraint Satisfaction Problems (CSPs) are described by

a set X of variables and a set of constraints on the possible

combinations of assignments to these variables with values

from their domains.

Definition 1 (DCOP). A distributed constraint opti-

mization problem (DCOP), aka distributed valued CSP, is

defined by a set of agents A1, A2, ..., An, a set X of vari-

ables, x1, x2, ..., xn, and a set of functions f1, f2, ...fi, ..., fn,
fi : Xi → IR, Xi ⊆ X, where only Ai knows fi.

The problem is to find argmin
x

Pn

i=1
fi(x|Xi

). We assume

that xi can only take values from a domain Di = {1, ..., d}.
For simplification and without loss of generality one typi-

cally assumes that Xi ⊆ {x1, ..., xi}

 1390

greenyellowred

x4

x3x1 x2

Figure 2: MIN resolution on valued global nogoods

Our idea can be easily applied to general valued CSPs.

5. COST OF NOGOODS
Previous flexible algorithms for solving distributed con-

straint satisfaction problems exploit the inference power

of nogoods (e.g., ABT, AWC, ABTR [23, 24, 19])
1
. A

nogood ¬N stands for a set N of assignments that was

proven impossible, by inference using constraints. If N =

(〈x1, v1〉, ..., 〈xt, vt〉) where vi ∈ Di, then we denote by N
the set of variables assigned in N , N = {x1, ...xt}.

In order to apply nogood-based algorithms to DCOP, we

redefine the notion of nogoods as follows. First we attach a

value to each nogood obtaining a valued global nogood.

Definition 2 (Valued Global Nogood). A valued

global nogood has the form [c,N], and specifies that the

(global) problem has cost at least c, given the set of assign-

ments, N , for distinct variables.

Given a valued global nogood [c, (〈x1, v1〉, ..., 〈xt, vt〉)], one

can infer a global cost assessment (GCA) for the value

vt from the domain of xt given the assignments S =

〈x1, v1〉, ..., 〈xt−1, vt−1〉. This GCA is denoted (vt, c, S), and

is semantically equivalent to an applied global value nogood,

(i.e. the inference):

(〈x1, v1〉, ..., 〈xt−1, vt−1〉)→ (〈xt, vt〉 has cost c).

Remark 1. Given a valued global nogood [c,N], one can

infer the GCA (v, c, N) for any value v from the domain of

any variable x, where x is not assigned in N , i.e., x �∈ N .

E.g., if A3 knows the valued global nogood

[10, {(x1, r), (x2, y)}], then it can infer for the value r
of x3 the GCA (r, 10, {(x1, r), (x2, y)}).

Proposition 1 (min-resolution). From a set

{(v, cv, Sv)} containing exactly one GCA for each value v in

the domain of variable xi and ∀k, j, assignments for Sk ∩Sj
are identical in both Sk and Sj of a minimization VCSP,

one can resolve a new valued global nogood: [minv cv ,∪vSv].

Example 5.1 For the graph coloring problem in Figure 2

(costs are not shown), x1 is colored red (r), x2 yellow (y)

and x3 green (g). Assume that the following valued global

nogoods are known for each of the values {r, y, g} of x4:

(r): [10, {(x1, r), (x4, r)}], obtaining for x4 the GCA

(r, 10, {(x1, r)})

1
Other algorithms, like AAS, exploit generalized nogoods

(i.e., extensions of nogoods to sets of values for a variable),

and the extension of the work here for that case is pointed

to in [13]

(y): [8, {(x2, y), (x4, y)}], obtaining for x4 the GCA

(y, 8, {(x2, y)})

(g): [7, {(x3, g), (x4, g)}], obtaining for x4 the GCA

(g, 7, {(x3, g)})

By min-resolution on these GCAs one obtains the val-

ued global nogood [7, {(x1, r), (x2, y), (x3, g)}], meaning that

given the coloring of the first 3 nodes there is no solution

with (global) cost lower than 7.

Min-resolution can be applied on valued global nogoods:

Corollary 1.1. Assume S is a set of no-goods associ-

ated to the variable xi, such that for each [cv , Sv] in S,
∃〈xi, v〉 ∈ Sv. If S contains exactly one global valued no-

good [cv , Sv] for each value v in the domain of variable xi of

a minimization VCSP, i.e. ∪v{v} = Di, one can resolve a

new valued global nogood: [minv cv,∪v(Sv \ 〈xi, v〉)].

