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Abstract

Recently, many opportunistic spectrum sensing and access protocols have been proposed for cognitive

radio networks (CRNs). For achieving optimized spectrum usage, existing solutions model the spectrum

sensing and access problem as a partially observed Markov decision process (POMDP) and assume

that the information states and/or the primary users’ (PUs) traffic statistics are known a priori to the

secondary users (SUs). While theoretically sound, these existing approaches may not be effective in

practice due to two main concerns. First, the assumptions they made are not practical, as before the

communication starts, PUs’ traffic statistics may not readily be available to the SUs. Secondly and

more seriously, existing approaches are extremely vulnerable to malicious jamming attacks. A cognitive

attacker can always jam the channels to be accessed by leveraging the same statistic information and

exploiting the same stochastic dynamic decision making process. To address the above concerns, we

formulate the problem of anti-jamming multi-channel access in CRNs and solve it as a non-stochastic

multiple-armed bandit (NS-MAB) problem, where the secondary sender and receiver adaptively choose

their arms (i.e., sending and receiving channels) to operate. The proposed protocol enables the sender

and receiver to hop to the same set of available channels with high probability in the presence of

malicious jamming attacks. We analytically show the convergence of the learning algorithms, i.e., the

performance difference between the secondary sender and receiver’s optimal strategies is no more than

O(20k√
ε

√
Tn ln n). Extensive simulation are conducted to validate the theoretical analysis and show that

the proposed protocol is highly resilient under various jamming scenarios.
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I. INTRODUCTION

Recently the problem of opportunistic spectrum access (OSA) in cognitive radio networks (CRNs)

has received increasing attention due to its potential to improve the spectrum utilization efficiency [1],

[10], [11], [19], [22]. In these spectrum access approaches, the basic principle is the same: individual

secondary users (SUs) dynamically search and access the spectrum vacancy to maximize the spectrum

utilization while introducing limited level of interference to the primary users (PUs). To the best of our

knowledge, the single-channel sensing and access problem was first investigated under the framework of

partially observable Markov decision process (POMDP) in [22]. In [22], an myopic sensing policy with

a simple round-robin structure was proposed by assuming that a sufficient statistic (i.e., the conditional

probability that each channel is idle before sensing starts at time zero) and the order of channel transition

probabilities were known to SUs. Under imperfect channel sensing, the acknowledge information was

used to maintain synchronization between the sender and receiver. In [11], the same authors extended

the POMDP framework by considering a multi-channel access problem and prove the optimality of the

myopic policy when the total number of channels is two. In [1], the authors proved the optimality of the

myopic policy with independent and identically distributed (i.i.d.) positively-correlated channels. In [19],

instead of ACKs, a dedicated control channel between the secondary sender and receiver was used for

maintaining transceiver synchronization. Upper bounds on the optimal reward were derived for the single-

channel access by assuming that channels were positively-correlated and all channel states were known

after sensing. Recently, the dynamic multi-channel access problem was studied under a special class

of restless multi-armed bandit problems (RMBP) in [10], and the proposed Whittle’s index policy was

distinguished from the aforementioned work by achieving near-optimal performance in more general

scenarios.

Among these existing protocols, one key assumption made by most of them is that the traffic statistics

or the order of the state transition probabilities of all channels are known to the SUs. However, such

assumptions may not hold in practice or more seriously, these protocols are not secure in malicious envi-

ronments. First of all, the PU’s traffic statistics (i.e., initial information states and transition probabilities

or the order of them) may not readily be available to the SUs prior to the start of sensing. Without a

priori information on the traffic patterns, those opportunistic spectrum sensing and access protocols cannot

work. Moreover, in malicious environments, the attackers can leverage the same statistic information and

use the same stochastic dynamic decision making process to jam the channels effectively. In other words,

due to the fixed structure of those sensing policies, an jammer can predict which channels the SUs are
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Fig. 1: The Markov channel model.

going to use in each timeslot and prevent the spectrum from being utilized efficiently.

To cope with jamming attacks, many jamming mitigating protocols, including both frequency hopping

spread spectrum (FHSS) and direct-sequence spread spectrum (DSSS) [20], are proposed. However, they

are not directly applicable to cognitive radio networks either due to the ad hoc nature of the secondary user

network or the primary users’ dynamic activities on the spectrum. More specifically, these coordinated

hopping approaches rely on some pre-shared secrets (i.e., hopping sequences and/or spreading codes)

prior to communication and do not consider the behavior of the PUs. Thus, they inevitably cause high

interference to the dynamic PUs. Recently uncoordinated frequency hopping (UFH) schemes are proposed

to eliminate the reliance on the pre-shared secrets [15], [17], [18], where both the sender and receiver hop

on randomly selected channels for message transmission without coordination. The successful reception

of a packet is achieved when the two nodes reside at the same frequency (channel) during the same

timeslot. Still, significant interference is introduced to the primary user network due to the SUs’ random

hopping. To address this problem, in this paper we propose a decentralized anti-jamming multi-channel

spectrum access protocol for cognitive radio networks, which can accommodate both the environment

dynamics and the strategic behaviors of the jammers. To our best knowledge, we, for the first time,

formulate the anti-jamming problem as a non-stochastic MAB problem and develop the online learning

based anti-jamming spectrum access protocol for ad hoc cognitive radio networks. The main contributions

of this paper are:

1. We first propose an opportunistic spectrum access protocol with unknown traffic statistics for

cognitive radio networks and analyze its vulnerability to jamming attacks. We then formulate the anti-

jamming problem as a non-stochastic MAB problem and propose the first online adaptive jamming-

resistant spectrum access protocol for cognitive radio networks. We analytically show the convergence

of the learning algorithms, i.e., the performance difference between the secondary sender and receiver’s
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Fig. 2: The structure of a timeslot.

optimal strategies is no more than 20k√
ε

√
Tn ln n, where k = max{ks, kr}, kr and ks are the number

of channels the receiver and the sender can access simultaneously in each timeslot, and n is the total

number of channels. The normalized difference converges to 0 at rate O(1/
√

T ) as T → ∞. We also

show that the proposed algorithms can be implemented efficiently with time complexity O(krnT ) and

space complexity O(krn) for the receiver, with time complexity O(ksnT ) and space complexity O(ksn)

for the sender.

2. We also present a thorough quantitative performance characterization of the proposed scheme. The

performance is evaluated by analyzing a practical metric–the expected time for message delivery with high

probability. We derive the approximation factors for both static optimal and adaptive optimal strategies.

We also perform an extensive simulation study to validate our theoretical results. Some interesting results

are obtained, and it is shown that the proposed algorithm is efficient and highly effective against various

jamming attacks.

The rest of the paper is organized as follows: Section II describes the system model, attack model.

Section III discusses the related work. Section IV presents an opportunistic spectrum access protocol with

unknown traffic statistics and analyzes its vulnerability to jamming attacks. Section V provides a detailed

description of a jamming-resistant opportunistic spectrum access protocol. Section VI and VII present

the theoretical performance analysis and simulation results, respectively. Finally, Section VIII concludes

the paper.

II. PROBLEM STATEMENT

A. System Model

In this paper, we consider a dynamic spectrum access system consisting of a primary user network and

a secondary user network. We assume the spectrum is divided into n channels, each of which evolves

independently (i.e., the channels statistics are not necessarily the same for the n channels) and has the

same bandwidth. In the primary user network, the primary users (PUs) occupy and vacate the spectrum

following a discrete-time Markov process (MDP). As shown in Fig. 1, channel i transits from busy state
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(“0”) to idle state (“1”) with probability p01 and stays in idle state (“1”) with probability p11. In the

secondary network, the secondary users (SUs) seek spectrum opportunities among n channels. That is,

they reserve a sensing interval in each timeslot to detect the presence of a primary user. Based on the

sensing outcome, they will take the opportunity to access the currently idle channels, and vacate the

spectrum whenever PUs reclaim them. We also assume that at the end of the timeslot, the receiver sends

an acknowledgement (ACK) to the sender on the channel where a packet transmission is successful. The

basic timeslot structure is illustrated in Fig. 2.

We focus on an ad hoc secondary network without a central controller for coordinating the secondary

user network. Each autonomous SU thus aims to maximize it own performance by sensing and accessing

the spectrum independently. We assume that the traffic statistics (i.e., p01 and p11) are not available to

SUs. For ease of illustration, we term one pair of communicating SUs as the sender and receiver. The

sender and receiver are equipped with ks < n and kr < n radios, respectively, enabling them to sense

and receive on multiple channels simultaneously at each timeslot. Note that in each timeslot, a secondary

user can sense ks < n and access ka ≤ ks channels sequentially.

