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Abstract—This paper explores the effectiveness of sparse representations obtained by learning a set of overcomplete basis (dictionary)
in the context of action recognition in videos. Although this work concentrates on recognizing human movements - physical actions as
well as facial expressions, the proposed approach is fairly general and can be used to address other classification problems. In order to
model human actions three overcomplete dictionary learning frameworks are investigated. An overcomplete dictionary is constructed
using a set of spatio-temporal descriptors (extracted from the video sequences) in such a way that each descriptor is represented by
some linear combination of a small number of dictionary elements. This leads to a more compact and richer representation of the video
sequences compared to the existing methods that involve clustering and vector quantization. For each framework, a novel classification
algorithm is proposed. Additionally, this work also presents the idea of a new local spatio-temporal feature that is distinctive, scale
invariant and fast to compute. The proposed approach repeatedly achieves state-of-the-art results on several public datasets containing
various physical actions and facial expressions.

Index Terms—Action recognition, dictionary learning, expression recognition, overcomplete, orthogonal matching pursuit, sparse
representation, spatio-temporal descriptors.
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1 INTRODUCTION

SPARSE signal representation has emerged as an ex-
tremely successful tool for analyzing a large class

of signals. Many signals like audio, images, video etc.
can be efficiently represented with linear superposition
of only a small number of properly chosen basis func-
tions. Although the use of orthogonal bases like Fourier
or Wavelets is wide-spread, the latest trend is to use
overcomplete basis - where the number of basis vectors
is greater than the dimensionality of the input vector.
A set of overcomplete basis (called a dictionary) can
represent the essential information in a signal using a
very small number of non-zero elements. This leads to
more sparsity in the transform domain as compared
to that achieved by sinusoids or wavelets alone. Such
compact representation of signals is desired in many
applications involving efficient signal modeling.

With overcomplete basis however greater difficulties
arise; because a full-rank dictionary matrix Φ ∈ R

n×m

(n < m) creates an underdetermined system of linear
equations b = Φx having infinite number of solutions.
The goal is to find a sparse solution i.e. x ∈ R

n should
contain no more than k (k << n) non-zero elements.
This in general is an NP hard problem. Nevertheless, in
the last few years researchers have found practical and
stable ways of solving such underdetermined systems
via linear programming and greedy algorithms. For
certain conditions like high sparsity (small k), small over-
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completeness factor (m/n) etc. sparse representations are
also shown to be stable in the presence of noise [1].

A crucial question is how to select the bases for the
dictionary Φ. Predefined basis functions like curvelets,
bandlets, variants of wavelets etc. can be used. However,
the success of such pre-specified dictionaries are often
limited by their suitability in capturing the structure in
the signals under consideration. For example, image con-
tents have sparse representation over wavelet dictionary
but audio signals are better represented by sinusoids.
Another way of constructing a dictionary is to use
training samples of the signal directly as the dictionary
columns [2]. A more generalized approach is to learn
the basis vectors that are specialized in representing the
signal in question. Recent research shows that it is possi-
ble to learn a dictionary by fitting a set of overcomplete
basis vectors to a collection of training samples [3], [4],
[5]. Since each basis vector (atom) captures a significant
amount of structure present in the given data [3], the
learnt dictionaries are more flexible than the predefined
ones and can yield even more compact representation.
Learnt dictionaries have been shown to produce state-
of-the-art results in image compression [5], color image
restoration [6] and denoising [7].

This paper explores the usefulness of sparse repre-
sentation obtained using learnt dictionaries for video
classification, looking particularly at the problem of
recognizing human actions - both physical actions and
facial expressions. Recognizing human actions is a chal-
lenging problem due to the real-world conditions like
partial occlusion, background clutter, changes in scale,
viewpoint and appearance. We propose to model hu-
man actions by learning overcomplete dictionary and
its corresponding sparse representation using spatio-

Digital Object Indentifier 10.1109/TPAMI.2011.253 0162-8828/11/$26.00 ©  2011 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. , NO. , JULY 2011 2

temporal descriptors extracted from the videos. Obeying
the classical supervised learning paradigm, three differ-
ent dictionary training frameworks are investigated: (i)
Shared - one dictionary for all classes, (ii) Class-specific
- one dictionary per class and (iii) Concatenated - con-
catenation of the class-specific dictionaries. Pertaining
to each framework a classification strategy is proposed.
We consider two spatio-temporal features: the Cuboids
descriptor [8] and a newly developed one which we
call the Local Motion Pattern descriptor. We also show
that the Random Projection (RP) can be used as a di-
mensionality reduction tool in the proposed framework
which significantly reduces the computational cost. For
a critical evaluation of our approach various experi-
ments were performed on the following public datasets:
Weizmann Action [9], Weizmann Robustness [9], Ballet
[10], UCF Sports [11] and Facial Expression dataset [8].
These datasets pose various challenges in terms of real
actions, complex motion, low-quality data, background
clutter, partial occlusion, viewpoint, scale and illumina-
tion changes. The proposed sparse representation based
approach repeatedly achieves state-of-the-art results in-
dicating the efficacy of our system.

The rest of the paper is organized as follows: Section
2 discusses the previous work on sparse representation
based classification and on action recognition. Section
3 summarizes the contributions of our work. Section 4
describes the proposed approach in detail and Section
5 presents experimental results. We conclude the article
in Section 6 which discusses the overall effectiveness
and the limitations of the proposed approach and also
suggests possible directions to future work.

2 RELATED WORK

The theory of sparse representation aims at finding
efficient and compact representations for signals and is
primarily suitable for problems like denoising, compres-
sion, inpainting etc. Recently a work on image-based face
recognition [2] showed that sparse representation is nat-
urally discriminative; it selects only those basis vectors
among many, that most compactly represent a signal and
therefore is useful for classification also. In [2], a single
overcomplete dictionary is formed by concatenating the
vectorized training samples of all classes. Given a test
image, its sparsest representation over the dictionary is
found by �1 minimization. The underlying assumption
of this method is that a good number of training samples
are available per class and they span the sample space
well.

In [12] and [13] texture is modeled by learning dic-
tionaries from raw image patches. The dictionaries are
used for texture synthesis and segmentation. In [12], the
dictionaries are learnt using K-SVD algorithm [5]. In [13],
the dictionaries are built by jointly optimizing an en-
ergy formula containing both sparse reconstruction and
class discrimination components. The object recognition
approach presented in [14] moved from pixel domain

to feature domain by obtaining sparse decomposition
of the SIFT (Scale Invariant Feature Transform) fea-
tures. The authors replace vector quantization by sparse
coding in order to learn a single codebook and stick
to traditional classification methods. High recognition
accuracy is achieved in [14] using a spatial pyramid
max-pooling scheme and linear Support Vector Machine
(SVM) classifier. The problem of action recognition is
addressed in [15] in a similar manner. Instead of pyra-
mid max-pooling, however, [15] uses single scale max-
pooling which ignores most of the sparse coefficients
and thus does not fully exploit the strength of sparse
representations.

