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Abstract— Wideband spectrum sensing is a challenging task 

due to the constraints of digital signal processing (DSP) unit 

using in extant wireless systems. Compressive sensing (CS) is a 

new paradigm in signal processing, chosen for sparse 

wideband spectrum estimation with compressive 

measurements, thus provides relief of high-speed DSP 

requirements of cognitive radio (CR) receivers. In CS, whole 

wideband spectrum is estimated to find an opportunity for a 

CR usage requiring significant computation as well as sensing 

time, hence shrinkage the achievable throughput of CRs. In 

this paper, a novel model based CR receiver wideband sensing 

unit is addressed where a significant portion of the wideband 

spectrum is approximated through compressive sensing rather 

than recovering the total wideband spectrum. This model 

necessitates lesser sensing time and lower computational 

burden to detect a signal and as a result a level up of 

throughput is obtained. As a result, the sensing time gain 

improves the achievable throughput of the CRs which reflects 

on the simulation results and testifies the effectiveness of the 

proposed model. Therefore, a reduction of computational 

complexity is addressed without interfering with the detection 

performances, evaluated after spectrum estimation of a 

preferred band of interest by means of a well-known energy 

detector. 
 

Keywords— wideband spectrum sensing; compressive 

sampling; spectral estimation;   -norm minimization; analog-to-
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I.  INTRODUCTION  

 With the rapid growth of wireless systems and devices, 

the radio spectrum becomes scarce and recent research 

certifies that at any particular spatial region and time, 

spectrum is often heavily underutilized [1-2]. This vacant 

spectrum can opportunistically be utilized by the CR which 

permits the radio users to share their radio resources 

following improved spectrum efficiency. In the CR 

networks, the CR can dynamically regulate its transmission 

parameters. To regulate its radio frequency (RF) 

transmission properties, the CRs are required to sense the 

radio spectrum periodically for being aware of the licensed 

users. The enhancement of the spectrum efficiency can 

opportunistically be achieved by manipulating dynamic 

spectrum management schemes [3]. Conventional wideband 

spectral estimation requires very high sampling rates 

operating at or above the Nyquist rate [4]. A primary 

challenge in wideband sensing stems from the high RF 

signal acquisition costs of present-day analog-to-digital 

converters (ADCs) [5] and the ability for processing devices 

to handle a huge number of samples causing excessive 

memory occupancy as well as energy consumption.  

CS is a method of acquisition of sparse signals allowing 

for very few samples that are much lower than the Nyquist 

sampling rate; the problem of signal recovery can be solved 

by convex optimization problem [6-9], called   -norm 

regularization, that uses the basis pursuit (BP) [10] or some 

other greedy pursuits such as orthogonal matching pursuit 

(OMP) [11] or compressive sensing orthogonal matching 

pursuit [12]. These schemes provides an effective way to 

sense the discrete-time sparse (e.g., sparsity in frequency 

domain) signals and perfectly (or near perfectly) 

reconstructed with a few number of random projections. CS 

approach relies on the empirical observation as many types 

of signals or images can be well-approximated by sparse 

representation in terms of a suitable basis, i.e., considering 

only a few significant coefficients or number of non-zero 

(NNZ) elements in the signal vector. In order to deal with 

wideband signal acquisition purpose for compressible 

signals that enables sub-Nyquist data acquisition via an 

analog-to-information converter (AIC) or a random 

demodulator (RD) [13-14]. An AIC directly relates to the 

idea of sampling at the information rate of the signal. The 

CR with a wider spectral awareness could potentially 

exploit more spectral opportunities and obtain greater 

achievable rates. Therefore, wide band spectrum sensing 

techniques have attracted much attention among the 

researchers, working in CR regime [15]. In open literatures 

[15-16], authors are devoted to estimate the whole wideband 

spectrum to find a spectrum white space for opportunistic 

access of CRs. To estimate the whole wideband in CS 

domain implies computational burden as well as it requires 

more memory space to store data and hence prohibitive 

energy cost.  

In order to design a robust spectrum sensing in wideband 

regime, this paper presents a model of CR receiver sensing 

module which estimate a significant part (which is highly 

sparse among the segments of the spectrum) of the entire 

wideband spectrum thus making computational complexity 

lower [17]. As soon as the wideband signal undergoes to 

different BPFs that pick out the preset value of RF band and 

divide the whole wideband spectrum into several frequency 

bins (FBs). Capitalizing the presence of sparsity in 

wideband spectrum, this paper aims to ascertain the highly-

sparse frequency bin (HSFB) through average energy 

classification of each FBs. The energy estimation of a single 

FB is performed by taking random sub-Nyquist rate samples 



coming out from the AIC. After that, we develop spectral 

estimation of the HSFB via a convex optimization approach 

labeled as l1-norm minimization. It is now checked the PU 

white spaces distribution inside the HSFB by using the 

energy detector (ED) [18] along with the throughput 

performance [18-19] of the proposed model. To conclude, 

comparison of the throughput of the proposed model to the 

single RF chain following the CS approach is illustrated.  