We also assume that at the receiver side, efficient message verification schemes (e.g., erasure coding

combined with short signatures) are used for packet verification and message reassembly purpose [17]. In

our model, we do not consider message authentication and privacy, which are orthogonal to the problems

this work addresses.

B. Adversary Model

Due to different attack philosophies, different attack models will have different levels of effectiveness.

In this paper, we consider a general and practical jammer with different jamming strategies. In each

timeslot, we assume the jammer is capable of jamming kj (kj < n) channels simultaneously. We also

assume the jammer will not jam the licensed bands when the primary users are active due to the facts

that i) there will be a heavy penalty on the attackers if their identities are known by the primary network

and ii) the attackers cannot be too close to the primary users. Therefore, the jammer will also utilize

the sensing interval to detect the activity of the primary users and jam the idle channels based on the

sensing outcomes. Assume the jammer knows the whole spectrum access protocol, his objective then is

to prevent the spectrum from being utilized efficiently by the legitimate secondary users with the limited

jamming capability. Specifically, we focus on the following four types of jammers:

(1) Static jammer: The static jammer is an oblivious jammer. In each timeslot, he selects the same set

of kj channels to sense and emits jamming signal on the idle channels. The jamming action is made
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independent of the sensing history he may have observed.

(2) Random jammer: The random jammer is also an oblivious jammer. In each timeslot, he selects a set

of kj channels uniformly at random to sense and emits jamming signal on the idle channels. The

jamming action is made independent of the sensing history he may have observed.

(3) Myopic jammer: The myopic jammer is a cognitive jammer running the myopic algorithm (the

myopic policy will be shown in IV). He senses all the channels for a certain time and makes an

estimation of the traffic statistics. He then makes use of the myopic policy to predict the primary

users’ channel occupancy pattern and emits jamming signal on the most likely idle channels. The

jamming action is made based on the sensing history and the channel occupancy statistics.

(4) Adaptive jammer: Different from a myopic jammer, the adaptive jammer selects the sensing and

jamming channels by utilizing an online MAB based learning algorithm (the MAB based learning

protocol will be shown in V). Like the sender, he can adjust his sensing and jamming strategies by

leveraging the received ACKs from the receiver. The jamming action is made based on the sensing

history and the channel occupancy statistics. Note that a clever and reasonable jammer will listen

during the ACK transmission interval rather than randomly jamming the ACK packets. Actually, it

is very difficult to jam the ACKs as the size of ACK packets are very small.

Note that after the sensing interval, the jammer will make a decision to jam or not in the data transmission

interval. We assume that the jammer cannot perform the sensing and jamming operations within the same

data transmission interval under the appropriately chosen channel hopping rate. Empirical data shows that

sensing a channel takes tens of ms [2], [14]. For example, consider a typical sum of channel sensing time

ts and switching time tw being 10ms [2], for a channel with data rate B = 10Mbps, a successful jamming

attack on the transmitted packet within the same data transmission interval requires the length of packet

is at least 105 bits. Thus, we can defeat such attack by properly setting the length of the transmission

interval (the ACK interval is very small compared to the data transmission interval).

In this paper, our goal is to develop decentralized anti-jamming spectrum access protocols for an

ad hoc cognitive radio network. With unknown spectrum traffic statistics, the proposed protocol should

enable the SUs to independently search for spectrum opportunities while accommodating both the traffic

statistics and the jamming strategies.

III. RELATED WORK

Opportunistic spectrum access in CRNs In the context of cognitive radio for opportunistic spectrum

access, a single-channel access problem within the framework of POMDP is investigated, and myopic
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policies under both perfect and imperfect sensing cases were first proposed in [22]. In [1], the single-

channel access problem with perfect sensing is further analyzed and the optimality of the myopic policy

under p11 > p01 was proved. It has also been shown that if p01 > p11 the myopic policy remains optimal

when the number of channels n ≤ 3 and the discount factor β ≤ 1/2. In [11], Liu et al. extended

the POMDP framework by considering a multi-channel access problem. The optimality of the myopic

policy was proved for n = 2, and the lower and upper bounds on the throughput achieved by the myopic

policy were derived. In [19], instead of using ACK, the authors adopted a dedicated control channel

between the secondary sender and receiver for transceiver synchronization. When p11 > p01 for single-

channel access, upper bound was derived by assuming that states of all channels are known after sensing.

They also considered a parametric model for the distribution of the received signal and developed an

algorithm with learning capability. Recently, Liu et al. [10] studied a special class of restless multi-armed

bandit problems (RMBP), established the indexability and obtained optimal index policy under certain

conditions. The proposed policy can be implemented with low complexity and had better performance

than myopic policy when channels are not stochastically identical.

Multi-armed bandit problem. In classic multi-armed (k-armed) bandit (MAB) problems, a gambler

operates exactly one machine at each timeslot; all other machines remain frozen. Each operated machine

provides a reward drawn from a known distribution associated with that specific machine. The objective

of the gambler is to maximize the sum of rewards earned through a sequence of machine operations.

Gittins et al. [6] proved that an optimal solution for the this problem is of index type. When m(m < k)

machines are operated each time and each machine evolves over time even not being operated, the

problem becomes a restless multi-armed bandit problem (RMBP). Whittle [21] showed that an optimal

solution of the index type can also be established in some cases. In this version of the bandit problem, the

generation of rewards is assumed to be subject to certain distributions that are known to the gambler. Non-

stochastic multi-armed bandit problems are another important version of MAB problems that incorporate

an “exploration vs. exploitation” trade-off over an online learning process [3], [4]. The non-stochastic

MAB is widely used in solving online shortest path problems, where the decision makers has to choose

a path in each round such that the weight of the chosen path be as small as possible [5], [7], [9], [12].

Because the number of possible pathes is exponentially large, the direct application of [4] to the shortest

path problem results a too large bound, i.e., dependence on
√

N . The authors in [5], [12] designed

algorithms for shortest path problem using the exponentially weighted average predictor and the follow-

the-perturbed-leader algorithm. However, the dependence of number of rounds T in their algorithms is

much worse than that of [4] (i.e., O(T
2
3 ) [5] and O(T

3
4 ) [12]). In [7], the authors consider the shortest
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path problem under partial monitoring model and proposed an algorithm with performance bound that

is polynomial in the number of edges. In this paper, we formulate the anti-jamming spectrum sensing

and access problem as a non-stochastic MAB problem and analyze it under partial monitoring model [7],

where only the rewards of the chosen arms are revealed to the decision maker.

Uncoordinated FHSS anti-jamming communication. The problem of uncoordinated frequency hopping

spread spectrum (FHSS) anti-jamming communication has been investigated in recent literature [17],

[18]. In [18], the authors proposed an uncoordinated frequency hopping (UFH) scheme based on which

messages of Diffie-Hellman key exchange protocol can be delivered in the presence of a jammer. Due

to the sender and the receiver’s random choices on the sending and receiving channels, the successful

reception of fragments is achieved only when the two nodes coincidentally reside at the same channel

during the same timeslot. The first work on efficiency study of UFH-based communication is recently

proposed in [17], which shows if the sender and the jammer both choose the random strategy, the receiver’s

best choice would be random strategy.

In this paper, we extend the idea of uncoordinated communication on dynamic spectrum access in

cognitive radio networks. Different from previous work where the sender and receiver perform random

hopping, we introduce online learning theory into the design of spectrum sensing, access and receiving

algorithm in CRNs. The proposed protocol enables the sender and receiver to perform as best as they

can and converge to the best strategies as time increases.

IV. MULTI-CHANNEL OPPORTUNISTIC ACCESS WITH UNKNOWN TRAFFIC STATISTICS

In practice, the primary user’s traffic statistics (i.e., transition probabilities and initial belief states)

are unknown to the secondary users. In this section, we propose a multi-channel opportunistic spectrum

access protocol with unknown traffic statistics. We assume traffic statistics on primary channels are

unknown to the secondary users and the communication is jamming-free. Then we analyze the weakness

of the protocol under jamming attack due to its deterministic feature, which motivates us to develop a

probabilistic spectrum sensing and access approach in the next section. For ease of illustration, in the

following we consider a secondary user network with a single sender-receiver pair, but the same ideas

can also be applied and extended to a multi-user setting.