Modeling an action in a video sequence starts with
a powerful video representation. A popular approach
is to describe an action sequence with some kind of
motion descriptors [8], [16], [17], [18]. Motion descriptors
capture the important spatio-temporal patterns that char-
acterize a particular action as well as discriminate it from
others. In [8] a separable filter based feature detector and
a variety of descriptors are proposed. A dense sampling
method that extract video patches at regular position and
scale is proposed for object recognition in [19]. Motivated
by this work, the authors of [20] show that dense sam-
pling can also handle difficult action recognition tasks
quite well. For a detailed evaluation of different motion
descriptors the reader may refer to [20].

After the motion features are computed, a certain
action is often represented as a collection of codewords
in a pre-defined codebook. This is the well-known Bag-
of-Words (BoW) model which has been adopted by
many computer vision researchers [8], [21], [22]. In its
basic form, this modeling approach disregards all spatial
and temporal relationship among the codewords. An
unsupervised learning approach that uses BoW repre-
sentation for human action recognition is presented in
[21]. Other approaches to analyze human actions include
treating an action sequence as 2D templates like Motion
Energy Image (MEI), Motion History Image (MHI) [23]
and as 3D space-time shape volumes [9].

2.1 BoW Modeling and Dictionary learning

The relationship between the codebook used in BoW
modeling and the dictionary learnt for sparse repre-
sentation is particularly interesting. A codebook and a
dictionary are conceptually similar in the sense that they
both consist of a set of representative vectors learnt from
a large number of samples. These representative vectors
are called codewords in the context of BoW modeling
and atoms otherwise. In BoW modeling, a codebook
is learnt by clustering, using vector quantization. Dur-
ing clustering, each sample vector is assigned to the
codeword that is closest to it in terms of Euclidean
distance. This can be interpreted as the extreme sparsity
constraint, where each sample vector is allowed to be
approximated by one and only one codeword. This leads
to considerable amount of approximation error. Also,
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the codebook size (number of codewords) has to be
increased as the data exhibit more and more variation.
To reduce the approximation error and create compact
dictionaries, the sparsity constraint can be relaxed by
allowing a few more codewords to participate in the
approximation process. This coincides with the idea of
sparse representation based dictionary learning, which is
a recent development in theoretical signal processing. In
dictionary learning, each sample vector is approximated
by a weighted sum of a small number of dictionary
atoms. Thus learning overcomplete dictionaries can be
considered as a generalization of the vector-quantization
based codebook learning process in BoW modeling ap-
proach.

3 CONTRIBUTIONS

Prior work on classification using sparse representation
have mainly dealt with images. But videos being
functions of space and time pose a bigger challenge.
The main contributions of our work are summarized
below:

• Our primary objective is to explore the applicabil-
ity of sparse representation obtained using learnt
dictionaries for classification, looking particularly at
the problem of human action recognition. Currently,
our approach works for a wide range of motions -
both body movements and facial expressions. The
proposed approach is fairly general and can also be
used to address other classification tasks.

• The dictionaries are learnt by sparse coding so as
to obtain richer and more compact representation
of the action sequences compared to the vector
quantization based ones. Three options for con-
structing the dictionaries are investigated: shared,
class-specific and concatenated. Although building
a shared dictionary is a familiar concept in action
recognition, the other two are new. Novel clas-
sification algorithms are also developed for each
dictionary type.

• A simple yet effective method for detecting and
computing important motion patterns is proposed.
The features are designed to capture the distinctive,
local, space-time motion patterns that are very fast
to compute. They are named the Local Motion Pat-
tern (LMP) descriptors.

• Our work is one of the few to use RP for classi-
fication. In the proposed approach RP successfully
reduces the computational cost in two ways - by
avoiding the cost of traditional methods like Princi-
pal Component Analysis (PCA) and by limiting the
dimension of input samples and the dimension of
the required overcomplete dictionary.

4 THE PROPOSED APPROACH

Our approach broadly consists of four stages : com-
putation of the spatio-temporal motion descriptors, di-

mensionality reduction of the descriptors, learning over-
complete dictionaries using the lower-dimensional de-
scriptors and classification using the dictionaries and/or
the corresponding sparse representations. Below, we de-
scribe each stage in detail.

4.1 Computation of spatio-temporal features
The first stage is to develop a rich spatio-temporal
representation for each action sequence. To obtain such
a representation we choose the Cuboid [8] descriptors
(since it is widely popular and generates a good number
of features) and additionally design a new descriptor
called the LMP descriptors. Note that, our approach is
not dependent on any particular spatio-temporal feature
as long as it generates a good number of features.
Features that are too few are not desirable for learning
a good dictionary.

Motivation behind the new motion descriptor: To com-
pute spatio-temporal features, typically some response
function has to be computed at every location in the
video where the extrema points correspond to the key-
points. This detection part is responsible for most of the
computational load. It has been shown in [19], [20] that
even if such detection process is omitted and patches are
extracted at regular intervals from images/videos the
resulting features can produce highly accurate results.
This is known as dense sampling. The bottleneck here is
that the number of features required for dense sampling
is 15-20 times greater than that needed for traditional
feature detectors [20]. In this section, we design a feature
detector that resolves the issues of both dense sampling
and space-time feature detection. It significantly lowers
the computational load by detecting the keypoints in
spatial domain only, but at the same time retains the
important temporal information. Also, it does not gen-
erate inconveniently large number features. The LMP
descriptor is a fast and simple alternative to dense
sampling and traditional feature detectors.

4.1.1 Cuboids features
The Cuboid detector relies on separable linear filters for
computing the response function of a video sequence
V (x, y, t). The response function is of the form R =
(V ∗ g ∗ hev)2 + (V ∗ g ∗ hod)

2, where g(x, y; σ) is the 2D
Gaussian smoothing function (applied only in the spatial
domain) and hev and hod are a quadrature pair of 1D
Gabor filters (applied in the temporal direction). The 1D
Gabor filters are defined as hev = −cos (2πtω) exp−t2/τ2

and hod = −sin (2πtω) exp−t2/τ2
where ω = 4/τ . The

parameters σ and τ roughly correspond to the spatial
and temporal scales. Keypoints are detected at the local
maxima of the response function. The video patches
extracted at each of the keypoints are converted to a
descriptor. A number of ways to compute descriptors
from video patches have been suggested in [8]. Among
those gradient based descriptors like Histogram of Gra-
dients (HoG), and concatenated gradient vectors are the
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most reliable ones [8]. For more details about the Cuboid
features please refer to [8].