Remark 2 (DFS subtrees). Given two GCAs

(v, c′v, S
′
v) and (v, c′′v , S

′′
v) for a value v in the domain of

variable xi of a minimization VCSP, if one knows that the

two GCAs are inferred from different constraints then one

can infer a new GCA: 〈c′v + c′′v , S
′
v ∪ S

′′
v 〉. This is similar to

what ADOPT does to combine cost messages coming from

disjoint problem subtrees [10, 3].

This powerful reasoning can be applied when combining

a nogood obtained from the local constraints with a valued

nogood received from other agents (and obtained solely by

inference on other agents’ constraints). When a DFS tree

of the constraint graph is used for constraining the message

pattern as in ADOPT, this powerful inference applies, too.

The question is how to determine that the two GCAs are

inferred from different constraints, in a more general setting.

We introduce tagging of cost assessments with the identifiers

of the constraints used to infer them.

Definition 3 (SRC). A set of references to con-

straints is a set of identifiers, each of them for a distinct

constraint.

Note that several constraints of a given problem descrip-

tion can be composed in one constraint (in a different de-

scription of the same problem).

Remark 3. For privacy, a constraint can be represented

by several constraint references and several constraints of an

agent can be represented by a single constraint reference.

Now we generalize the concept of valued global nogood into

the concept of valued nogood.

Definition 4 (Valued Nogood). A valued nogood

has the form [SRC, c,N] where SRC is a set of references to

constraints having cost at least c, given a set of assignments,

N , for distinct variables.

Valued nogoods are generalizations of valued global no-

goods. Valued global nogoods are valued nogoods whose

SRCs contain the references of all the constraints.

Once we decide that a nogood

[SRC, c, (〈x1, v1〉, ..., 〈xi, vi〉)] will be applied to a cer-

tain variable xi, we obtain a cost assessment tagged

with the set of references to constraints SRC
2
, denoted

(SRC, vi, c, (〈x1, v1〉, ..., 〈xi−1, vi−1〉)).
2
This is called a valued conflict list in [13]

 1391

red

red yellow green

x4

x3
x2x1

x6
x5

C4,7

x7

C4,5
C4,6

Figure 3: SUM-inference resolution on CAs

Definition 5 (Cost Assessment (CA)). A cost as-

sessment of variable xi has the form (SRC, v, c, N) where

SRC is a set of references to constraints having cost with

lower bound c, given a set of assignments, N , for distinct

variables, and the assignment of xi to some value v.

As for valued nogoods and valued global nogoods, cost

assessments are generalizations of global cost assesments.

Remark 4. Given a valued nogood [SRC, c,N], one can

infer the CA (SRC, v, c,N)) for any value v from the domain

of any variable x, where x is not assigned in N , i.e., x �∈ N .

E.g., if A6 knows the valued nogood

[{C4,7}, 10, {(x2, y), (x4, r)}], then it can infer for the

value b of x6 the CA ({C4,7}, b, 10, {(x2, y), (x4, r)}).

We can now detect and perform the desired powerful rea-

soning on valued nogoods and/or CAs coming from disjoint

subtrees, mentioned in Remark 2.

Proposition 2 (sum-inference). A set of cost as-

sessments for the value v of some variable, (SRCi, v, ci, Ni)
where ∀i, j : i �= j ⇒ SRCi∩SRCj = ∅, and the assignment

of any variable xk is identical in any Ni where xk is present,

can be combined into a new cost assessment. The obtained

cost assessment is (SRC, v, c,N) such that SRC=∪iSRCi,
c=

P
i
(ci), and N=∪iNi.