Many spectrum sensing and access policies have been proposed for jamming-free cognitive radio

networks [1], [10], [11], [19], [22]. In this model, the sender chooses a subset of n channels to sense based

on its history observations and gains a fixed reward if a channel is sensed idle. The objective of the sender

is to maximize the reward that it can gain over a finite or infinite timeslots. It was known that this problem
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can be solved by a stochastic dynamic programming (SDP) approach [8]. The SDP algorithm proceeds

backward in time and at every stage t determines an optimal decision rule by quantifying the effect of

every decision on the current and future conditional expected rewards. Although it provides a powerful

methodology for stochastic optimization, the backward induction procedure of SDP is computationally

expensive in many applications.

To reduce the computation complexity, a index policy– myopic policy, which maximizes the condi-

tional expected reward acquired at t is proposed and explored in recent literature [1], [22]. This policy

concentrates only on the present and completely ignores the future. So myopic approaches are suboptimal

in general. It has also been shown that a sufficient statistic or the information state of the system for

optimal decision making is given by the belief vector Ω(t) = [ω1(t), ω2(t), . . . , ωn(t)], where ωi(t) is the

conditional probability that channel i is idle in timeslot t. A sensing action a(t) denotes the ks channels

to be sensed in timeslot t. Let Ki(t) ∈ {0, 1} denote the the reception of an ACK on channel i or not

in timeslot t. Given a(t) and Ki(t), the belief state in timeslot t + 1 is given by [22]

ωi(t + 1) =





pi
11, i ∈ a(t),Ki(t) = 1

pi
01, i ∈ a(t),Ki(t) = 0

ωi(t)pi
11 + (1− ωi(t))pi

01, i /∈ a(t)

(1)

Assume all channel have the same transmission rate Bi(we normalize it as Bi = 1), the myopic policy

under Ω is defined as

â(t) = arg max
a(t)

∑

i∈a(t)

ωi(t)Bi. (2)

Another index policy called Whittle’s index policy is also applied in the dynamic spectrum access and

obtained in closed-form (refer to [10] for the explicit expressions for Whittle’s index). Similarly, Whittle’s

index policy is implemented by sensing ks channels with the largest indices in each timeslot. Its optimality

is lost in general due to the strict constraint of sensing exactly ks for all t, but even so the Whittle’s

index policy has the near optimal performance. It has also been shown in [10] that when channels are

stochastically identical, the myopic policy and the Whittle’s index policy are equivalent.

In the above two index policies, their key assumption is that the traffic statistics, i.e., the initial belief

vectors Ω(0) and the order of state transition probabilities (i.e., pi
01 is greater or less than pi

11) on

all channels are known a priori to the SUs. In practice, however, these information may not readily

available [13], [19]. To address this problem, we propose a dynamic multi-channel access protocol with

online learning capabilities as shown in Algorithm 1. The main idea is as follows. The secondary

sender and receiver first independently monitor the spectrum for a certain period. Based on the sensing
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Algorithm 1 A Dynamic Multi-channel Access Protocol with Unknown Traffic Statistics
Input: n, kr, ks, L, T .

Initialization: The secondary sender (receiver) divides the n available channels into d n
ks
e (d n

kr
e)

groups.

1: The secondary sender and receiver sense each group of the channels for L timeslots and jointly

compute the maximum likelihood estimators for p01 and p11. p̂01
i = A01

i

A01
i +A00

i
and p̂11

i = A11
i

A11
i +A10

i
,

where Akl
i (k, l ∈ {0, 1}) is the number of transitions k to l in the training data at channel i. The

sender and receiver share their transition count information Akl with each other.

2: After max{d n
ks
e, d n

kr
e}L timeslots, the secondary sender and receiver implement the same spectrum

sensing and access strategy, i.e., myopic policy or Whittle’s index policy. In particular, the sender

(receiver) senses those ks (kr) channels with the highest indices in the sensing interval of each

timeslot. If a channel is sensed to be idle, it is accessed.

3: The receiver transmits an ACK to the sender on channel i at the end of each timeslot if it successfully

receives a packet on channel i.

4: Both the sender and the receiver update their belief vector Ω according to (1). They also update Akl,

p̂01
i and p̂11

i if a channel i is selected to access for consecutive two timeslots.

results, they obtain a rough estimation of the {pi
01, p

i
11} using maximum likelihood estimators and share

with each other the count information, i.e., the number of times each particular transmission happens.

Then the sender and receiver will implement the same spectrum sensing and access policy for channel

selection. During the communication process, i) the sender and receiver update Ω based on the common

ACK information such that transceiver synchronization is maintained, and ii) they continuously refine

{pi
01, p

i
11} based on the sensing results. Actually, we can let only the sender sense the channel, and

include the estimated transition probabilities in the packets transmitted to the receiver. In this case,

transceiver synchronization is also maintained. Fig. 3 compares the throughput of the proposed learning

based spectrum access protocol and that of the one with full knowledge of traffic statistics. It is shown

that the proposed dynamic spectrum access protocol with unknown traffic statistics can quickly converges

to the greedy approach (i.e., myopic policy) with full prior knowledge.

Discussion. It is worth noting that all the above policies or protocols only work well in non-malicious

environments. An essential problem with these protocols is that the channel selection approach is de-

terministic, i.e., the channel hopping is predictable. An intelligent jammer, which knows the traffic
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Fig. 3: Performance comparison between the myopic approach and the proposed learning

strategy. (a) n=8, L = 50, Bi = 1, {pi
01}8

i=1 = {0.1, 0.2, 0.2, 0.4, 0.3, 0.1, 0.1, 0.2},

{pi
11}8

i=1 = {0.7, 0.8, 0.6, 0.8, 0.7, 0.7, 0.6, 0.9}. (b)n=8, L = 50, Bi = 1, {pi
01}8

i=1 =

{0.7, 0.8, 0.6, 0.8, 0.7, 0.7, 0.6, 0.9}, {pi
11}8

i=1 = {0.1, 0.2, 0.2, 0.4, 0.3, 0.1, 0.1, 0.2}.

statistics or learn them through sensing and estimation, can leverage these information to obtain the

same myopic/Whittle’s index of all channels. Since the index policies always choose the first ks channels

with largest indices for sensing and accessing, the jammer can use the same dynamic decision process

to perform effective jamming attacks. In the worst case, the communication can be completely jammed

as the jammer maintains the same updates for channel ”index” as SUs in each timeslot.

From a theoretical perspective, the above index policies are established based on the stochastic model

of the channel statistics. For example, the Whittle’s index policy is developed for the restless multi-armed

bandit problems (RMBP) [21]. Since the evolvement of information state (belief vector) is known, the

players (sender and receiver) can compute ahead of time exactly what payoffs (rewards) will be received

from each arm (channel). However, when jamming occurs, the channel statistics caused by the primary

user cannot reflect the true state (idle or busy) of the channel, and the rewards associated with each arm

may not be modeled by a stationary distribution. Hence, the existing deterministic dynamic spectrum

access protocols are vulnerable to jamming attacks. As will be shown in the next section, we propose a

probabilistic spectrum access protocol that is resistant to various jamming attacks and can accommodate
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the special characteristics of cognitive radio networks.

V. ANTI-JAMMING OPPORTUNISTIC SPECTRUM ACCESS

In this section, we show that the anti-jamming spectrum access problem can be formulated as a non-

stochastic multi-armed bandit problem. We then propose an efficient and jamming-resistant multi-channel

access protocol for ad hoc cognitive radio networks.

A. Non-stochastic Multi-armed Bandit Problem Formulation

As discussed above, the Whittle’s index policy is established under the assumption that the sender can

compute ahead of time exactly what rewards will be obtained from each channel. Hence, this class of

stochastic MAB problems are optimization problems. Our proposed spectrum protocol is motivated by

the fact that, under jamming, no statistical assumptions can be made about the transition of information

state and generation of rewards. Thus, the transceivers need to keep exploring the best set of channels

for transmission as i) jammer may dynamically adjust his strategy and ii) the primary users occasionally

occupy and free the channels. At the same time, the transceivers also need to exploit the previously

chosen best channels as too much exploration will potentially underutilize them. The problem is thus the

one balancing between exploitation and exploration, rather than optimization.