4.1.2 Proposed LMP features
Feature detection: We define a local motion pattern as
a distinctive, scale-invariant region that contains sig-
nificant information about the local variations of the
signal along both spatial and temporal dimensions. It
was noted in [8], that the extrema points are often
located at the regions having spatially distinguishing
structure. Consequently, we deduce that the local motion
patterns should correspond to the temporal variations in
such spatially distinctive regions over a short period of
time. Our purpose is to detect the spatially distinctive
points and then capture the temporal changes in the
neighborhood of those points.

Consider a video sequence V (x, y, t) consisting of f
frames. It is first partitioned into S segments: V =
[V1,V2, ...,VS ] (as shown in Fig. 1) such that each seg-
ment contains l = f/S consecutive frames. The number
of frames in a segment, l, corresponds to the temporal
resolution at which V is analyzed. The smaller the value
of l the finer is the resolution. At any given resolution
l is required to be large enough to accommodate small
movements of the subject but not too large to have any
major changes.

In order to extract spatially distinguishing structures
we employ a 2D keypoint detector and locate keypoints
at the first frame of every temporal segment. Say, ρ
keypoints are detected in the first frame of a segment Vi.
We are interested in observing how the temporal infor-
mation around each of these ρ keypoints changes over
the remaining (l − 1) frames. This can be handled by
prealigning the subjects (when translation is involved) in
all the frames of Vi w.r.t. a reference point. Then, fixing
the coordinate values obtained for the keypoints in the
first frame, small video patches of dimension (η × η × l)
are extracted around each of the ρ key points, in every
Vi, i = 1, 2, ..S.

The prealignment of frames simplifies the process of
patch extraction. Often, such prealigned sequences are
the output of the tracking procedures used to detect the
subject of interest. However it requires a good bounding
box and may be difficult in the cases of background clut-
ter or partial occlusion. An alternative to prealignment
of the figures is to find the points corresponding to the
keypoints detected in the first frame in the next frames,
for example, by SIFT feature matching [24]. Note that,
prealignment removes all information about a subject’s
translation, but translation does not contribute much to
the recognition process anyway. This prealignment step
is also adopted in [9] and [18].

The descriptor: Every keypoint is associated with a
spatio-temporal cube of size (η × η × l). Each cube cap-
tures the local space-time changes of the signal and rep-
resents a significant motion pattern. The spatio-temporal
cubes are extracted in all temporal segments of V. In or-
der to obtain a robust descriptor for each spatio-temporal

Fig. 1: Multiple temporal scales analysis of a video
sequence partitioned into 4 and 8 temporal segments for
computation of the LMP descriptors.

(a)

(b)

(c)

Fig. 2: (a) A temporal segment consisting of three con-
secutive video frames. The 2D keypoints are identified
in the first frame using improved Harris keypoint detec-
tor. The positions of the same keypoints are shown in
the next two frames. (b) Patches are extracted around
each keypoint at each frame. Three space-time cubes
associated with the three keypoints (green, red, yellow)
are shown. Each cube contains patches extracted from
the three frames. (c) Conversion of a cube to an LMP
descriptor: Gaussian blurring of the cube is followed by
the computation of the 2nd, 3rd and 4th central moments
in the temporal dimension and transformation of the
three moment matrices into one vector. (This image is
best viewed in color.)

cube, we first perform 2D Gaussian blurring of each cube
in the spatial domain so as to ignore minor variations.
This increases robustness of the descriptor against noise
and positional uncertainties that are likely to occur from
imperfect segmentation or improper alignment, if per-
formed. But the cubes should not be smoothed along the
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temporal direction so as not to ruin the small temporal
variations we are particularly interested in.

Let us denote a blurred cube as v ∈ R
η×η×l, which is

basically a series of l small patches. After removing the
mean of v, the second (variance, M2), third (skewness,
M3) and fourth (kurtosis, M4) central moments are com-
puted for each pixel along the temporal direction. We
define the moment matrix Mr, r = {2, 3, 4} associated
with v as follows:

Mr = [mij ] i, j = 1, 2, ...η (1)

where

mij =
1
l

l∑
t=1

(vijt)
r (2)

Here, vijt is the pixel value at location {i, j} of the t-th
patch. Each moment matrix Mr, r = {2, 3, 4} is trans-
formed to a vector mr ∈ R

η2
. The three moment vectors

corresponding to three values of r are concatenated on
top of each other to form a single vector m ∈ R

d where
d = 3η2.

m =

⎡
⎣ m2

m3

m4

⎤
⎦ (3)

The vector m is an LMP descriptor. A number of such
descriptors that collectively characterize a human action
is extracted from each video sequence. The process of
computing the LMP descriptors is illustrated in Fig. 2.
The advantages of these proposed descriptors are as
follows:

• Computational efficiency - Assume that the video
frames are prealigned. The order of computational
complexity of detecting keypoints in an image, us-
ing for example, the Harris interest point detector,
is O (n), where n is the number of pixels in the
image. For a video sequence divided into S no. of
temporal segments, keypoints have to be detected
only in S no. of images. If we consider T temporal
scales (T ≥ 1), the complexity is O (nC) ∼ O (n),
where C =

∑T
j=1 Sj is a small constant and Sj is

the number of temporal segments at scale j. Thus
the order of complexity of extracting the spatio-
temporal cubes is equal to that of the 2D keypoint
detector being used. Evidently the complexity of 2D
extrema detection is much lower than the 3D ex-
trema detection used to find the 3D spatio-temporal
keypoints in [8], [16], [17]. From Table 1, we can see
that LMP is almost three times as fast as the cuboids.

• Flexibility - one can choose from a large pool of 2D
keypoint detectors based on the application, data
type and quality. Descriptors can be computed for a
variety of data types such as silhouettes, blobs and
plain grayscale images. Background subtraction is
not necessary.

• Scale invariance - temporal and spatial scale invari-
ance is easy to achieve by using a multiscale 2D key-
point detector and multiple temporal resolutions.

Cuboids LMP
video size 101×101 × 84 101×101 × 84

temporal scales 3 3
spatial scale 2 2

features extracted 438 474
run time (sec) 16.70 5.08

TABLE 1: Quantitative comparison between Cuboids
and LMP

The demerit of this feature extraction method is the cost
of prealignment of the video frames or alternatively,
tracking the keypoints in the consecutive frames.