Example 5.2[!th] For the graph coloring problem in Fig-

ure 3, x1 is colored red, x2 yellow, x3 green, and x4 red. As-

sume that the following valued nogoods are known for (x4, r):

• [{C4,5}, 5, {(x2, y), (x4, r)}] obtaining CA

({C4,5}, r, 5, {(x2, y)})

• [{C4,6}, 7, {(x1, r), (x4, r)}] obtaining CA

({C4,6}, r, 7, {(x1, r)})

• [{C4,7}, 9, {(x2, y), (x4, r)}] obtaining CA

({C4,7}, r, 9, {(x2, y)})

Also assume that based on x4’s constraint with x1, one has

obtained for 〈x4, r〉 the following valued nogood:

• [{C1,4}, 10, {(x1, r), (x4, r)}] obtaining CA

({C1,4}, r, 10, {(x1, r)})

Then, by sum-inference on these CAs one obtains for x4 the

CA [{C1,4, C4,5, C4,6, C4,7}, r, 31, {(x1, r), (x2, y)}], meaning

that given the coloring of the first 2 nodes, coloring x4

in red leads to a cost of at least 31 for the constraints

{C1,4, C4,5, C4,6, C4,7}.

Remark 5 (sum-inference for valued nogoods).

Sum inference can be similarly applied to any set of val-

ued nogoods with disjoint SRCs and compatible assign-

ments. The result of combining nogoods [SRCi, ci, Si] is

[∪i SRCi,
P

i
ci,∪iSi]. This can also be extended to the

case where assignments are generalized to sets [13].

The min-resolution proposed for GCAs translates

straightforwardly for CAs as follows.

Proposition 3 (min-resolution). A set of cost as-

sessments for xi, (SRCi, vi, ci, Ni) where ∪i{vi} covers the

whole domain of xi and ∀k, j, assignments for Nk ∩Nj are

identical in both Nk and Nj , can be combined into a new

valued nogood. The obtained valued nogood is [SRC, c, N]

such that SRC=∪iSRCi, c=mini(ci) and N=∪iNi.

Example 5.3 For the graph coloring problem in Figure 2,

x1 is colored red, x2 yellow and x3 green. Assume that the

following valued nogoods are known for the values of x4:

(r): [{C1,4}, 10, {(x1, r), (x4, r)}] obtaining CA

({C1,4}, r, 10, {(x1, r)})

(y): [{C2,4}, 8, {(x2, y), (x4, y)}] obtaining CA

({C2,4}, y, 8, {(x2, y)})

(g): [{C3,4}, 7, {(x3, g), (x4, g)}] obtaining CA

({C3,4}, g, 7, {(x3, g)})

By min-resolution on these CAs one obtains the valued

global nogood [{C1,4, C2,4, C3,4}, 7, {(x1, r), (x2, y), (x3, g)}],
meaning that given the coloring of the first 3 nodes there

is no solution with cost lower than 7 for the constraints

{C1,4, C2,4, C3,4}.
As with valued global nogoods, the min-resolution could

be applied directly on valued nogoods:

Corollary 3.1 (min-resolution on nogoods).

From a set {[SRCv, cv, Sv)]|∃v, 〈xi, v〉 ∈ Sv} containing

exactly one valued nogood for each value v in the domain of

variable xi of a minimization VCSP, one can resolve a new

valued nogood: [∪v SRCv,minv cv,∪v(Sv \ 〈xi, v〉)].

6. ADOPT WITH NOGOODS
We will now present a distributed optimization algorithm

using valued nogoods, to maximize the efficiency of reason-

ing by exploiting increased flexibility. The algorithm can be

seen as an extension of both ADOPT and ABT, and will

be denoted Asynchronous Distributed OPTimization with

valued nogoods (ADOPT-ng).

Like in ABT, agents communicate with ok? messages

proposing new assignments of sender’s variable, nogood

messages announcing a nogood, and add-link messages an-

nouncing interest in a variable. Like in ADOPT, agents

can also use threshold messages, but their content can be

included in ok? messages.

For simplicity we assume in this algorithm that the com-

munication channels are FIFO. Addition of counters to pro-

posed assignments and nogoods can help to remove this re-

quirement with minimal additional changes (i.e., older as-

signments and older nogoods for the currently proposed

value are discarded).

 1392

6.1 Data Structures
Each agent Ai stores its agent view (received assign-

ments), and its outgoing links (agents of lower priority than

Ai and having constraints on xi). Instantiations may be

tagged with counters. To manage nogoods and CAs, Ai
uses matrices l[1..d], h[1..d], ca[1..d][i+1..n], lvn[1..i][i..n],

lr[i+1..n] and lastSent[1..i-1] where d is the domain size for

xi. crt val is the current value Ai proposes for xi.