We consider an anti-jamming game among a secondary sender, a secondary receiver and a jammer. The

channel states (idle or busy) are not directly observable before the sensing action is made [22]. During

the sensing interval of each timeslot, the sender chooses ks to sense, where the sensing action is made

based on all the past decisions and observations. As the sensing outcome could be busy or idle due to the

primary users’ action on a channel, the sender chooses ka (ka ≤ ks) idle channels to access. The access

action results in a reward at the end of this timeslot; At the receiver side, the receiver independently

chooses kr channels to receive, where action is also made based on all the past decisions and observations.

The receiver also receives a reward at the end of this timeslot; During the same timeslot, the jammer

chooses kj to sense and jam based on the jamming strategy he is inclined to use.

The objective is to choose the sensing, access and receiving actions in each timeslot to maximize the

total expected rewards over T timeslots. To further formalize the problem, we consider a vector space

{0, 1}n and number the available transmitting channels from 1 to n. The sensing strategy space for the

sender is set as Ss ⊆ {0, 1}n of size
( n
ks

)
, and the receiver’s receiving strategy is set as Sr ⊆ {0, 1}n of

size
( n
kr

)
. If the f -th channel is chosen for sending or receiving, the value of the f -th (f ∈ {1, . . . , n})

entry of a vector (or strategy) is 1; 0 otherwise. The jamming strategy space for the jammer is set as
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Sj ⊆ {0, 1}n of size
( n
kj

)
. For technical convenience, in this case, the value 0 in the f -th entry denotes

that the f -th channel is jammed; the value 1 in the f -th entry denotes that the f -th channel is unjammed.

The primary user’s activity on the channels can be denoted as a vector sp ∈ {0, 1}n, where the value 1

denotes the channel is idle and the value 0 denotes the channel is busy.

During each timeslot, the three parties choose their own respective strategies ss, sr, and sj , where

ss ∈ Ss, sr ∈ Sr and sj ∈ Sj . On the sender side, he receives a reward on channel f if an ACK

is successfully received on f . From the perspective of the receiver, rewards (successful receptions) are

determined by i) its choice of strategies, ii) the sender’s accessing strategies, iii) the dynamics of primary

user’s occupying/vacating the channels and iv) the jammer’s choices of jamming strategies. It is easy to

see that the sender and receiver’s accumulated rewards over T timeslots are the same.

During a certain timeslot t, assume the primary users’ strategy or activity is sp. From the receiver’s

perspective, ss • sp • sj can be looked as as a joint decision made by the sender, the primary user and

the jammer, where • denotes the multiplication of corresponding entries in ss, sp and sj . (Note it is not

a dot product.) We say that at timeslot t the sender, primary user and jammer jointly introduce a reward

“gf,t = 1” for channel f if the value of the f -th entry of ss • sp • sj is 1; a reward “gf,t = 0” otherwise.

Whether the receiver can obtain the reward depends on the state of the channel f it has chosen for packet

reception:

Case 1: No packet is received on f , no reward is obtained.

Case 2: A packet is received on f . If the packet fails to pass the verification (i.e., jamming based DoS

attack), no reward is obtained. We use efficient message verification schemes in [17] (e.g., erasure coding

combined with short signatures) for packet verification and message reassembly purpose.

Case 3: A packet is received on f . If jamming/collision is detected on the received packet, no reward

is obtained. Real experiments have shown in [16] that accurate differentiation of packet errors due to

jamming from errors due to weak links can be realized by looking at the received signal strength during

bit reception. Here, we do not differentiate packet jamming and collision as they both cause interference

to the legitimate packets. For simplicity, we do not consider packet coding, so the jammed or collided

packets are discarded, resulting in no reward.

Case 4: A packet is received on f . If no jamming is detected, a reward 1 is obtained.

Therefore, after choosing a strategy sr, the reward is revealed to the receiver if and only if f is chosen

as a receiving channel. It is obvious that this problem is a non-stochastic MAB problem (NS-MAB) [4],

where each channel is considered as an arm. Each channel is associated with an arbitrary and unknown

sequence of rewards. The sender and the receiver can obtain the corresponding rewards on a channel if
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they choose that channel for sending or receiving. In this paper, we will use online learning algorithms

developed under NS-MAB problems [4], [5], [7] to design the opportunistic spectrum access protocol

against various jamming scenarios.

We next define some notations used in the following discussion. In each timeslot t ∈ {1, . . . , T}, the

sender and receiver independently selects a strategy It from the strategy sets. We write f ∈ i if channel

f is chosen in strategy i, i.e., the value of the f th entry of i is 1. Note It denotes a particular strategy

chosen at timeslot t, and i denotes a general strategy in the strategy set. The total rewards of a strategy

i during timeslot t is gi,t =
∑

f∈i gf,t, and the cumulative rewards up to timeslot t of each strategy

i is Gi,t =
∑t

s=1 gi,s =
∑

f∈i

∑t
s=1 gf,s. The total rewards over all chosen strategies up to timeslot t

is Ĝt =
∑t

s=1 gIs,s =
∑t

s=1

∑
f∈Is

gf,s, where the strategy It is chosen randomly according to some

distribution over the strategy set. The important notation used in this paper is summarized in Table I.

Note that in the following discussions, we use a superscript to differentiate sender from receiver.

To quantify the performance, we study the regret over T timeslots of the game




On the sender side: maxi∈Ss
Gi,T − Ĝs

T ;

On the receiver side: maxi∈Sr
Gi,T − Ĝr

T ,

where the maximum is taken over all strategies available to the sender or receiver. The regret is defined

as the accumulated rewards difference over T timeslots between the proposed strategy and the optimal

static one in which the sender or receiver chooses the best fixed set of channels for message reception.

In other words, the regret is the difference between the number of successfully received packets using

the proposed algorithm and that using the best fixed solution.

B. The Proposed Anti-jamming Spectrum Access Protocol

Now we describe our proposed anti-jamming spectrum access protocol as shown in Algorithm 2. The

algorithm computes two values: As on the sender side and Ar on the receiver side. The basic idea is

as follows: In each timeslot, the sender chooses the “best” channels to sense, obtaining sensing results:

busy or idle. It transmits on the sensed idle channels, obtaining ACK from the receiver. Receiving no

ACK means a channel is jammed or the receiver is not receiving on the same channel. The sender then

adjusts its sensing channels in the next timeslot based on the above information. On the receiver side, it

adjusts its receiving channels based on the results of packet verification and jamming detection.

Let N s and N r denote the total number of strategies at the sender side and receiver side, respectively.

As shown in the algorithm, each strategy is assigned a strategy weight, and each channel is assigned a
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channel weight. During each timeslot, the channel weight is dynamically adjusted based on the channel

rewards revealed to the sender and receiver:

Sender: ws
f,t = ws

f,t−1e
ηsgs′

f,t , (3)

Receiver: wr
f,t = wr

f,t−1e
ηrgr′

f,t . (4)

The weight of a strategy is determined by the product of weights of all channels of the strategy and some

random factors used for exploration:

Sender: ws
i,t = Πf∈iw

s
f,t = ws

i,t−1e
ηsgs′

i,t , (5)

Receiver: wr
i,t = Πf∈iw

r
f,t = wr

i,t−1e
ηrgr′

i,t , (6)

where gs′
i,t =

∑
f∈i g

s′
f,t and gr′

i,t =
∑

f∈i g
r′
f,t. The reason to estimate reward for each channel first instead

of estimating rewards for each strategy directly is that the reward of each channel can provide useful

information about the other unchosen strategies containing the same channels. The parameter β is to

control the bias in estimating the channel reward gs′
f,t and gr′

f,t, which are computed as:

Sender: gs′
f,t =





gs
f,t+βs

εqs
f,t

Rt if f ∈ Is
t ,

βs

εqs
f,t

Rt oththerwise,
(7)

Receiver: gr′
f,t =





gr
f,t+βr

qr
f,t

if f ∈ Ir
t ,

βr

qr
f,t

oththerwise,
(8)

where qs
f,t and qr

f,t are channel f ’s probability distributions computed by the sender and receiver,

respectively. Rt is a Bernoulli random variable with P{Rt = 1} = ε.