4.2 Random Projections
The motion descriptors are typically high-dimensional.
A Cuboid-HoG descriptor is of dimension [1440×1] and
an LMP feature vector for a patch of size (24× 24) is of
dimension [1728 × 1]. Recall that Φ ∈ R

n×m where n =
descriptor dimension and usually m ≥ 2n. The features,
if used with the original dimension, ask for more than
2, 500 dictionary atoms to be learnt in order to secure
a sparse representation. This high dimensionality seri-
ously limits the speed and practical applicability of our
approach. A natural solution is to reduce the dimension-
ality. The application of standard methods like Principal
Component Analysis (PCA), Linear Discriminant Analy-
sis (LDA) etc. to obtain lower dimensional representation
is well-known. Recently, Random Projection (RP) has
emerged as a powerful tool in dimensionality reduction
[25]. Theoretical results show that, the projections on a
random lower-dimensional subspace can preserve the
distances between vectors quite reliably. The advantages
of RP are that it is data-independent, simple and fast.

Consider a set of p descriptors obtained from a video
sequence, where each descriptor is of length d. This
set can be represented as a matrix D ∈ R

d×p. The
original d-dimensional descriptors are projected onto an
n dimensional subspace (n << d) by premultiplying the
descriptor matrix D by a random matrix R ∈ R

n×d.
In practice, any normally distributed R with zero mean
and unit variance serves the purpose. There exist other
choices of non-Gaussian random matrices that can save
on computations even more. The dimensionality reduc-
tion step then simplifies to a simple matrix multiplica-
tion, given by

Y = RD (4)

where the reduced data matrix Y ∈ R
n×p contains

projections (not true projections, because the vectors are
not orthogonal) of D on some random n dimensional
subspace.

4.3 Dictionary learning
The next stage is to learn the overcomplete dictionaries
and the corresponding sparse representation using the
motion descriptors. We start with briefly describing the
dictionary learning algorithm.
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Consider a set of lower dimensional descriptors Y =
{yi}pi=1, yi ∈ R

n. We wish to learn a dictionary Φ ∈
R

n×m (m > n) over which Y has a sparse representation
X = {xi}pi=1, xi ∈ R

m such that each xi contains k (k <<
n) or fewer non-zero elements. This is formally written
as the following optimization problem.

min
Φ,X

{
‖Y −ΦX‖2F

}
subject to ‖x‖0 ≤ k (5)

where ‖.‖F is the Frobenius norm and ‖.‖0 is the �0
semi-norm that counts the number of non-zero elements
in a vector. To solve (5), a recently developed dictionary
learning algorithm, known as K-SVD [5] is used. K-SVD
iteratively solves (5) by performing two steps at every
iteration: (i) sparse coding and (ii) dictionary update.
In the sparse coding step, Φ is kept fixed and X is
computed.

min
X

{
‖Y −ΦX‖2F

}
subject to ‖x‖0 ≤ k (6)

Note that, the expression in (6) also has an �0 term.
Though �0 provides a straightforward notion of sparsity,
it makes the problem non-convex. Solving (6) accurately
is thus an NP hard problem. Nevertheless, approximate
solutions are provided by greedy algorithms like Match-
ing Pursuit (MP), Orthogonal Matching Pursuit (OMP)
and more sophisticated approaches such as Basis Pursuit
(BP). BP replaces the �0 term with an �1 penalty so as
to transform the problem to a convex one. Some other
solvers also suggest the use of the �p norm, p ≤ 1, as a
replacement to the �0 norm. In this work we have used
OMP to solve (6), as in the original K-SVD paper [5],
because it is fast, easy to implement and fairly accurate
[5]. For the same reasons, we have used OMP to solve
all the sparse approximation problems presented in this
paper.

In the dictionary update step, the atoms of a dictio-
nary Φ are updated sequentially, allowing the relevant
coefficients in X to change as well. Updating an atom
φi ∈ Φ involves computing a rank-one approximation
of a residual matrix

Ei = Y − Φ̃iX̃i (7)

where Φ̃i and X̃i are formed by removing the i-th
column from Φ and the i-th row from X. This rank-one
approximation is computed by subjecting Ei to a Singu-
lar Value Decomposition (SVD). For detailed description
of K-SVD algorithm please refer to [5].

Assume that there are K classes. For each class, a
set of motion descriptors are extracted from each of the
training sequences. In order to model these descriptors
using learnt dictionaries, we consider three options:

• shared - learning a single dictionary for all classes.
• class-specific dictionaries - learning K dictionaries,

one for each class.
• concatenated dictionaries - a single dictionary formed

by concatenating K class-specific dictionaries

4.4 Shared dictionary
In this framework a single, shared dictionary Φ is learnt
for all K classes, so that multiple classes can share
some common dictionary elements. Since the dictionary
is learnt only once it saves some computation, though a
bigger dictionary might be needed to accommodate the
variations of all classes. The learning process has to be
repeated whenever a new class is added to the system.

The matrix Y contains the descriptors obtained from
the training samples of all classes and X contains their
corresponding sparse representations over the learnt
shared dictionary Φ (refer to (5)). The sparse coefficients
in a column vector xi ∈ X present the contribution
of all the dictionary atoms in approximating the de-
scriptor yi ∈ Y. Thus the sparse coefficients associated
with all the descriptors of a particular class collectively
demonstrate the contribution of the dictionary atoms
towards the representation of that class. Hence some
statistics of these sparse coefficients (sometimes called
descriptors codes), if computed, will be able to charac-
terize that class. A popular statistical representation is
the coefficient histogram. Let the i-th class have a sparse
decomposition Xi = {xj}pj=1 over Φ. Then its coefficient
histogram hi is computed as follows.

hi =
1
p

p∑
j=1

xj (8)

Another popular alternative is to compute histograms
for individual training sample and train a multiclass
SVM classifier with them. We explore both the
alternatives in the experiments section.

Given a query video sequence VQ, it is represented
by a set of motion descriptors Q = {qj}qj=1, qj ∈ R

n.
The recognition algorithm that uses class histograms is
described below. The SVM based classification method
is well-known and therefore not described here.

Classification using the shared dictionary

• Learn a single shared dictionary Φ as in (5)
• Compute the coefficient histograms

h1,h2, ...,hK , one for each class by (8)
• Given Q, find its sparse representation XQ over

Φ

min
XQ

{
‖Q−ΦXQ‖2F

}
s.t. ‖xQ‖0 ≤ k1 (9)

• Compute the histogram hQ pertaining to Q

• Estimated class = argmax
i ∈ 1, 2, ...,K

hT
Qhi

4.5 Class-specific dictionaries
This framework learns K dictionaries Φ1,Φ2, ...,ΦK , one
for each class. One advantage of having class-specific
dictionaries is that each class is modeled independently
of the others and hence the painful repetition of the
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training process when a new class of data is added to
the system is no longer necessary. This also indicates the
possibility of parallel implementation.