• l[k] stores a CA for xi = k, that is inferred solely from

the constraints between xi and prior variables.

• ca[k][j] stores a CA for xi = k, that is obtained from

valued nogoods received from Aj .

• lvn[k][j] stores the last valued nogood for variables

with higher and equal priority than k and that is re-

ceived from Aj , j>i. lvn[k][i] stores nogoods coming

via threshold/ok? messages.

• lr[k] stores the last valued nogood received from Ak.

• h[k] stores a CA for xi =k that is inferred from ca[k][j],

lr[t], lvn[t][j], and l[k], for all j and t. Before inference,

the valued nogoods in lvn[t][j] need to be first trans-

lated into a CAs as described in Remark 4.

• lastSent[k] stores the last valued nogood sent to Ak.

6.2 ADOPT with valued nogoods
The pseudocode for ADOPT-ng is given in Algorithm 1.

To extract the cost of a CA we introduce the function cost(),
cost((SRC, T, c, v)) returns c. The min resolution(j) func-

tion applies the min-resolution over all values of the cur-

rent agent, but using only CAs having no assignment from

agents with lower priority than Aj (e.g., not using lvn[t][k]

for t > j). The sum inference() function used in Algo-

rithm 1 applies the sum-inference on its parameters when-

ever this is possible (detects disjoint SRCs), otherwise selects

the nogood with highest threshold or whose lowest priority

assignment has the highest priority (this has been previously

used in [2, 19]). Function vn2ca(vn, i) transforms a valued

nogood vn in a cost assesment for xi. Its inverse is function

ca2vn. Function target(N) gives the index of the lowest

priority variable present in the nogood N . Like with file ex-

pansion, “*” in an index of a matrix means the set obtained

for all possible values of that index (e.g., lvn[*][t] stands for

{lvn[k][t] | ∀k}).
An agent Ai stores several nogoods (CAs) coming from the

same source At and applicable to the same value v (namely

the one at ca[v][t], all those at lvn[k][t] for any k, and lr[t]
when v is crt val).

Remark 6. The order of combining CAs matters. Nota-

tion lr[t]|v stands for vn2ca(lr[t]) when lr[t]’s value for xi is

v, and ∅ otherwise. To compute h[v]:

1. a) When maintaining DFS trees, for a value v, CAs

are combined for each DFS subtree s:
tmp[v][s]=sum-inferencet∈s(ca[v][t], lr[t]|v, lvn[*][t]);

b) Else, CAs coming from each agent At are combined:

tmp[v][t]=sum-inference(ca[v][t], lr[t]|v, lvn[*][t]);

2. CAs from step 1 (a or b) are combined:

h[v]=sum-inference(tmp[v][*]);

3. Add l[v]: h[v]=sum-inference(h[v], l[v]);

4. Add threshold: h[v]=sum-inference(h[v], lvn[*][i])

In ADOPT-ng agents are totally ordered, A1 having the

highest priority and An the lowest priority. Each agent

Ai starts by calling the init() procedure, which initializes

its l with valued nogoods infered from local (unary) con-

straints. It assigns xi to a value with minimal local cost,

crt val, announcing the assignment to lower priority agents

in outgoing-links. The agents answer any received message

with the correponding procedure: “when receive ok?”,

“when receive nogood”, and “when receive add-link”.

When a new assignment is learned from ok? or nogood

messages, valued nogoods based on older assignments for

the same variables are discarded and the l vector is updated.

Received nogoods are stored in matrices ca, lr and lvn. The

vector h is updated on any modification of l, lvn, lr or ca.
Ai always sets its crt val to the index with the lowest CA

threshold in vector h (preferring the previous assignment).

On each change to the vector h, its values are combined by

min-resolution to generate new nogoods for each higher pri-

ority agent (or ancestor, in versions using DFS trees). The

generation and use of multiple nogoods at once is already

shown useful for the constraint satisfaction case in [25].