The remainder of the paper is organized as follows. In 

section II, compressive sampling preliminaries are discussed 

and section III briefly describes compressive sampling via 

AIC. Signal model for the problem is presented in section 

IV. Section V describes the system modeling and problem 

statement while in section VI, performance analysis is 

carried out via simulations and some advantages of the 

proposed model are highlighted. Lastly, some conclusions 

are drawn in section VII. 

II. COMPRESSIVE SAMPLING PRELIMENARIS  

In the CS framework [3, 6-7] a real-valued, finite-length, 

one-dimensional time variant signal  ( )      , can be 

represented as a finite weighted sum of orthonormal basis 

functions (e.g., discrete cosine transform, discrete Fourier 

transform, etc.) as follows: 

 ( )  ∑     ( )    
 
                           (1) 

where only a small number of basis coefficients   , 

representing the sparsity of wideband signal  ( ). Let the 

acquisition of an     vector      where   is the 

sparsity basis matrix of size     and   an     vector 

with   number of non-zeros (e.g. significant elements 

compared to others) entries   . In case of sparse signals, an 

S-sparse representation of   can be seen as a linear 

combination of   orthonormal basis functions, with     

and it can be obtained by considering only   of the    
coefficients in (1) that are significant non-zero elements, 

while zeroing the rest (   )  of the values representing 

less significant elements; this is the basis of the transform 

coding [7]. Sparsity is influenced by the fact that many 

natural and man-made signals are compressible in the sense 

that there exist a set of basis functions,   where the 

representation (1) has just a few significant coefficients [6-

8]. It has been demonstrated that the original signal   can be 

recovered using     (     )  non-adaptive linear 

projection measurements on to a measurement matrix   of 

size     which is incoherent with sparsifying basis,   

[6-9]. The formation of sensing or measurement matrix   is 

given by choosing elements that are drawn independently 

from a random distribution, e.g. Bernoulli, Gaussian, etc. 

Consequently, the measuring expression,   can be written as  

         =                                 (2) 

where      is a matrix of size     . As    , the 

dimension of   in (2) is much lower than that of  , so there 

are theoretically infinite solutions to the equation. For these 

reasons, this problem is ill-posed and the reconstruction of 

the original signal is quite complex. Nevertheless, if it is 

satisfied that   is  -sparse with a proper basis of 

measurement matrix,   (incoherent with  ) then the 

recovery of   can be attained with only   measurements by 

using the   -norm optimization method [6-7] as follows  

 ̂           
 
‖ ‖     s. t.                      (3) 

This is a convex optimization problem that conveniently 

reduces to a linear program known as basis pursuit (BP) 

[10], iterative greedy algorithms [11], etc. CS method [6-7] 

confirms the recovery (accurately or near accurately) of the 

original signal is possibly acquired with sub-Nyquist rate 

samples which outfits with the ADC’s available in the 

wireless systems. 

III. COMPRESSIVE SAMPLING VIA AIC 

To acquire sparse, band limited signals we introduce an 

AIC which is also entitled random demodulator. An AIC is 

theoretically similar to an ADC operating at Nyquist rate 

followed by the CS procedure. Fig. 1 displays the 

procurement of random samples through AIC. The benefit  

AIC
x(t) yp

 
Fig.1: CS acquisition in proposed spectrum sensing method 

of the AIC recognized as it avoids the need for a high-rate 

ADC. So, the system can be assembled with robust, low-

power, readily available components even while it can 

acquire wider band signals than traditional ADCs [14]. The 

baseband (at CR node) signal  ( ) is sampled using an AIC 

[13-14]. Let the output of the ADC which is the sampled 

signal of  ( ), denoted by 

   [                           ]
 
             (4)          

is a     vectors  and the size of the measurement matrix 

   is     , such that  

                                        (5) 

So the output of the AIC denoted by the size of      

vectors 

   [                              ]
 
              (6)  

Those random samples are then considered for energy 

estimation. Then, estimation of the radio spectrum is 

performed by solving   -norm optimization problem as in 

(3).  