The idea is that a dictionary tailored to represent
one particular action will have an efficient representation
for this class and at the same time will be less efficient
in representing actions belonging to a different class.
The efficiency here refers to the lower reconstruction
error while sparsity is constant. We exploit this inherent
discriminative nature of the class-specific dictionaries
and develop an efficient classification technique that we
call the Random Sample Reconstruction.

Random Sample Reconstruction (RSR): Recall that
the query video sequence VQ is represented by a collec-
tion of descriptors as Q = {qj}qj=1, qj ∈ R

n. A simple
way to classify VQ is to find the K approximations of
Q given by each of the K learnt dictionaries and their
corresponding reconstruction errors ei, i = 1, 2, ...K i.e.

ei =
∥∥∥Q−ΦiX̂Qi

∥∥∥2

2
(10)

where

X̂Qi =
argmin
XQ

‖Q−ΦiXQi
‖2F s.t. ‖x‖0 ≤ k2 (11)

XQi
= {xj}qj=1, xj ∈ R

m is the sparse representation of
Q over Φi, i = 1, 2, ...,K. Then the estimated class of VQ

is the class that yields the smallest ei.

îQ =
argmin

i ∈ 1, 2...K
ei (12)

This method discriminates on the basis of reconstruc-
tion error, which has been proved to be quite useful
for texture classification [12], [13]. We will refer to this
method as the Simple Reconstruction method.

In a complex problem like action recognition, a strong
presence of outliers in Q is highly probable due to the
errors in keypoint detection, noisy data, occlusion etc.
In the presence of high percentage of outliers, if all the
descriptors in Q are used for reconstruction, the resulting
reconstruction error will hardly be a reliable means of
classification. In order to build a robust classifier, we pro-
pose the idea of Random Sample Reconstruction (RSR).
This is motivated by the celebrated RANdom SAmple
Concensus (RANSAC) algorithm [26]. RANSAC finds
part of the data that best fits a given model, whereas
RSR solves an even more difficult problem - finding both
the best model (among a number of probable ones) and
part of the data that best fits the chosen model.

The basic assumption of the proposed RSR algorithm
is that the best model and its coefficients can be esti-
mated by a small number of good datapoints i.e. error-
free descriptors. Let the number of good datapoints (a
subset of the available datapoints) be s, s << q, where
q is the number of all available datapoints (number
of query descriptors). Let the probability of selecting a
good datapoint be ω and the probability of observing an
outlier is (1−ω). If we perform Λ trials and in each trial

select s random datapoints, the probability of selecting
at least one error-free set of s datapoints is 1− (1−ωs)Λ.
We want to ensure that such a set can be selected with
a probability P .

1− (1− ωs)Λ = P (13)

For a given value of P and ω, the value of Λ that ensures
the success of selecting an error-free dataset is computed
as

Λ =
log (1− P )
log (1− ωS)

(14)

At every trial, a random subset of s descriptors is
selected. Let this working subset be denoted as Qs.
The best model (dictionary) for Qs is estimated by
the simple reconstruction method. The descriptors that
are not in Qs are then approximated by the estimated
model. The descriptors, for which the reconstruction
error is below a certain threshold, are called the inliers.
Our algorithm eventually selects the model that has the
largest number of inliers. Note that, s, the number of
good datapoints is unknown. So, for our experiments
s is set to 1% of the total number of datapoints i.e.
s = 0.01q. The values of ω and Λ are updated at each
iteration. The proposed algorithm is non-deterministic
i.e it can determine the class only with a certain
probability P . A less conservative value of P can be
used to achieve faster convergence. The full description
of the proposed RSR algorithm is given below.

Random Sample Reconstruction (RSR)

Initialize:
• no. of inliers I0 = 0.
• total no. of datapoints = q
• no. of good datapoints = s such that s << q (e.g.

s = 0.01q)
• set a high probability value P = 0.99.

Compute: ω = s+I0
q and Λ = log(1−P )

log(1−ωs)

Loop until Λ = 0
• Choose s random descriptors from Q to form

Qs ⊂ Q.
• Estimate the class of Qs by (10) - (12).
• Let the estimated class of Qs be îs and the

corresponding dictionary be Φs.
• For every qi /∈ Qs

– εi = ‖qi −Φsxsi‖2, where xsi is the sparse
representation of qi over Φs with sparsity k2

– Count inliers: I ← {i : εi ≤ Th}, Th = thresh-
old.

• Update: If |I| > I0

– I0 ← |I|
– Estimated class ← îs
– update ω and Λ
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4.6 Concatenated dictionary
The third option to construct a dictionary is by
concatenating the class-specific dictionaries. A bigger
dictionary ΦC is formed by concatenating K dictionaries
together. Let us assume that originally the query
sequence belongs to the class α. If Q is approximated
by ΦC , ideally, every q ∈ Q should use only the atoms
of Φα for its representation. Although this condition
is difficult to achieve in practice (due to errors in Q
and correlation among the class-specific dictionaries),
we can still expect that the atoms of Φα should be
used more than any other dictionary atoms. This results
into a higher concentration of non-zero elements in
the coefficients corresponding to Φα. The classification
algorithm is as follows:

Classification using the concatenated dictionary

• Form ΦC = [Φ1|Φ2| ... |ΦK ]
• Find XQ by OMP

min
XQ

‖Q−ΦCXQ‖22 s.t. ‖x‖0 ≤ k3

• XQ is written as
XQ = [XΦ1|XΦ2| ... |XΦK ]
where XΦi is the coefficient matrix correspond-
ing to Φi.

• Estimated class = argmax
i ∈ 1, 2, ..., C

‖XΦi‖0

Clearly, Q is block sparse; this is because the non-zero
coefficients in XQ occur in clusters. This encourages
us to exploit block sparsity as an additional structure.
But, each block in ΦC is an overcomplete dictionary,
which makes it difficult to use block sparsity promoting
algorithms like Block OMP (BOMP) [27]. We have used
BOMP and observed that the experimental results are
neither consistent nor very accurate.

5 PERFORMANCE EVALUATION

A critical experimental evaluation of the proposed ap-
proach is presented in this section. Our main objective is
to evaluate the strength of the proposed sparse modeling
and classification algorithms; a secondary goal is to test
the effectiveness of the LMP descriptors. Evaluation is
done on the basis of discriminating power, robustness
against occlusion, viewpoint changes, variations in scale
(spatial and temporal), illumination changes and ability
to model complex motions. We have used four public
datasets that exhibit various motions in different con-
ditions - starting from everyday actions to professional
sports, complex ballet movements and even facial ex-
pressions.