The threshold valued nogood tvn delivered with ok? mes-

sages sets a common cost on all values of the receiver (see

Remark 4), effectively setting a threshold on costs below

which the receiver does not change its value. This achieves

the effect of THRESHOLD messages in ADOPT.

Intuitively, the convergence of ADOPT-ng can be noticed

from the fact that valued nogoods can only monotonically

increase valuation for each subset of the search space, and

this has to terminate since such valuations can be covered by

a finite number of values. If agents Aj , j<i no longer change

their assignments, valued nogoods can only monotonically

increase at Ai for each value in Di: nogoods’ thresholds

only increase as they only change by sum-inference.

Lemma 1. ADOPT-ng terminates in finite time.

Proof. Given the list of agents A1, ..., An, define the suf-

fix of length m of this list as the last m agents. Then the

result follows immediately by induction for an increasingly

growing suffix (increasing m), assuming the other agents

reach quiescence.

The first step of the induction (for the last agent) follows

from the fact that the last agent terminates in one step if

the previous agents do not change their assignments.

Assuming that the previous induction assertion is true for

any suffix of k agents. Let us prove that it is also true for

a suffix of k+1 agents: For each assignment of the agent

An−k, the remaining k agents will reach quiescence, accord-

ing to the assumption of the induction step, or the assign-

ment’s CA threshold increases. After values are proposed

in turn and the smallest threshold reaches its highest esti-

mate, agent An−k selects the best value and reaches quies-

cence. The other agents reach quiescence according to the

induction step.

Lemma 2. The last valued nogood sent by each agent ad-

ditively integrates the non-zero costs of the constraints of all

of its successors.

Proof. At quiescence, each agent Ak has received the

valued nogoods describing the costs of each of its successors,

in the list given by the used ordering on agents (or descen-

dants in the DFS tree when a DFS tree is maintained).

 1393

procedure init do

h[v] := l[v]:=initialize CAs from unary constraints;

crt val=argminv(cost(h[v]));
send ok?(〈xi, crt val〉,∅) to all agents in outgoing-links;

when receive ok?(〈xj , vj〉, tvn) do

integrate(〈xj , vj〉);
if (tvn no-null and has no old assignment) then

k:=target(tvn); // threshold tvn as common cost;

lvn[k][i]:=sum-inference(tvn,lvn[k][i]);

check-agent-view();

when receive add-link(〈xj , vj〉),Aj do

add Aj to outgoing-links;

if (〈xj , vj〉) is old, send new assignment to Aj ;

when receive nogood(rvn, t) from At do

foreach new assignment a of a linked variable xj in

rvn do

integrate(a); // counters show newer assignment;

if (an assignment in rvn is outdated) then

if (some new assignment was integrated now) then

check-agent-view();

return;

foreach assignment a of a non-linked variable xj in

rvn do

send add-link(a) to Aj ;

if ((j := target(rvn)) == i) then

vn2ca(rvn, i) → CA rca for a value v of xi;
ca[v][t]:=sum-inference(rca,ca[v][t]);

lr[t]:=rca;

else

lvn[j][t]:=rvn;

check-agent-view();

procedure check-agent-view() do

for every(v ∈ Di) update l[v] and recompute h[v];
for every Aj with higher priority than Ai (respectively

ancestor in the DFS tree, when one is maintained) do

if (h has non-null cost CA for all values of Di)

then

vn:=min resolution(j);

if (vn �= lastSent[j]) then

send nogood(vn,i) to Aj ;

crt val=argminv(cost(h[v]));
if (crt val changed) then

send ok?(〈xi, crt val〉,
ca2vn(sum-inference(lvn[*][k],ca[crt val][k]))

to each Ak in outgoing links;

procedure integrate(〈xj , vj〉) do

discard CAs and nogoods in ca, lvn, and lr that are

based on other values for xj ;
store 〈xj , vj〉 in agent view;

Algorithm 1: Procedures of Ai in ADOPT-ng

The lemma results by induction for an increasingly grow-

ing suffix of the list of agents (in the order used by the

algorithm): It is trivial for the last agent.