At the beginning of each timeslot, the sender and receiver choose their own strategies based on certain

probability distributions ps
i,t and pr

i,t , which are computed as:

ps
i,t =





(1− γs)ws
i,t−1

W s
t−1

+ γs

|Cs| i ∈ Cs

(1− γs)ws
i,t−1

W s
t−1

otherwise
(9)

pr
i,t =





(1− γr)wr
i,t−1

W r
t−1

+ γr

|Cr| i ∈ Cr

(1− γr)wr
i,t−1

W r
t−1

otherwise
(10)

The introduction of γs and γr is to ensure that ps
i,t ≥ γs

|Cs| and pr
i,t ≥ γr

|Cr| so that a mixture of exponentially

weighted average distribution and uniform distribution can be used [3]. The covering strategy Cs and Cr

are defined to ensure that each channel/frequency is sampled sufficiently often. The covering set has the
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property that for each channel f , there is a strategy i in the covering set such that f ∈ i. Since there are

totally n channels and each strategy includes ks or kr channels, we have |Cs| = d n
ks
e and |Cr| = d n

kr
e.

Note that we use rewards instead of losses in both our notations and analysis, as we are interested in the

number of successful packet reception attempts instead of delay loss in the shortest path problem [7].

Discussion. In the above protocol, the receiver does not sense in each timeslot since the sender and the

receiver do not have the same sensing results due to the potential sensing errors. In practice, the spectrum

sensor point is usually chosen by letting the operating point be the constraint on the probability of the

collision with primary users [22]. (Here for simplicity, we assume the two types of sensing errors false

alarm probability and miss detection probability are the same and denote it as sensing error probability τ

in the following discussion and analysis.) To eliminate the information asymmetry, the sender and receiver

thus rely on the common ACK information to compute rewards and update the strategy’s probability

distribution. This design leads to two observations: i) the accumulated rewards Ĝs
t and Ĝr

t are equal; ii)

the sender and receiver are not perfectly synchronized. To measure the performance of the system, we

should evaluate how close the sender and receiver’s strategies are as T increases. This is equivalent to

saying that how well the learning based algorithm proceeds to maximize the throughput.

As a final point on the proposed anti-jamming spectrum access protocol, we note that the sensing

process consumes more energy compared to reception, i.e., it is costly to obtain the sensing results.

Thus, we introduce a Bernoulli random variable with P{Rt = 1} = ε on the sender side. That means

the sender will sense the channel with probability ε and it may remain silent in some timeslots without

transmitting any packets. Another benefit of this is to make the sender’s strategy more unpredictable to

the adversary.

VI. PERFORMANCE ANALYSIS

Definition 1: An algorithm A is α-static (adaptive, respectively) approximation if and only if (1)

Static (adaptive, respectively) optimal solution can transmit a message successfully with high probability

(w.h.p) 1− 1
lε in time T , where constant ε > 0. (2) Algorithm A can transmit the message successfully

in time αT with the same probability 1− 1
lε .

Definition 2: The regret of an algorithm A is the reward difference over T timeslots, i.e., Gmax
T −GA

T ,

where Gmax
T = maxi∈S Gi,T = maxi∈S

∑
f∈i

∑T
s=1 gf,s and GA

T =
∑T

s=1 gIs,s =
∑T

s=1

∑
f∈Is

gf,s. The

strategy Is is chosen randomly according to some distribution over strategy set S.

We will write Gmax instead of Gmax
T whenever the value of T is clear from the context. Note that

for two algorithms A1 and A2 running along the same time line, their Gmaxs are usually different. As

November 23, 2010 DRAFT



17

TABLE I: A summary of important notation.

Symbol Definition

n # of orthogonal channels

ks # of channels for sending at each timeslot

kr # of channels for receiving at each timeslot

kj # of jamming channels at each timeslot

l # of packets for transmission

Ns # of strategies at the sender side

Nr # of strategies at the receiver side

Is
t sender’s chosen strategy at timeslot t

Ir
t receiver’s chosen strategy at timeslot t

i a strategy in the strategy set

f channel entry (index) in a strategy vector

gs
f,t sender’s reward for channel f at timeslot t

gr
f,t receiver’s reward for channel f at timeslot t

gs
i,t sender’s reward for strategy i at timeslot t

gr
i,t receiver’s reward for strategy i at timeslot t

Gi,t reward for strategy i up to timeslot t

Ĝs
t total rewards over sender’s chosen strategies up to timeslot t

Ĝr
t total rewards over receiver’s chosen strategies up to timeslot t

T # of timeslots (rounds)

Cs sender’s covering set

Cr receiver’s covering set

we discussed above, the secondary sender changes its strategy based on the joint decision made by the

primary user, the jammer and the receiver while the secondary receiver changes its strategy based on the

joint decision made by the primary user, the jammer and the sender. Due to the probabilistic strategy

selection at the sender and the receiver, the jointly decisions for them are different, which results in the

different static optimal strategies at two sides. In the following discussion, we will write Gmax
T (s) and

Gmax
T (r) to denote the reward of the static optimal strategy for the sender and receiver, respectively.

Due to the probabilistic strategy selections, the secondary sender and receiver are not synchronized

at each timeslot. We next show the sender’s sensing strategy and the receiver’s receiving strategy will

both converge to their own optimal strategies. The following theorem measures how close their optimal

strategies are as T →∞.

Theorem 1: The normalized reward distance 1
T (Gmax

T (s)−Gmax
T (r)) converges to 0 at rate O(1/

√
T )
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Algorithm 2 An Anti-jamming Multi-channel Access Protocol with Unknown Traffic Statistics
Input: n, kr, ks, T , ε ∈ (0, 1], δ ∈ (0, 1), βs, βr ∈ (0, 1], γs, γr ∈ (0, 1/2], ηs, ηr > 0.

Initialization: The secondary sender (receiver) sets initial channel weight ws
f,0 = 1 (wr

f,0 = 1) ∀f ∈
[1, n], initial hopping strategy weight ws

i,0 = 1 (wr
i,0 = 1) ∀i ∈ [1, N ], and initial total strategy weight

W s
0 = N s =

( n
ks

)
(W r

0 = N r =
( n
kr

)
).

For timeslot t = 1, 2, . . . , T

1: The sender selects a sensing strategy Is
t at random according to its strategy’s probability distribution

ps
i,t ∀i ∈ [1, N s] and the receiver selects a receiving strategy Ir

t at random according to its strategy’s

probability distribution (pr
i,t) ∀i ∈ [1, N r], with ps

i,t and pr
i,t computed following Eqs. (9) and (10).

2: The sender and receiver compute the probability qs
f,t and qr

f,t ∀f ∈ [1, n], as qs
f,t =

∑
i:f∈i p

s
i,t and

qr
f,t =

∑
i:f∈i p

r
i,t, respectively.

3: The sender transmits a packet if and only if the channel is sensed to be idle. At the receiver side,

once a packet is received on channel f , the receiver performs verification and jamming detection.

If the packet passes the check, an ACK is transmitted back to the sender on f at the end of the

timeslot.

4: The sender calculates the channel reward gs
f,t ∀f ∈ Is

t based on the sensing results and ACK

information. The receiver calculates the channel reward gr
f,t ∀f ∈ Ir

t based on the outcomes of

signature verification and jamming detection. With the revealed rewards gf,t, the sender and receiver

further compute the virtual channel rewards gs′
f,t (gr′

f,t) ∀f ∈ [1, n] following Eqs. (7) and (8).

5: The sender updates the channel weight ws
f,t and strategy weight ws

i,t following Eqs. (3) and (5),

respectively. The receiver updates all the channel weight wr
f,t and strategy weight wr

i,t following

Eqs. (4) and (6), respectively. They also update the total strategy weight as W s
t =

∑Ns

i=1 ws
i,t and

W r
t =

∑Nr

i=1 wr
i,t.

End

as T → ∞, with probability at least 1 − δ. By using dynamic programming, the sensing and access

algorithm has time complexity O(ksnT ) and space complexity O(ksn). The receiving algorithm has

time complexity O(krnT ) and space complexity O(krn).

Proof:

We first prove that at the receiver side, with probability at least 1− δ, the regret Gmax
T (r)−GAr

T is at

most 6kr

√
Tn lnn, while βr =

√
kr

nT ln n
δ , γr = 2ηrn and ηr =

√
ln n
4Tn and T ≥ max{kr

n ln n
δ , 4n lnn}.
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Now We introduce some notations for performance analysis: Gi,T =
∑T

t=1 gi,t and G′
i,T =

∑T
t=1 g′i,t

for all 1 ≤ i ≤ N , where Gi,T (G′
i,T ) denotes the total gain (virtual gain, respectively) of strategy i in

T timeslots, and Gf,T =
∑T

t=1 gf,t and G′
f,T =

∑T
t=1 g′f,t for all 1 ≤ f ≤ n, where Gf,T (G′

f,T ) denotes

the total gain (virtual gain, respectively) on channel f in T timeslots. The relation between gain and

virtual gain is derived as follows.