5.1 Parameter Settings
For feature extraction, both Cuboids and LMP descrip-
tors use 2 spatial and 3 temporal scales. Descriptor

Fig. 3: Performance of the proposed classification algo-
rithms with sparsity (ki, i = 1, 2, 3) on the Weizmann
action dataset.

parameters have been set such that they can use sim-
ilar spatial and temporal resolutions. The Cuboid de-
tector uses the following parameter values: σ = [2, 4]
and τ = [1, 1.2, 1.4]. Among the different descriptors
proposed in [8], we choose the gradient based HoG
descriptor since it often produces reliable results [8],
[20]. Each Cuboid-HoG descriptor is of dimension 1440.
For the LMP descriptor, the spatially distinctive points
are computed by an improved version of the Harris
keypoint detector [28]. This 2D keypoint detector has
been shown to outperform other keypoint detectors in
terms of distinctiveness and stability of the detected
points under various image transformations like rota-
tion, illumination variation, scale and viewpoint changes
[28]. Any other 2D keypoint detector should work as
well (e.g. Laplacian of Gaussian worked well for our
experiments and produced similar results). The video
patches are extracted at 2 spatial scales using the original
frame size and a 1.5 times downsampled version of the
same with η × η = [24× 24]. Each video is analyzed at
3 temporal resolutions S = 8, 10, 12. An LMP descriptor
is of dimension 3 ∗ η2 = 1728. The high dimensional
Cuboid/LMP descriptors are then projected on a random
128-dimensional space. The random projection matrix R
is constructed at every run during cross-validation.

The shared dictionary Φ ∈ R
128×512 and the class-

specific dictionaries Φi ∈ R
128×256, i = 1, 2, ...,K are

learnt using k = 12 (approximately 10% of the dimension
of the descriptor) and 20 K-SVD iterations. Experiments
are performed separately for both the descriptors under
four settings : (i) Shared dictionary with histogram cor-
relation (Shared-Hist), (ii) Shared dictionary with linear
SVM (Shared-SVM), (iii) Class-specific dictionary with
RSR (RSR) and (iv) Concatenated dictionary (Concat).

There are a number of parameters that need to be
chosen carefully. The straightforward way is to use cross-
validation. For this work, parameter sweep is done for
the Weizmann action dataset only and the same values
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Fig. 4: Sample frames from the Weizmann action dataset:
bend (w1), jumping jack (w2), jump forward (w3), jump
in place (w4), run (w5), gallop sideways (w6), skip (w7),
walk (w8), wave one hand (w9) and wave both hands
(w10).

Fig. 5: Synthetic occlusion created by the authors.

Fig. 6: Sample frames from the Weizmann robustness
dataset showing occlusion, unusual scenarios and view-
point variations.

are used for all other datasets. Note that, increasing
patch size, number of scales or feature dimension im-
proves recognition accuracy, but it also raises the com-
putational load significantly. Also, the theory of sparse
representation and dictionary learning is in a developing
stage; how to set the parameters like optimal dictionary
size, sparsity etc. are some of the open issues.

In order to understand the impact of sparsity on the
decision making process, we have run the recognition ex-
periments on the Weizmann action dataset for different
values of k1, k2 and k3. Fig. 3 shows that for the shared
and RSR methods recognition accuracy increases as the
number of non-zeros increases (i.e. sparsity decreases).
On the other hand, in the case of concatenated dictio-
nary accuracy decreases with sparsity. This observation
about a dictionary containing features from all classes
that ‘the sparser the solution, the more accurate is the
classification’ agrees with that in [2]. The RSR algorithm
provides lower recognition error over the varying range
of sparsity, as it carefully selects the error-free (or less
faulty) descriptors. The threshold parameter Th required
for the RSR algorithm is obtained empirically. Leave-
one-out strategy is adopted for the evaluation of all the
datasets unless mentioned otherwise.

5.2 Weizmann action and robustness dataset

This benchmark dataset, frequently used by researchers,
provides a good platform for comparing the proposed
approach with varied action recognition approaches un-
der similar experimental setup. It consists of 90 low-
resolution (180 × 144, deinterlaced 50 fps) video se-
quences of 9 subjects, each performing 10 natural actions:
bend, jumping jack, jump forward, jump in place, run,
gallop sideways, skip, walk, wave one hand and wave

Fig. 7: Relative performances of the classification frame-
works for Cuboids and LMP descriptors.

Fig. 8: (a) LMP + Concat. (mean accuracy 98.9%) and (b)
LMP + RSR (mean accuracy 97.8%).

both hands. The database uses a fixed camera setting
and a simple background. No occlusion or viewpoint
changes are present originally. Variations in spatial and
temporal scale are also minimal. Sample frames from this
database are presented in Fig. 4. We have used the pre-
aligned, background subtracted silhouettes provided by
the authors of [9] only for this dataset. The silhouettes
are used to establish the versatility of the proposed LMP
descriptor.

The performances of Cuboids and LMP descriptors
within the four proposed classification frameworks are
presented in Fig. 7. The lowest error is achieved by
the concatenated dictionary when used with the LMP
descriptors and the resulting recognition accuracy is
98.9% (1 misclassification out of 90). The confusion
matrices correspondiong to the two higher recognition
results achieved in our experiments are presented in
Fig. 8. In Table 2 the proposed approach is compared
with a number of existing approaches, all of which use
the leave-one-out scheme to evaluate their respective
algorithms. Please note that some of the works use an
older version of the Weizmann action dataset which has
9 classes of actions. We have used a later version of the
dataset that contains 10 classes. Our result achieves the
heighest accuracy among those which use the dataset
with 10 classes.