Assuming that it is true for the agent Ak, it follows that

it is also true for agent Ak−1 since adding Ak−1’s local cost

to the cost received from Ak will be higher (or equal when

removing zero costs) to the result of adding Ak−1’s local cost

to one from any successor of Ak. Respecting the order in Re-

mark 6 guarantees this value is obtained. Therefore the sum

between the local cost and the last valued nogood coming

from Ak defines the last valued nogood sent by Ak−1.

Theorem 4. ADOPT-ng returns an optimal solution.

Proof. We prove by induction on an increasingly grow-

ing suffix of the list of agents that this suffix converges to a

solution that is optimal for their subproblem.

The induction step is immediate for the suffix composed

of the agent An alone. Assume now that it is true for the

suffix starting with Ak. Following the previous two lemmas,

one can conclude that at quiescence Ak−1 knows exactly

the cumulated cost of the problems of its successors for its

chosen assignment, and therefore knows that this cumulated

cost cannot be better for any of its other values.

Since Ak−1 has selected the value leading to the best sum

of costs (between his own local cost and the costs of all sub-

sequent agents), it follows that the suffix of agents starting

with Ak−1 converged to an optimal solution for their sub-

problem.

The space complexity is basically the same as for ADOPT.

The SRCs do not change the space complexity of the valued

nogood.

6.3 Optimizing valued nogoods
Both for the version of ADOPT-ng using DFS trees, as

well as for the version that does not use such trees prepro-

cessing, if valued nogoods are used for managing cost infer-

ences, then a lot of effort can be saved at context switch-

ing by not discarding nogoods that remain valid [6]. The

amount of saved effort is higher if the nogoods are care-

fully selected (to minimize their dependence on changes in

often switched low priority variables). Computing valued

nogoods by minimizing the index of the least priority vari-

able involved in the context is shown by our experiments to

perform well in this case. This is done by computing the

valued nogoods using incrementally lower priority variables,

and keeping the valued nogoods with lower priority agents

only if they have better thresholds. Nogoods optimized in

similar manner were used in several previous DisCSP tech-

niques [2, 19].

6.4 Exploiting DFS trees
Note that while our versions of ADOPT work better than

the original DFS-tree based version, they can also create

hybrids by using an existing DFS tree. We have identified

two ways of exploiting such an existing structure. The first

way is by having each agent send its valued nogood only

to its parent in the tree (less efficient in length of longest

causal chain of messages but more efficient in number of total

messages), roughly equivalent to the original ADOPT. The

other way is by sending valued nogood to all the ancestors.

This later hybrid can be seen as a certain fulfillment of a

direction of research suggested in [9], namely communication

of costs to higher priority parents.

An extension proposed to this work consists in integrat-

ing consistency maintenance in nogood-based optimization.

This can be done with the introduction of valued consistency

nogoods, as described in [13, 14].

 1394

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10 15 20 25 30 35 40

agents

cy
cle

s ADOPT
ADOPT-aon
ADOPT-don
ADOPT-pon
ADOPT-aos
ADOPT-dos
ADOPT-pos

Figure 4: Longest causal chain of messages (cycles)

used to solve versions of ADOPT using CAs, on

problems with density .2.

7. EXPERIMENTS
We implemented several versions of ADOPT-ng, differ-

ing by how the agents picks the targets of his nogoods. In

the implementation ADOPT-pon, valued global nogoods are

sent only to the parent of the current agent in the DFS tree.

In ADOPT-don, the valued global nogoods are sent to all

the ancestors of the current agent in the DFS tree. ADOPT-

aon is a version where the DFS tree is reduced to the lin-

ear list of agents (each having the predecessor as parent).

ADOPT-pos, ADOPT-dos, and ADOPT-aos are the corre-

sponding versions with valued nogoods rather than valued

global nogoods. These are early versions that do not yet

exploit threshold nogoods in ok? messages. Improvements

from those techniques will be reported elsewhere.

The algorithms were compared on the set of problems

posted together with ADOPT, which are the same problems

that are used to report ADOPT’s performance in [9]. To cor-

rectly compare our techniques with the original ADOPT we

have used the same order (or DFS trees) on agents for each

problem. The set of problems distributed with ADOPT and

used here contain 25 problems for each problem size. It con-

tains problems with 8, 10, 12, 14, 16, 18, 20, 25, 30, and 40

agents, and for each of these numbers of agents it contains

test sets with density .2 and with density .3. The density of

a (binary) constraint problem’s graph with n variables is de-

fined by the ratio between the number of binary constraints

and
n(n−1)

2
. Results are averaged on the 25 problems with

the same parameters.