The proof is applicable for any fixed f . For any u > 0 and c > 0, by the Chernoff bound, we have

P[Gf,T > G′
f,T + u] ≤ e−cuE[ec(Gf,T−G′f,T )]. Let u = ln n

δ /β and c = β, we get e−cuE[ec(Gf,T−G′f,T )] =
δ
nE[eβ(Gf,T−G′f,T )]. So it suffices to prove that eβ(Gf,T−G′f,T ) ≤ 1 for all T . Let Zt = eβ(Gf,t−G′f,t). By

showing that E[Zt] ≤ Zt−1 for all t ≥ 2 and E[Z1] ≤ 1, It suffices to prove that for any δ ∈ (0, 1),

0 ≤ β < 1 and 1 ≤ f ≤ n,

P[Gf,T > G′
f,T +

1
β

ln
n

δ
] ≤ δ

n
(11)

Note that, in the following proofs, we use a superscript in η, γ, β to differentiate the sender and receiver.

However, for ease of exposition, we do not differentiate the other notations since they are independent

in the proofs for the sender and the receiver.

Now We prove the bound of regret by using the quantity ln WT

W0
as following. First of all, we have

the lower bound by definitions ln WT

W0
= ln

∑N
i=1 eηrG′i,T − ln N ≥ ηr max1≤i≤N G′

i,T − lnN . Then we

derive the upper bound as follows: ηrg′i,t = ηr ∑
f∈i g

′
f,t ≤ ηr ∑

f∈i
1+βr

qf,t
≤ ηrkr(1+βr)|C|

γr ≤ 1, where the

second inequality follows because qf,t ≥ γr

|C| for all f by definition.

Using the fact that ex ≤ 1 + x + x2 for all x ≤ 1, for all t = 1, 2, · · · , T we have ln Wt

Wt−1
=

ln
∑N

i=1
wi,t−1

Wt−1
eηrg′i,t ≤ ln(

∑N
i=1

wi,t−1

Wt−1
(1+ηrg′i,t +(ηr)2g′2i,t)) ≤ ln(1+

∑N
i=1

pi,t

1−γr (ηrg′i,t +(ηr)2g′2i,t)) ≤
ηr

1−γr

∑N
i=1 pi,tg

′
i,t +

(ηr)2

1−γr

∑N
i=1 pi,tg

′2
i,t. The above inequalities hold using the fact that

∑N
i=1 pi,t ≤ 1−γr

and inequality ln(1 + x) ≤ x for all x > −1.

LetN denote the strategy set {1, . . . , N}. On the one hand, we have
∑N

i=1 pi,tg
′
i,t =

∑N
i=1 pi,t

∑
f∈i g

′
f,t =

∑n
f=1 g′f,t

∑
i∈N :f∈i pi,t =

∑n
f=1 g′f,tqf,t = gIt,t+nβr. On the other hand,

∑N
i=1 pi,tg

′2
i,t =

∑N
i=1 pi,t(

∑
f∈i g

′
f,t)

2 ≤
∑N

i=1 pi,tkr
∑

f∈i g
′2
f,t = kr

∑n
f=1 g′2f,t

∑
i∈N :f∈i pi,t = kr

∑n
f=1 g′2f,tqf,t ≤ kr(1 + βr)

∑n
f=1 g′f,t, which

holds the fact that g′f,t ≤ 1+βr

qf,t
(Note that for clearly differentiating the regret bounds for the sender and

the receiver, in the derivation we loose the bounds a little bit by choosing kr instead of min{kr, ksε(1−
τ), n− kj}.). Therefore, ln Wt

Wt−1
≤ ηr

1−γr (gIt,t + nβr) + (ηr)2kr(1+βr)
1−γr

∑n
f=1 g′f,t.

Summing for t = 1, · · · , T , we have the following inequality ln WT

W0
≤ ηr

1−γr (ĜT +nβrT )+ (ηr)2kr(1+βr)
1−γr

∑n
f=1 G′

f,T ≤
ηr

1−γr (ĜT + nβrT ) + (ηr)2kr(1+βr)
1−γr |C|max1≤i≤N G′

i,T Note that ĜT is the expected total gain of our

algorithm in T time slots. Combining the upper bound with the lower bound, we have ĜT ≥ (1− γr −

November 23, 2010 DRAFT



20

ηrkr(1 + βr)|C|)max1≤i≤N G′
i,T − 1−γr

ηr lnN − nβrT .

Applying (11), we can have that, with probability at least 1−δ, ĜT ≥ (1−γr−ηrkr(1+βr)|C|)(max1≤i≤N Gi,T−
kr

βr ln n
δ ) − 1−γr

ηr ln N − nβrT . Here, we used the fact 1 − γr − ηrkr(1 + βr)|C| > 0 which follows the

assumptions of the theorem.

By doing some transpositions and using the following fact max1≤i≤N Gi,T ≤ Tkr, we have max1≤i≤N Gi,T−
ĜT ≤ (γr + ηr(1 + βr)kr|C|)Tkr + (1 − γr − ηr(1 + βr)kr|C|) kr

βr ln n
δ + +1−γr

ηr ln N + nβrT with

probability at least 1− δ. Let K = min{ks, n− kj , kr}. Since ĜT = KT − L̂T and max1≤i≤N Gi,T =

KT −min1≤i≤N Li,T , we have

L̂T ≤ KT (γr + ηr(1 + βr)kr|C|) + (1− γr − ηr(1 + βr)kr|C|) min
1≤i≤N

Li,T

+(1− γr − ηr(1 + βr)kr|C|) kr

βr
ln

n

δ
+

1− γr

ηr
ln N + nβrT

with probability 1− δ. Simplify above inequality, we can get

L̂T − min
1≤i≤N

Li,T ≤ krTγr + 2ηrTkrn +
kr

βr
ln

n

δ
+

1− γr

ηr
kr lnn + nβrT

with probability 1− δ

Setting βr =
√

kr

nT ln n
δ and γr = 2ηrkr|C|, we can get max1≤i≤N Gi,T−ĜT ≤ 4ηrTkr

2|C|+ ln N
ηr +

2
√

krnT ln n
δ which holds with probability 1 − δ if T ≥ kr

n ln(n
δ ). Finally, using the facts |C| = d n

kr
e

and N ≤ nkr . and setting ηr =
√

ln N
4k2

rT |C| , we prove that max1≤i≤N Gi,T − ĜT ≤ 6kr

√
Tn lnn with

probability 1− δ.

Similarly, at the sender side we first show the connection between the true and the estimated cumulative

rewards. The only difference is that the computation of estimated channel rewards is involved with a

random variable ε. We prove that with probability at least 1 − δ, the regret Gmax
T (s) − GAs

T is at most

14ks

√
Tn ln n

ε , while βs =
√

ks

nTε ln 2n
δ , γs = 2ηsn

ε and ηs =
√

ε ln n
4Tn and T ≥ max{ks ln2 2n

δ

εn ln n ,
n ln 2n

δ

ks
, 4n ln n}.

Finally, as GAs

T = GAr

T , |Gmax
T (s) − Gmax

T (r)| ≤ 6kr

√
Tn ln n + 14ks

√
Tn ln n

ε ≤ 20k√
ε

√
Tn lnn, where

k = max{ks, kr}. Thus, 1
T (Gmax

T (s)−Gmax
T (r)) → 0 at rate O(1/

√
T ) as T →∞. Note that for clearly

differentiating the regret bounds for the sender and the receiver, during derivation we loose the bounds a

little bit by choosing kr and ks instead of min{kr, ksε(1− τ), n− kj}. Hence, sensing error probability

τ does not appear in the final results.