Synthetic occlusion: We have also tested the robustness
of our approach against occlusion. Since the original
dataset has no occlusion, we have selected a set of 10
action sequences performed by one subject from the
original dataset and artificially created occlusion in all
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Approach No. of Accuracy
actions (%)

Yeffet & Wolf [29] 9 100
Wang & Mori [10] 9 100
Gorelick et al. [9] 10 97.8

Riemenschneider et al. [30] 10 96.7
Ali & Shah [31] 10 95.7
Junejo et al. [22] 9 95.3

Thurau & Hlavac [32] 10 94.4
Zhang et al. [33] 10 92.8

Simple reconstruction 10 92.2
Niebles et al. [21] 10 90.0

Scovanner et al. [17] 10 84.2
Our approach 10 98.9

TABLE 2: Comparison with state-of-the-art on the Weiz-
mann action dataset

Test Ground Shared RSR Concat.
sequence truth

occluded by a pole bend bend bend bend
occluded by a bar jack jack jack jack
occluded by a pole jump jump jump jump

occluded feet pjump pjump pjump pjump
occluded by a pole run run run run
occluded by a pole side side side side
occluded by a pole skip skip skip skip
occluded by a pole walk walk walk walk
occluded by a pole wave1 wave1 wave1 wave1
occluded by a pole wave2 wave2 wave2 wave2

TABLE 3: Results on the Weizmann action dataset: Per-
formance under synthetic occlusion using LMP descrip-
tors.

or some of the frames (refer to Fig. 4, bottom row
for examples). Our approach achieves perfect accuracy
under synthetic occlusion. The results are in Table 3.

Real occlusion and viewpoint changes: There are 20 ad-
ditional video sequences known as the Weizmann Ro-
bustness dataset, where the subjects walking in a non-
uniform background create various difficult scenarios
due to occlusion, clothing changes, unusual walking
style and viewpoint changes. Ten of the sequences ex-
hibit viewpoint changes and the rest contains occlusion
etc. Sample frames can be found in Fig. 6. Our system
is trained on the Weizmann action dataset and is pre-
sented with the robustness sequences as queries. Table
4 and Table 5 present the results under occlusion and
viewpoint changes. Our results are compared with that
reported in [9]. The RSR and concatenated dictionary
demonstrates 100% accuracy against real occlusion and
other difficult scenarios. Table 5 shows that among others
the RSR algorithm exhibits maximum robustness against
viewpoint changes. It correctly recognizes all except the
sequence showing extreme viewpoint change i.e. when
the direction of walking in the test sequence is almost or-
thogonal to that in the training sequences. Recall that, the
system is trained with the sequences from the Weizmann
action dataset where the subjects are walking parallel
to the camera i.e. in 0◦. The concatenated and shared
dictionary based methods are tolerant up to 63◦ and 54◦

changes in the viewpoint angle.

Test sequence Gorelick et al. Shared RSR Concat.
[9]

walking with a dog walk walk walk walk
swinging a bag walk walk walk walk

walking in a skirt walk walk walk walk
occluded legs walk walk walk walk

occluded by a pole walk walk walk walk
normal walk walk walk walk walk

carrying briefcase walk walk walk walk
knees up walk run walk walk

limping walk walk walk walk walk
sleepwalking walk walk walk walk

TABLE 4: Results on the Robustness dataset: Perfor-
mance under real occlusion and other difficult scenarios
using LMP descriptors (trained on the Weizmann action
dataset).

Test sequence Gorelick et al. Shared RSR Concat.
[9] (svm)

walking in 0◦ walk walk walk walk
walking in 9◦ walk walk walk walk

walking in 18◦ walk walk walk walk
walking in 27◦ walk walk walk walk
walking in 36◦ walk walk walk walk
walking in 45◦ walk walk walk walk
walking in 54◦ walk walk walk walk
walking in 63◦ walk skip walk walk
walking in 72◦ walk skip walk skip
walking in 81◦ walk side skip side

TABLE 5: Results on the Robustness dataset: Perfor-
mance under viewpoint changes with the system only
trained with subjects walking in 0◦ using LMP descrip-
tors (trained on the Weizmann action dataset).

5.3 The Ballet dataset

The ballet database is selected to test the ability of
our approach to model complex motions. The dataset
contains 44 real video sequences of 8 actions collected
from an instructional ballet DVD [10], [34]1. The 8 actions
performed by 3 subjects are: left-to-right hand opening,
right-to-left hand opening, standing hand opening, leg
swinging, jumping, turning, hopping and standing still.
Fig. 9 presents the sample frames of each action. Ballet
movements consist of complex motion patterns, the exe-
cution of which differs from performer to performer. The
dataset is highly challenging due to the significant intra-
class variations in terms of speed, spatial and temporal
scale, clothing and movement variations.

The results presented in Fig. 10 show that the RSR
algorithm generates lower error rates for both Cuboids
and LMP descriptors. Two confusion matrices are pre-
sented in Fig. 11. Maximum error is caused by the
action ‘jumping’ as it is confused with a very similar
action ‘hopping’. Table 6 compares our results with that
of two previous papers which use this dataset. Our
method achieves comparable accuracy, but since the [10],
[34] perform image-based recognition and use different
experimental setup the comparison is not a true one.

1. Both of these work address the problem of recognizing actions in
still images which is a different problem altogether.
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Fig. 9: (a) Sample frames from the Ballet dataset: left-to-
right hand opening (b1), right-to-left hand opening (b2),
standing hand opening (b3), leg swinging (b4), jumping
(b5), turning (b6), hopping (b7) and standing still (b8).

Fig. 10: Results on the Ballet dataset: Relative perfor-
mances of the classification frameworks for Cuboids and
LMP descriptors.

Given the difficulty of the dataset the high recognition
rate achieved by our approach is rather encouraging.

5.4 The UCF Sports dataset
The UCF Sports dataset [11] is considered to be one
of the most challenging datasets in the field of action
recognition. This dataset contains close to 200 action
sequences collected from various sports videos which are
typically featured on broadcast television channels such
as BBC and ESPN. The collection represents a natural
pool of actions featured in a wide range of scenes and
viewpoints. The dataset also exhibits occlusion, cluttered
background, variations in illumination, scale and motion
discontinuity. The 9 actions are: diving, golf swinging,
kicking, lifting, horse riding, running, skating, swinging
and walking. Some of these sequences also contain more
than one subjects.

The recognition results and confusion matrices are
presented in Fig. 13 and Fig. 14. The highest accuracy
achieved in our experiments is 83.8% (cuboids+RSR).
Table 8 compares the proposed approach with a number
of existing ones. Apparantly, our recognition rate is
lower than that reported in [15], [20], [35] and [36];
but notice that unlike [15], [20] we have not enlarged2

the training set and used a much smaller dictionary
[128× 512]. Also [15], [20] and [36] use dense sampling
with HoG3D descriptors as features. Such features are
computationally more demanding compared to the fea-
tures we have used. The result in [35] is obtained using
dense features, randomized trees and Hough transform
based voting. This method is also computationally more

2. in [20] and [15], the datasets are enlarged by adding horizontally
flipped version of each sequence

Fig. 11: Results on the Ballet dataset: (a) Cuboids + RSR
(91.1%) and (b) LMP + RSR (89.3%).