The number of cycles, i.e., longest causal (sequential)

chain of messages, for problems with density .2 is given in

Figure 4. Results for problems with density .3 are given in

Figure 5. The original ADOPT for 20 and 25 agents and

density .3 required more than 2 weeks for solving one of

the problems, and it was therefore evaluated using only the

remaining 24 problems at those problem sizes.

We can note that the use of valued nogoods brought up

to 10 times improvement on problems of density 0.2, and up

to 5 times improvement on the problems of density .3.

Another interesting remark is that sending nogoods only

to the parent node is significantly worse (in number of cy-

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 10 15 20 25 30

agents

cy
cle

s ADOPT
ADOPT-aon
ADOPT-don
ADOPT-pon
ADOPT-aos
ADOPT-dos

Figure 5: Longest causal chain of messages (cycles)

used to solve versions of ADOPT using CAs, on

problems with density .3.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 8 10 12 14 16 18 20 22 24

agents

m
es

sa
ge

s

ADOPT-aon
ADOPT-don
ADOPT-pon
ADOPT-aos
ADOPT-dos
ADOPT-pos

Figure 6: Total number of messages used by ver-

sions of ADOPT-ng using CAs to solve problems

with density .3.

cles), than sending nogoods to all ancestors. Versions using

DFS trees require less parallel/total messages, being more

network friendly, as seen in Figure 6.

Figure 5 shows that, with respect to the number of cycles,

the use of SRCs practically replaces the need of precomput-

ing a DFS tree since ADOPT-aos is one of the best solvers,

only slightly worse than ADOPT-dos. SRCs bring improve-

ments over versions with valued global nogoods, since SRCs

allow detection of dynamically obtained independences.

We do not perform any runtime comparison since our ver-

sions of ADOPT are implemented in C++, while the original

ADOPT is in Java (which obviously leads to all our versions

being an irrelevant order of magnitude faster).

It is visible from Figure 5 that the highest improvement

in number of cycles is brought by sending valued nogoods

to other ancestors besides the parent. The next factor for

improvement with difficult problems (density .3) was the

use of SRCs. The use of the structures of the DFS tree

 1395

bring slight improvements in number of cycles (when no-

goods reach all ancestors) and large improvements in total

message exchange.

Experimental comparison with DPOP is redundant since

its performance can be easily predicted. DPOP is a good

choice if the induced width γ of the graph of the problem

is smaller than logd T/n and smaller than logd S where T is

the available time, n the number of variables, d the domain

size, and S the available memory of a computer.

8. CONCLUSIONS
The ADOPT distributed constraint optimization algo-

rithm can be used efficiently (in number of cycles) without

knowing a DFS tree, typically computed in a preprocess-

ing step, by using valued nogoods tagged with sets of ref-

erences to culprit constraints. The generalized algorithm is

denoted ADOPT-ng. SRCs allow detection and exploitation

of dynamically created independences between subproblems

(that are due to some assignments). Experimentation shows

that it is important to send nogoods to several higher prior-

ity agents. DFS trees can still be used in conjunction with

the value nogood paradigm for optimization improving the

total number of messages. ADOPT-ng versions exploiting

DFS trees that we tested so far are also slightly better (in

number of cycles) than the ones without DFS trees.

Besides that elegance brought by valued nogoods to the

description and implementation of ADOPT in ADOPT-ng,

use of SRCs to dynamically detect and exploit indepen-

dences, as well as generalized communication of nogoods to

several ancestors, brings experimental improvements of an

order of magnitude.

9. REFERENCES
[1] S. Ali, S. Koenig, and M. Tambe. Preprocessing

techniques for accelerating the DCOP algorithm

ADOPT. In AAMAS, 2005.

[2] C. Bessiere, I. Brito, A. Maestre, and P. Meseguer.

Asynchronous backtracking without adding links: A

new member in the abt family. Artificial Intelligence,

161:7–24, 2005.