IV. SIGNAL MODEL 

The CRs in an opportunistic network need to decide the 

PUs occupancy status of a chosen frequency band within a 

single FB denoted by   (          ) . To do so, the 

hypothesis test for detecting the occupancy status of PU in a 

band of interest is measured as      (absence of a PU) and 

     (presence of a PU). That is, we test the following 

binary hypotheses: 



 ̂[ ]  {
 [ ]                                   

   [ ]   [ ]                 
                     (7) 

where  ̂ is the spectrum of the band of interest estimated 

through the promising   -minimization scheme, discussed in 

[6-7].    stands for the discrete frequency response between 

the PU and the CR,  [ ] is the primary signal transmitted 

within a frequency bin and  [ ] is complex additive white 

Gaussian noise (AWGN) with zero mean and unity 

variance. 

     An energy detector performance does not depend on the 

a-priori information of PU signal and less complex to 

implement [16] which make it popular in practical cases, 

therefore the signal energy is calculated over an interval of   
samples by  

 [ ]  
 

 
∑ | ̂ [ ]|

    
                                   (8) 

where  ̂ [ ] indicates the spectral estimation of the  -th sub-

channel under concerning to CR and the decision parameter 

of the ED is given by  

 [ ]   

    

 

    

     ,                                (9) 

where    is the decision threshold of a PU sub-channel of 

interest inside a frequency bin. Following [16], the signal 

energy can be described as  

 [ ]  {
   
                              

   
 (  [ ])              

                      (10) 

where  [ ] denotes the signal-to-noise ratio (SNR) at the 

CR of a frequency band, and     
  and    

 (  [ ]) denote 

central and non-central chi-square distributions, 

respectively. Both those distributions have degrees of 

freedom of   . For simplicity, it is assumed that primary 

radios deploy uniform power transmission strategy and the 

medium access control (MAC) layer assures that the CRs 

keep quiet during each detection period while the PUs do 

transmit signals. The probability of detection,     and the 

probability of false alarm,     can be calculated as proposed 

in [17] 

         ( [ ]  (  |    ) 

               ((
  

  
   )√   )                    (11) 

        ( [ ]  (  |    ) 

  ((
  

  
   [ ]    )√

 

 (    )
)    (12) 

where,     denotes the threshold of a PU band of interest, 

  
  denotes the noise variance,   is the number of samples 

inside a band and   is composed of  sensing time   
multiplied with the sampling frequency     e.g.,       
where  ( )  is the complementary distribution function of 

the standard Gaussian, i.e., 

                         ( )  
 

  
∫     ( 

  

 
)  

 

 
                   (13) 

V. SYSTEM MODELING  AND PROBLEM STATEMENT 

Suppose that a CR receiver has employed with a band-

pass filter bank as depicted in Fig. 2. Let the wideband 

signal,   ( ) of bandwidth   Hz is mutually shared among 

the PUs to a primary communication system and some part 

of the bandwidth is available for opportunistic accessing to 

the CRs in a particular geographic location and time. The 

wideband filter prior to the BPF preserves the concerned 

spectrum of particular frequency bands, and is set to have 

the bandwidth   Hz. Assume that the bandwidth of non-

overlapped PU is   Hz and also the same bandwidth can 

opportunistically serve the necessity of a CR node for 

communication. Therefore, the possibility of maximum 

number of available channels are to be defined as   
 

 
  

and    is the center frequency of the  -th channel. Also, 

consider that the CR node is comprising with an wide-band 

antenna in order to probe the whole wideband time-domain 

signal   ( ). 
Let the CR receiver has accommodated   number of 

identical BPFs, the outputs of the BPFs are denoted by    

and each one has a bandwidth of equal size    
 

 
  , 

where         . The wideband signal is fed into the 

filter bank ( {  ( )}   
  consisting of     wideband 

filters whereas   ( ) represents the transfer function of the 

 -th filter) which sets boundary for the wideband signal in 

several frequency bins,      of identical dimension. To 

make the problem simpler, we assume that at least one PU 

sub-channel present in a FB,    at any timing instant. 

The output of the  -th BPF is then sent to the RD as 

described in the paper [14] in order to obtain    

randomized samples and those samples are intended for 

calculating the average energy    of a single frequency bin 

and compare those average energies    (        ) at the 

energy estimate and compare block which is the most 

significant part in the proposed CR receiver block. One 

point is to mention here that the reliability of the energy 

comparison depends on the number of samples taken into 

account; the more the number of samples to be considered, 

the better would be the reliability to estimate the average 

energy of each frequency bin. Therefore, higher 

compression ratio     (large number of samples from RD) 

is taken into account for estimating average energy of each 

FB is calculated by considering identical number of random 

samples i.e. the same compression ratio for all frequency 

bins.  