We next show that by using dynamic programming both the sender’s sensing and access algorithm and

the receiver’s receiving algorithm can be efficiently implemented with time complexity which is linear

to n and ks (kr). We prove it for the receiver side, and the proofs for the sender side is similar.
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In the proposed algorithm, step 1 and 2 are time consuming since the total number of possible

strategies is N = O(nkr). In this proof, we show that the time complexity can be reduced by using

dynamic programming. Let S(f̄ , k̄) denote the strategy set in which each strategy chooses k̄ chan-

nels from channel f̄ , f̄ + 1, · · · , n. We also use S̄(f̄ , k̄) to denote the strategy set in which each

strategy chooses k̄ channels from channel 1, 2, · · · , f̄ . We define Wt(f̄ , k̄) =
∑

i∈S(f̄ ,k̄)

∏
f∈i wf,t and

W̄t(f̄ , k̄) =
∑

i∈S̄(f̄ ,k̄)

∏
f∈i wf,t. Note Wt(f̄ , k̄) = Wt(f̄ + 1, k̄) + wf̄ ,tWt(f̄ + 1, k̄− 1) and W̄t(f̄ , k̄) =

W̄t(f̄−1, k̄)+wf̄ ,tWt(f̄−1, k̄−1), which implies both Wt(f̄ , k̄) and W̄t(f̄ , k̄) can be computed in time

O(krn) (letting Wt(f̄ , 0) = 1, W (n+1, k̄) = W̄ (0, k̄) = 0) by dynamic programming for all 1 ≤ f̄ ≤ n

and 1 ≤ k̄ ≤ kr.

In step 1, a strategy should be drawn from N strategies. Instead of drawing a strategy, we choose

channel for the strategy one by one. Assume we make decision on each channel one by one in increasing

order of their indices, i.e., we first decide whether channel 1 should be chosen or not, and channel 2,

and so on. For any channel f , if k ≤ kr channels has been chosen in channel 1, · · · , f − 1, we choose

channel f with probability wf,t−1Wt−1(f+1,kr−k−1)
Wt−1(f,kr−k) and we do not choose channel f with probability

Wt−1(f+1,kr−k)
Wt−1(f,kr−k) . Let w(f) = wf,t−1 if channel f is chosen in the strategy i; 0 otherwise. w(f) is the

weight of f in the total weight of the strategy. In our algorithm, wi,t−1 =
∏n

f=1 w(f). Let c(f) = 1 if

channel f is chosen in the strategy i; 0 otherwise.
∑f̄

f=1 c(f) denotes the number of channels chosen

among channels 1, 2, · · · , f̄ in strategy i. In this implementation, the probability that a strategy i is

chosen is
∏n

f̄=1

w(f̄)Wt−1(f̄+1,kr−
∑f̄

f=1
c(f))

Wt−1(f̄ ,kr−
∑f̄−1

f=1
c(f))

=
∏n

f̄=1
w(f̄)

Wt−1(1,kr) = wi,t−1

Wt−1
. The probability is exactly same as that

in Algorithm ??, which implies the correctness of this implementation.

Note in this implementation, we do not maintain the total weight of each strategy wi,t. So we cannot

compute qf,t as we described in step 2 of our algorithm. The probability qf,t can be computed within

O(n) as follows qf,t = (1− γ)
∑kr−1

k=0
W̄t−1(f−1,k)wf,t−1Wt−1(f+1,kr−k−1)

Wt−1(1,kr)

+ γ |{i∈C:f∈i}|
|C| for each round.

Due to the large message size, the message for transmission should be divided into small fragments or

packets to fit the length of the timeslots. Since the transmission process is not reliable (e.g., data packets

may be jammed), and the sender and receiver are not perfectly synchronized, the proposed algorithms can

guarantee the message can be delivered in certain time with probability 100%. So we next consider the

expected time usage such that a message could be delivered with high probability. Here high probability

means the probability tends to 1 when total number of packets tends to infinite. Since the sender can

get ACKs from the receiver, he knows what kinds of packets have been received successfully. Therefore,
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in our protocol, every time the sender want to send a packet, he will pick up a ”new” that has not

been received. Assume a message M is divided into l packets M1,M2, · · · ,Ml with the same size, i.e.,

|Mi| = |M |/l for all 1 ≤ i ≤ l. All l packets of message M must be received before the message M

can be reassembled.

Theorem 2: When l ≥ 36(1 + cε)krn ln n/(c− 1)2ε2, our algorithm is (1 + cε)-static approximation

for any constant c > 1.

Proof: When receiving (c+ε)l packets, the probability p that at least (c−1)l+1 kinds of packets are

not received is around p ≤ ( cl
l−1

)
( l−1

cl )(c+ε)l. According to Stirling’s approximation we have e(n
e )n ≤ n! ≤

e(n+1
e )n+1, we get p ≤ cl+1

e2 ( c
c−1)(c−1)l+1cl−1 1

c(c+ε)l ≤ lε when εl ≥ ln(cl+1)
ln c . Therefore, the probability

that at least l different kinds of packets have been received is at least 1− 1
lε .

To reconstruct the message with high probability, it is necessary to collect at least l packets in time

T . In time (1 + cε)T , our algorithm will collect at least (1 + δ + cε)l− 6kr

√
(1 + δ + ε)Tn ln n. When

l ≥ 36(1+cε)krn lnn/(c−1)2ε2, the number of packets is no less than (1+ε)l. Therefore, the probability

that the message can be reconstructed successfully is at least 1− 1
lε which finishes the proof.

Theorem 3: When l ≥ 36 n3 ln nK(1+cε)
ks(n−kj)(c−1)2ε2 , our algorithm is n2 min{ks,kr,n−kj}

kskr(n−kj)
(1+cε)-adaptive approx-

imation for any constant c > 1, where K = min{kr, ksε(1− τ), n− kj}, ε is the probability of sensing

a channel and τ is the sensing error probability.

Proof: In each timeslot, the sender chooses ks channel and sense each channel with probability ε.

Thus, the total number of channels to be sensed X is binomial distributed with parameters ks and ε.

The expected value of X is ksε. Assume τ is the sensing error probability, the adaptive optimal solution

get KT packets in T time in expectation where K = min{kr, ksε(1 − τ), n − kj}. We know that it is

necessary to collects at least l packets to reconstruct the message with high probability, which implies

KT ≥ l. On the other hand, since the static optimal solution collect kr
ksε(1−τ)

n
n−kj

n in expectation each

round. Therefore, in time n2

krksε(1−τ)(n−kj)
K(1 + cε)T , our algorithm collects at least K(1 + cε)T −

6kr

√
n2

krksε(1−τ)(n−kj)
K(1 + cε)Tn ln n packets. When l ≥ 36n3 ln n min{ksε(1−τ),kr,n−kj}(1+cε)

ksε(1−τ)(n−kj)(c−1)2ε2 , the above

formula is no less than (1 + ε)l. So the probability to reconstruct the message is at least 1− 1
lε .

Discussion. Notice that the parameters β, η and γ is determined by the transmission time T . Here

we discuss how to choose a feasible T for our algorithm. In our protocol, the sender will determine

T and encode it in each packet. After receiving the first packet, the receiver knows the parameters T

and runs our algorithm. Given quality requirement P , which denotes the probability that the receiver

can receive the message, the sender can decide a feasible T as follows. The sender first estimates a

lower bound kr for kr and a upper bound kj for kj . Compute ε such that 1 − 1
lε = P . Find a feasible
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constant c > 1 such that l = 36(1 + δ + cε)krn ln n/(c − 1)2ε2. The total time of transmission will be

T = (1 + δ + cε)l/(kr
ksε(1−τ)

n
n−kj

n ). Theorem 2 can guarantee that the receiver will obtain the message

with probability at least P .

VII. SIMULATION STUDIES

In this section, we conduct extensive simulations to demonstrate the performance of our proposed anti-

jamming multi-channel access protocol under various jamming attacks. We also compare the performance

of our proposed approach with that of the receiver’s static optimal strategy and adaptive optimal strategy.

The static opt is the best fixed strategy chosen to maximize the number of received packets/total rewards

over T timeslots. The adaptive opt, which constantly chooses the best strategy in each timeslot and

obtains maximized number of received packets, is actually infeasible in reality, and hence served as the

theoretical efficiency upper bound in our simulation.

In our simulation, the sender uses MAB-based channel sensing and access strategy and the receiver uses

MAB-based channel receiving strategy; the primary user dynamically occupies and vacates the spectrum

obeying certain traffic statistics (we assume pi
11 > pi

01); the jammer chooses from four strategies (as

defined in section II-B): static, random, myopic and adaptive/mab-based jamming. We use a four-element

tuple to denote the four parties’ respective strategies in a particular simulation scenario, e.g., “mab sta

dyn mab” denotes that the sender chooses MAB-based strategy, the jammer chooses static jamming

strategy, the primary user dynamically uses the spectrum and the receiver chooses MAB-based strategy.