Approach Accuracy (%) Accuracy (%)
(frame based) (video based)

Fathi & Mori [34] 51.0 -
Wang & Mori SLDA [10] 88.6 -
Wang & Mori SCTM [10] 91.3 -

Our approach - 91.1

TABLE 6: Comparison with state-of-the-art on the Ballet
dataset; note that, [34] and [10] use different experimen-
tal set up, so exact comparison is not possible.

intense compared to our approach. Both the features and
the classification approach contribute to the recognition
result. So it is difficult to asses the contribution of our
approach by comparing it with the methods that use
different descriptors. In order to find out the real con-
tribution of our sparse representation and classification
approach, we concentrate on the results that are obtained
using the same descriptors as ours. In Table 7, we
compare our results with that of [20] which uses the
same features as ours. Our approach shows significant
improvement in accuracy (more than 10%). This results
also serve as a proof to that our sparse representation
based approach outpeforms vector quantization based
methods in terms of accuracy and efficiency (note that,
our method also uses smaller dictionaries).

5.5 Facial Expression Dataset
The facial expression dataset [8] involves 2 individuals,
each expressing 6 different emotions under 2 lighting
setups. The expressions are anger, disgust, fear, joy,
sadness and surprise. Expressions such as sadness and
joy are quite distinct but others are fairly similar, such
as fear and surprise. Under each lighting setup, each
individual shows each of the 6 expressions 8 times. The
subjects always start with a neutral expression, show an
emotion, and return to neutral.

Fig. 16 presents the intra-class recognition results of
the classification methods for Cuboids and LMP de-
scriptors. The concatenated dictionary based method
produces the lowest errors for both types of descriptors.
It is shown in [8] that for the facial expression dataset,
the concatenated gradient vector provides much better
result compared to HoG. We have tested our approach
with this descriptor so as to provide a true comparison
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Approach Feature Classifier Codewords/Atoms Accuracy (%)
Wang et al. [20] cuboids + HoG non-linear SVM 4000 72.2
Our approach cuboids + HoG linear SVM 512 79.6
Our approach cuboids + HoG RSR 256 per dictionary 83.8

TABLE 7: Comparison using the same features on the UCF Sports dataset.

Fig. 12: Sample frames from the UCF Sports dataset:
diving (s1), golf swinging (s2), kicking (s3), lifting (s4),
horse riding (s5), running (s6), skating (s7), swinging (s8)
and walking (s9).

Fig. 13: Results on the UCF sports dataset: Relative per-
formances of the classification frameworks for Cuboids
and LMP descriptors.

with the original work in [8]. The results and comparison
can be found in Fig. 17 and Table 9.

5.6 Remarks

A few interesting observations can be made from the
experimental results:

• Our proposed sparse modeling approach
significantly outperforms the traditional vector-
quantization based BoW modeling. In Table 7
the proposed approach shows more than 10%
improvement over its vector quantization based
counterpart. It is also confirmed in Table 9.

• The class-specific dictionaries (or their concatena-
tion) produce better recognition results compared to
the shared dictionaries. We advocate the use of class-
specific dictionaries because along with superior
results they also offer ways to save computation
(mentioned in section 4.5). Both RSR and concate-
nated methods work well but, RSR appears to be
more stable and consistent. RSR being robust to
outliers can better deal with complex datasets like
Ballet or UCF sports.

• RP practically overrules the use of traditional di-
mensionality reduction methods like PCA within
this framework. It is the fastest possible dimension-
ality reduction process. It also keeps the dictionary
dimension more manageable. There is no direct re-

Fig. 14: Results on the UCF sports dataset: (a) Cuboids
+ RSR (83.8%) and (b) Cuboids + concat (80.9%).

Approach Accuracy (%)
Rodriguez et al. [11] 69.2

Yeffet & Wolf [29] 79.2
Zhu et al. [15] 84.3

Wang et al. [20] 85.6
Yao et al. [35] 86.6

Kovashka & Grauman [36] 87.2
Our approach 83.8

TABLE 8: Comparison with state-of-the-art on the UCF
Sports dataset.

lationship between the feature dimension and code-
book size in vector-quantization based BoW model-
ing. While working with sparse representation the
overcompleteness factor is at least 2 i.e. the number
of atoms in a dictionary is at least twice the size of
the features. For a given feature dimension, increas-
ing the overcompleteness factor (i.e. increasing the
no of atoms) does not necessarily increase the accu-
racy; but it does raise the cost of computation and
make the system unstable. From our experiments we
found that increasing the overcompleteness factor
beyond 4 does not improve the results much and in
fact starts to fall for overcompleteness factors greater
than or equal to 6.

• It is interesting to notice that simple features like
LMP can outperform Cuboids in some cases. This
can be attributed to the fact that LMP being based
on 2D keypoint detectors, generates some static fea-
tures (in the regions having distinctive spatial struc-
ture but not undergoing much temporal change).
The static features are known to contain useful
information for recognition.

6 CONCLUSION

This work studies the usefulness of sparse represen-
tations obtained using learnt overcomplete dictionar-
ies in the context of video-based action modeling and
recognition. The ideas proposed in this paper are fairly
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Fig. 15: Sample frames from the Facial expression
dataset: anger (f1), disgust (f2), fear (f3), joy (f4), sadness
(f5) and surprise (f6).

Fig. 16: Results on the Facial expression dataset: Rela-
tive performances of the classification frameworks for
Cuboids and LMP descriptors.

general and are applicable to other recognition problems,
such as object recognition. Experimental results demon-
strate that the proposed approach is computationally
efficient, highly accurate and is robust against partial
occlusion, spatio-temporal scale variations and to some
extent to viewpoint changes. This robustness is achieved
by exploiting the discriminative nature of the sparse
representations combined with spatio-temporal motion
descriptors. The fact that the descriptors are extracted
over multiple temporal and spatial resolutions make
them insensitive to scale changes. The descriptors being
computed locally make them robust against occlusion or
other distortions.

We have used OMP - the simplest pursuit algorithm
to solve all the sparse approximation problems. More
sophisticated solvers e.g. BP can achieve better results
but at the cost of higher computation time. Likewise,
features such as dense sampling [19], HoG3D, STIP [16]
etc. can also improve the recognition accuracy but are
more expensive computationally.

Our system at present can not deal with multiple
actions presented in one video sequence. This is because
we disregard the spatial and temporal orientation of
the extracted features. Incorporating such information
will help detecting and recognizing the multiple actions.
Other future works include learning hierarchical dictio-
naries, discriminative dictionaries [13], building dictio-
naries using different descriptors or a combination of
them. Also, techniques are required to optimize param-
eters like sparsity, dictionary size etc.
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