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Training Sequence Optimization in MIMO
Systems With Colored Interference
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Abstract—1In this paper, we address the problems of channel es-
timation and optimal training sequence design for multiple-input
multiple-output systems over flat fading channels in the presence
of colored interference. In practice, knowledge of the unknown
channel is often obtained by sending known training symbols to the
receiver. During the training period, we obtain the best linear un-
biased estimates of the channel parameters based on the received
training block. We determine the optimal training sequence set
that minimizes the mean square error of the channel estimator
under a total transmit power constraint. In order to obtain the ad-
vantage of the optimal training sequence design, long-term statis-
tics of the interference correlation are needed at the transmitter.
Hence, this information needs to be estimated at the receiver and
fed back to the transmitter. Obviously it is desirable that only a
minimal amount of information needs to be fed back from the re-
ceiver to gain the advantage in reducing the estimation error of
the short-term channel fading parameters. We develop such a feed-
back strategy in this paper.

Index Terms—Best linear unbiased estimator (BLUE), feedback
design, multiple-input multiple-output (MIMO) channel estima-
tion, training sequences.

1. INTRODUCTION

ECENTLY, wireless communication systems using

multiple antennas, usually referred to as multiple-input
multiple-output (MIMO) systems, have drawn considerable
attention, because MIMO systems promise higher capacity [1],
[2] than single-antenna systems over fading channels. Different
space—time coding techniques [3]-[6] have been proposed to
practically achieve the capacity advantages of MIMO systems.
To be able to achieve the coding advantage, it is required, for
many space—time coding schemes, to obtain accurate channel
information at the receiver. In practice, it is common that the
unknown channel parameters are estimated by sending known
training symbols to the receiver. This training-based channel
estimation approach at the receiver is suitable for quasi-static
or slowly varying fading channels.

Much work has been done to design training sequences for
channel estimation. There have been two major approaches to
designing optimal training sequences for both single-antenna
systems [7]-[12] and multiple-antenna systems [13]-[18]. One
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approach is to find training sequences that minimize the channel
estimation error [7]-[11], [14], [16] and the other approach is to
maximize a lower bound of the channel capacity [15]. A more
recent paper [19] presents optimal training sequence designs
under these two approaches for correlated MIMO channels.
Most of these works assume the presence of white noise. Not
much consideration has been given to the case of colored
interference, except in [20], where we address the training
sequence optimization problem in the presence of a single
interferer.

In this paper, we extend our result in [20] to the case in
which the colored interference is composed of thermal noise
and interference signals transmitted by multiple interferers. We
employ the best linear unbiased (BLUE) channel estimator to
estimate the channel matrix during the training period. The mean
squared error (MSE) of the BLUE channel estimator is used as a
performance metric for selecting the training sequence set. We
show that the interference covariance matrix decomposes into a
Kronecker product of temporal and spatial correlation matrices
and that only the temporal correlation needs to be considered
in obtaining the optimal training sequence set. The memory of
the colored interference induces a nontrivial eigenstructure of
the temporal correlation matrix in that some subspaces are less
contaminated by the interference. This motivates the problem
of judiciously allocating training power to these subspaces.
Based on this observation, we determine the optimal training
sequence set that minimizes the MSE under a total transmit
power constraint. We note that the optimization problem treated
in [19] turns out to be similar to the one treated in this
paper. In order to obtain the advantage of the optimal training
sequence design, we develop an information feedback scheme
that requires a minimal amount of information to be fed back
from the receiver to approximately obtain the optimal training
sequence set at the transmitter.

Numerical results show that we can reduce the MSE of the
BLUE channel estimator significantly by using the optimal
training sequence set instead of a usual orthogonal training
sequence set. We can also achieve comparable estimation
performance with the approximate optimal training sequence
set obtained by the proposed feedback scheme.

The rest of this paper is organized as follows. In Section II,
we describe the MIMO system model and the BLUE channel
estimator for the channel matrix based on the received training
sequence block. In Section III, the training sequence optimiza-
tion problem is considered and its solution is given. We also de-
velop the feedback scheme to approximately obtain the optimal
training sequence set in Section III. Numerical examples for the
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cases of autoregressive jammers and cochannel interferers are
provided in Section IV, and conclusions are drawn in Section V.