[3] Z. Collin, R. Dechter, and S. Katz. Self-stabilizing

distributed constraint satisfaction. Chicago Journal of

Theoretical Computer Science, 2000.

[4] J. Davin and P. J. Modi. Impact of problem

centralization in distributed cops. In DCR, 2005.

[5] R. Dechter. Constraint Processing. Morgan Kaufman,

2003.

[6] M. L. Ginsberg. Dynamic backtracking. Journal of AI

Research, 1, 1993.

[7] K. Hirayama and M. Yokoo. Distributed partial

constraint satisfaction problem. In Proceedings of the

Conference on Constraint Processing (CP-97),LNCS

1330, pages 222–236, 1997.

[8] R. Maheswaran, M. Tambe, E. Bowring, J. Pearce,

and P. Varakantham. Taking DCOP to the real world:

Efficient complete solutions for distributed event

scheduling. In AAMAS, 2004.

[9] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo.

Adopt: Asynchronous distributed constraint

optimization with quality guarantees. AIJ, 161, 2005.

[10] P. J. Modi, M. Tambe, W.-M. Shen, and M. Yokoo. A

general-purpose asynchronous algorithm for

distributed constraint optimization. In Distributed

Constraint Reasoning, Proc. of the AAMAS’02

Workshop, Bologna, July 2002. AAMAS.

[11] A. Petcu and B. Faltings. Approximations in

distributed optimization. In Principles and Practice of

Constraint Programming CP 2005, 2005.

[12] A. Petcu and B. Faltings. A scalable method for

multiagent constraint optimization. In IJCAI, 2005.

[13] M.-C. Silaghi. Asynchronously Solving Distributed

Problems with Privacy Requirements. PhD Thesis

2601, (EPFL), June 27, 2002.

http://www.cs.fit.edu/~msilaghi/teza.

[14] M.-C. Silaghi. Howto: Asynchronous PFC-MRDAC

–optimization in distributed constraint problems

+/-ADOPT–. In IAT, Halifax, 2003.

[15] M.-C. Silaghi and B. Faltings. A comparison of

DisCSP algorithms with respect to privacy. In

AAMAS-DCR, 2002.

[16] M.-C. Silaghi, J. Landwehr, and J. B. Larrosa. volume

112 of Frontiers in Artificial Intelligence and

Applications, chapter Asynchronous Branch & Bound

and A* for DisWCSPs with heuristic function based

on Consistency-Maintenance. IOS Press, 2004.

[17] M.-C. Silaghi and D. Mitra. Distributed constraint

satisfaction and optimization with privacy

enforcement. In 3rd IC on Intelligent Agent

Technology, pages 531–535, 2004.

[18] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings.

Consistency maintenance for ABT. In Proc. of

CP’2001, pages 271–285, Paphos,Cyprus, 2001.

[19] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings.

Hybridizing ABT and AWC into a polynomial space,

complete protocol with reordering. Technical Report

#01/364, EPFL, May 2001.

[20] R. M. Stallman and G. J. Sussman. Forward reasoning

and dependency-directed backtracking in a system for

computer-aided circuit analysis. Artificial Intelligence,

9:135–193, 1977.

[21] R. Wallace and M.-C. Silaghi. Using privacy loss to

guide decisions in distributed CSP search. In

FLAIRS’04, 2004.

[22] M. Yokoo. Constraint relaxation in distributed

constraint satisfaction problem. In ICDCS’93, pages

56–63, June 1993.

[23] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara.

Distributed constraint satisfaction for formalizing

distributed problem solving. In ICDCS, pages

614–621, June 1992.

[24] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara.

The distributed constraint satisfaction problem:

Formalization and algorithms. IEEE TKDE,

10(5):673–685, 1998.

[25] M. Yokoo and K. Hirayama. Distributed constraint

satisfaction algorithm for complex local problems. In

Proceedings of 3rd ICMAS’98, pages 372–379, 1998.

[26] M. Yokoo, K. Suzuki, and K. Hirayama. Secure

distributed constraint satisfaction: Reaching

agreement without revealing private information. In

CP, 2002.

[27] W. Zhang and L. Wittenburg. Distributed breakout

revisited. In Proc. of AAAI, Edmonton, July 2002.

 1396