    While comparing the average energy     of a bunch of 

samples corresponding to bandwidth   , the comparator 

also restore the samples corresponding to that FB which 

contains minimum average energy    (   ) . We want to 

search for the frequency bin    with minimum energy as 

minimum energy gives the higher probability of having 

minimum number of PUs’ presence within this FB,   . In 

addition to this, minimum number of PUs present in the FB, 

   augmenting the signal sparsity level (a few NNZ 



elements) in the frequency domain. After comparing the 

energy content of each FB, decimation of samples (as fewer 

samples would require for spectral recovery than energy 

estimation) are to be done of a suitable frequency bin (that 

contains minimum average energy   (   )  which is then 

considered to estimate the spectral magnitude | ̂ | and this 

is prepared by applying the well-known                 

algorithm [7-8]. The HSFB provides a number of significant 

hints; first, it guarantees of having maximum number of PU 

sub-channels unoccupied which substantially exploit 

maximum chance to access for a CR node. Second, the more 

the sparsity, the better would be the spectral estimation 

which contributes improving detection performance. Third, 

spectral estimation of a single HSFB rather than entire 

wideband would ask smaller computational complexity.  

Now, we move forward to an ED approach to find an 

inactive PU sub-channel for opportunistic use of a CR, and 

so we pay attention in reconstructing only the magnitude of 

the spectrum | ̂ | regarding the FB,     Now, the CR node 

decides the PU spectral vacancy status by using the ED test 

statistics, the decision of spectrum sensing regarding the 

sub-channel of interest. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig.2. Schematic illustration of the filter based spectrum estimation via 
compressive sensing 

A. Achievable throughput  of a single CR node 

To compute the achievable throughput for CR network 

we consider a simple problem which is collision free (as PU 

is absent and so no false alarm is caused by the CR) 

achievable throughput for CR network.  Let us consider,   is 

the time slot reserved for sensing operation and (   ) is 

the data transmission slot duration as shown in fig. 3 [18]. 

Also, denote    as the achievable capacity of a CR network 

considering PU data transmission off and    can be written 

as        (      ), where      denote the signal-to-

noise ratio of a CR link. Inside an interoperable network, we 

also consider PU data transmission, CR data transmission 

and reception are Gaussian, white in nature and independent 

to each other. For a particular band of interest,  (  ) 
signifies the probability for which the PU data transmission 

is absent. Therefore, we recall the optimal achievable rate 

 ( ) from [17] is  

τ (T-τ)

Sensing 
Data transmit: 

ON/OFF

Frame Length, T

 
Fig. 3: Graphical structure of a typical frame of a CR data transmission 

 

 ( )     (  ) (  
   

 
) (   (  √  ))         (14) 

where   √       (  ) . From equation (14), it has 

been noticed that the achievable rate of a CR node varies 

with the sensing slot duration as well as frame duration e.g., 

the throughput is greater for shorter sensing time period   
with a fixed frame length  . Hence, we try to sort out a 

trade-off between the sensing length and frame length. As 

the miss detection probability,    can obligate with the 

possibility of data collision (a collapse of achievable 

throughput) with the PU transmission while the probability 

of false alarm      recommends the CR to stop packet 

transmission during the frame interval though PU channel is 

idle at that instant which also decrease the throughput 

performance. We assume MAC layer of CR network 

guarantees that only one CR can have the accessibility of a 

PU sub-channel at a particular time to avoid the collisions 

among the CR nodes inside the network [18]. Therefore, 

collisions can only be possible between the CR and the PU. 

VI. PERFORMANCE SIMULATIONS  

We consider, at baseband, the wideband signal   ( ) 
contains a maximum of 32 non-overlapping sub-bands 

whose bandwidths   [   ]Δ Hz each and encode the 

sub-channels as    {              }  with carrier 

frequencies,    [    ]Δ Hz, where Δ is the frequency 

resolution. In simulations, the numbers of BPFs are 

considered     and the carrier frequencies    are chosen 

randomly such that the occupancy of PU bands {  }   
   

satisfy in different FBs as {  }   
  {       }  with 

different sparsity levels (shown in fig. 2). The received 

signal,   ( ) at the input of the  -th BPF is as follows 

  ( )=∑       (  (   ))     (    (   ))   ( )
 
   

  (15) 

where   √    ,     ( )  
    (  )

  
,    signifies average 

energy level of PU sub-bands,    denotes the a random 

timing offset between sampling branches and  ( )  is the 

AWGN as we assume the received wideband signal is 

corrupted by such type of noise of unit variance before 

come to the CR terminal. At the CR node, the received SNR 

of the active channels are considered 0 dB, 5 dB and 10 dB. 