Without loss of generality, we assume the sender and receiver have the same number of antennas with

ks = kr = 3. We vary the strategies of the jammer to study the average number of received packets when

T increases and the cumulative distribution function (CDF) of the expected time to reach message delivery

T ∗. We also vary the jammer’s jamming capability (kj) and the total number of orthogonal frequencies

n, sensing probability ε and sensing error probability τ to study the impact of parameter selections

on the performance of the proposed scheme. We show that, the proposed protocol is asymptotically

optimal regardless of the jamming strategies. Finally, we measure the statistical distance of the sender

and receiver’s strategy probability distributions to show their convergence as T increases.

A. Message Delivery with High Probability and Average Cumulative Received Packets

Fig. 4 shows (i) the average number of received packets versus T and (ii) the CDF of the expected

time to achieve message delivery under different strategy settings given l = 10, kj = 3, n = 8 and

p11
i > p01

i . Fig. 4 (a), (c), (e), (g) under different jamming strategies, static opt and adaptive opt always
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remain close to each other, especially when static jamming is adopted. That implies that the primary

user’s dynamics lead to a seemly “static ” channel availabilities from the secondary user’s perspective,

so the adaptive opt cannot gain much more than the static opt. The comparisons of different jamming

strategies on the system performance are shown in Fig. 5. In Fig. 5 (a), it shows that when the jammer

chooses static, random or MAB-based jamming strategies and the number of packets is relatively small

(e.g., l = 10), the message can be successfully received with high probability before T = 150. In the case

of myopic jamming, it is required at least T = 250 for the receiver to obtain the whole message with

high probability. However, as shown in Fig. 5 (b), when T further increases (i.e., after 150 timeslots),

the adaptive jammer using MAB-based algorithm causes almost the same performance deterioration as

myopic jamming due to his active learning. The main reason why the myopic and adaptive jamming are

the most effective jamming strategies is that they can make use of the system information (e.g., traffic

statistics or ACKs) to adjust their strategies.

Fig. 6 (a) and (b) show the effects of sender’s sensing probability ε and jammer’s jamming capability

kj on the system performance, respectively. As expected, the larger kj will lead to less number of

received packets, and the larger sensing probability will help to improve the performance as the sender

can refine his strategy distributions with the sensing results. In Fig. 7, we evaluate the effect of sensing

error probability τ on the system performance. It is shown that, in the case of static jamming or random

jamming, the average number of cumulative received packets reduces when τ increases. However, it is

surprised to find that when adaptive and myopic jamming occurs the system performance improves as τ

increases. This phenomenon can be explained by the fact that larger sensing error probability can help

to ”disrupt” the adaptive and myopic jammers’ prediction on the available channels.

In Fig. 8, Fig. 9 and Fig. 10, we use the setting “mab myo dyn mab” as an example to show how

the parameter n and l affect the system performance. Fig. 8 shows that when l increases (i.e., from 10

to 30), the expected time to received the message w.h.p. increases correspondingly. On the other hand,

different values of n will also affect performance as T increases. For example, see the circle point in

Fig. 8 and Fig. 9. When T < 180, the case of n = 8 gives the best performance; After T > 180, the case

of n = 10 outperforms that of n = 8; When the time reaches T = 240, the case of n = 14 outperforms

the case of n = 8 and it gives the best performance after T = 320. That means that it is better to choose

a small n when the message size is short; a larger n is preferred when the message size is relatively

large. However, it dose not imply that the larger n will always give the best performance. As shown

in Fig. 10, when n increases from 12 to 14, the performance gain is very small, and when n further

increases to n = 16, the performance is deteriorated. This is because the use of a large n also makes it
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PPPPPPPPPPJamming stra.

T
800 1200 1600 2000 2400 2800 3200 3600 4000

Static
τ = 0.1, ε = 1 0.0472 0.0583 0.0560 0.0425 0.0284 0.0198 0.0147 0.0096 0.0025

τ = 0.1, ε = 0.8 0.0591 0.0800 0.0883 0.0817 0.0651 0.0480 0.0360 0.0238 0.0110

Random
τ = 0.1, ε = 1 0.0348 0.0429 0.0493 0.0543 0.0565 0.0563 0.0546 0.0518 0.0485

τ = 0.1, ε = 0.8 0.0407 0.0518 0.0617 0.0687 0.0741 0.0778 0.0762 0.0740 0.0697

Adaptive
τ = 0.1, ε = 1 0.0377 0.0465 0.0521 0.0553 0.0563 0.0555 0.0532 0.0504 0.0478

τ = 0.1, ε = 0.8 0.0446 0.0574 0.0669 0.0737 0.0777 0.0796 0.0793 0.0772 0.0749

Myopic

τ = 0, ε = 1 0.0103 0.0077 0.0051 0.0037 0.0026 0.0020 0.0019 0.0019 0.0017

τ = 0.1, ε = 1 0.0262 0.0308 0.0357 0.0390 0.0416 0.0440 0.0450 0.0465 0.0474

τ = 0.1, ε = 0.8 0.0295 0.0375 0.0439 0.0493 0.0542 0.0580 0.0604 0.0624 0.0645

TABLE II: Convergence of the secondary sender and receiver’s strategy probability distributions. The

Euclidian distance of the two parties’ strategy probability distribution is measured under p11
i > p01

i ,

n = 8.

difficult for the sender and receiver to hop to the same set of channels.

B. Convergence Evaluation

As T increases, the sender and receiver will converge to their static optimal strategies through the

online learning, respectively. In Section VI, we show that the normalized reward difference 1
T (Gmax

T (s)−
Gmax

T (r)) converges to 0 at rate O(1/
√

T ) as T →∞. Therefore, we can measure the statistical distance

between ws
f,t and wr

f,t as the closeness of them indicates that they are approaching the best strategies.

In Table II, we show the Euclidian distance of the two parties’ strategy probability distribution under

different jamming scenarios with p11
i > p01

i , n = 8.

The bold numbers in the table indicate the start of distance decrease at certain time. In general, it is

shown that the sender and receiver’s perceptions about the channels converges the fastest under static

jamming, and the worst performance is obtained in the case of myopic jamming; The performance under

the random and adaptive jamming are almost the same. The sensing probability ε and sensing error

probability τ also have a great effect on the performance, especially when myopic jamming occurs. As

shown, when ε = 1 and τ = 0, the distance decreases since T = 800. However, when the τ increases, it

requires a long time for the distance to decrease. That implies that in face of a powerful jammer such

as myopic jammer, it would be better to choose a spectrum sensor with high sensing accuracy.
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VIII. CONCLUSION

In this paper, we study the design of anti-jamming mechanism in cognitive radio networks. We

formulate the anti-jamming multi-channel access problem in CRNs as a non-stochastic multiple-armed

bandit (NS-MAB) problem, where the secondary sender and receiver adaptively choose their sending and

receiving channels in each timeslot to maximize the throughput. The proposed protocol enables the sender

and receiver to hop to the same set of available channels with high probability. We analytically show the

convergence of the learning algorithms, i.e., the performance difference between the secondary sender

and receiver’s optimal strategies is no more than O(20k√
ε

√
Tn lnn). Extensive simulation are conducted

to validate the theoretical analysis and show that the proposed protocol is very effective and resilient

against various jamming attacks.
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[17] M. Strasser, C. Pöpper, and S. Capkun. Efficient uncoordinated fhss anti-jamming communication. In Prob. of ACM

MobiHoc’09, July 2009.
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Fig. 4: Average number of received packets vs. the number of timeslots (T) and CDF of expected time

to achieve message delivery under different strategy settings with p11
i > p01

i .
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Fig. 5: The comparisons of the different jamming strategies on the system performance.
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Fig. 6: The effects of sensing probability ε and jamming capability kj on the system performance under

“mab myo dyn mab”.
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Fig. 7: The effects of sensing error probability τ on the system performance.
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Fig. 8: The effects of n and l on the system performance with respect to the CDF of the expected time

to achieve message delivery.
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Fig. 9: The effect of n on the system performance with respect to the average cumulative rewards/packets.
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Fig. 10: The effect of n on the system performance with respect to the average cumulative rewards/packets.
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