To make simulation atmosphere relaxed, we consider 

frequency resolution Δ is 1MHz so the signal has a global 

bandwidth of      MHz. In this setting, the number of 

Nyquist samples,         if the band was sampled at 

Nyquist rate for       . For energy estimation inside 
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each FB we chose a compression ratio,   ⁄  of 30% while 

the compression ratio,   ⁄  has varied from 1% to 30% for 

spectral estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Influence of compression ratio on the detection performance 

                
       The entries of the compressive measurement matrix    

be the Gaussian distributed with zero mean and variance 

  ⁄  and this random matrices permit the spectral 

estimation by using   -minimization. In order to form the 

measurement matrix   , discrete Fourier transform has 

been preferred as the sparsifying basis and then estimate the 

spectrum of the HSFB,   . Later, probability of detection 

has been checked out for a band of interest which may serve 

an opportunistic usage to a CR. In our case, one PU sub-

channel frequency assists this purpose. If the numbers of PU 

sub-channels accommodate in a FB,     are equal to the 

number of EDs then it is possible to figure out the PU status 

simultaneously. However, a single ED can serve this job 

sequentially and hence has an impact on the opportunistic 

throughput at CR. The detection performance is drawn in 

fig. 3 that illustrates the influence of the compression ratio 

  ⁄  on the wideband spectrum sensing performance which 

is comparable with a conventional one [15]. During 

simulation, we choose the statistical average of probability 

of detection,    of 10000 experimental results and set 

probability of false alarm         . 

       Later, to testify the effectiveness of the proposed 

approach with a CR system which estimates the entire 

spectrum, the throughput performance is investigated. To 

make easily understandable, we choose low regime SNR 

value of the PU system, e.g., SNR=    dB, probability of 

detection         and probability of PU transmission is 

absent,  (  )       when a CR node wishes to transmit. 

Intuitively, the sensing time,    engaged for the proposed 

approach and the full spectrum estimation with a single RF 

chain followed by promising CS method is considered 

during simulation operation. Meanwhile, this sensing time,   
is applied in equation (14) to find the optimum throughput 

for a fixed frame length of 50ms and different SNR values 

as illustrated in fig. 5. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. Simulation of the achievable rate against sensing time for a fixed 
frame length 

      To proceed further, we again investigate (fig. 6) the 

optimum throughput of the same arrangement but this time a 

variation of the frame length is used with a fixed sensing 

time,        . Fig. 6 also demonstrates that the proposed 

method outperforms with respect to a conventional CS 

based spectrum estimation approach.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Illustration of the achievable rate against Frame length for a fixed 

sensing period 

  There are several obtainable advantages of the proposed 

compressive sensing algorithm. Signal reconstruction via   -

minimization involves  (     )  operation (exactly, the 

computational burden is equal to the number of iterations   
          where number of iterations is not usually easy 

to bound, but in worst-case, it can be bounded by N). With 

  number of filters, the computational burden is lessened in 

the order of  (     )  and it requires only  (
 

 
   

 

 
) 

operations. In the proposed approach, the desired spectrum 

is estimated considering only a few ( ) number of random 

samples of the HSFB,   . Here, the number of samples are 

decreased by the influence of the number of filters  . 

Therefore, in the proposed scheme entails a reduced amount 

of arithmetic computations in the order of  (     ) . 

Therefore, less computation as well as improved throughput 

performance is obtained with the offered scheme in this 

paper. Proposed model outperforms existing wideband 

spectrum sensing methods, as it estimates only a single FB 

to find an opportunity for a CR thus obliges less sensing 

time as a result of significant improvement in achievable 
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throughput as well as lower computational burden is 

validated. 

 An additional noteworthy statistics is to be distinguished 

here that the  -th filters having the bandwidth    greater 

than a single PU band, contributing a minor complexity of 

the filter design i.e.    ⁄           
  over the 

conventional channel-by-channel scanning [16].  

VII. CONCLUSION  

This paper proposes an innovative block of CR receiver 

module for wideband spectrum sensing by the use of CS. 

Starting with a time domain signal, a single FB is estimated 

and detection performance has been explored through 

simulations to a band of interest for CR. Finally, achievable 

throughput performance of a static frame duration as well as 

static sensing length are compared to a traditional spectrum 

sensing methodology subsequent to a single RF chain with 

CS method. Corroborating simulation outcomes guarantee 

the worth of the proposed approach.  
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