II. BLUE CHANNEL ESTIMATOR

We consider a transmitter—receiver pair with n; transmit
antennas and n, receive antennas over a frequency flat fading
channel in the presence of colored interference and white
thermal noise. We assume that the interference is composed of
signals transmitted by M interferers. The jth interferer has n;
transmit antennas. We assume that the transmission from the
transmitter to the receiver is packetized. Each packet contains
a training frame that is composed of a set of known training
sequences, each of which is sent out by a transmit antenna. In
matrix notation, the observed training symbols at the receiver
for a packet are given by

M
Y:HS—i—ZH,;SH—WzHS—i—E

i=1

(D

E

where S is the n; x N transmitted training symbol matrix that
is known to the receiver, IV is the number of training symbols
per transmit antenna, and S; is the n; X NV interference signal
matrix from the ith interferer. We assume that symbols in S;
are zero-mean, complex random variables, correlated across
both space and time. In addition, the interference processes
are assumed to be wide-sense stationary. We assume that the
number of training symbols N is larger than n;. The n, X n;
matrix H and n,. x n; matrix H; are the channel matrices from
the transmitter and the sth interferer to the receiver, respectively.
We assume that the elements in H and H; are independent,
identically distributed (i.i.d.) zero-mean, circular-symmetric,
complex Gaussian random variables with variance 0% and o2,
respectively. In addition, W is an additive white Gaussian noise
(AWGN) matrix and the elements in W are assumed to be
independent, zero-mean, circular-symmetric, complex Gaussian
random variables with variance Ufﬂ. Finally, Sq,...,Sy, H,
H,,...,H);, and W are all independent of one another.

Lety = vec(Y), h = vec(H), and e = vec(E), where
vec(X) is the vector obtained by stacking the columns of X on
top of each other [21]. Taking transpose and then vectorizing on
both sides of (1), we have

y=(8"®IL,)h+e )
where ® and I, denote the Kronecker product and n, X n,
identity matrix, respectively. In (2), h is the channel vector with
zero mean and covariance matrix o2I,, ,,, and e is the interfer-
ence-plus-noise vector with zero mean and covariance matrix
Q = E[ee’]. From the above, we note that e is independent
of h. During the training period, the BLUE [22] of the channel
vector h based on the received training block Y can be obtained
as

N T H ~_1(qT 1 -
h=|(8"®I,) Q' (S"®l,)+ —zlnne

x(sTeL )" qQly. 3
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We note that the interference-plus-noise vector is

M
e= Z vec(H;S;) + vec(W).
=1

“

Let s,(f_)j be the symbol transmitted by the kth antenna of the ¢th
interferer at time j and R\” (n) = E[sg)msg)n’: 4] be the time
correlation between the symbols at time instants m and m + n
from the kth antenna of the 7th interferer. Then it is not hard to

show that the Nn, X Nn, noise correlation matrix is given by

M
Q= (Z U’iZQE\Zf) + U'iIN) ® I,

i=1

&)

ng

M RY(0) P RY(N - 1)

iy RPN 1) L B O)
We note from (5) and (6) that the space correlations between
interference symbols from different antennas play no role in
the correlation matrix Q. This is due to the i.i.d. assumption
we made on the elements of the channel matrices H;, for 7 =
, m. This turns out to be a crucial property of the interfer-
ence model, as illustrated below.

The Kronecker product form of Q in (5) leads to the following
simplification of the BLUE for the channel vector h:

-1

. 1
h= { l(s*A;VlsT + —217“) S*AL' | ® Inr}y (7

g

where
M .

AN:ZJiZQS\Zf)‘FJ?DIN. (8)

1=1

Writing (7) back into matrix form, we have

. 1 -1
H=YA,'S? (SAJ—VlsH + —21,%> : ©)
g

Moreover, the MSE of the BLUE for H is given by
H 1 -t
MSEW) = tr [(ST ®L.,.) Q' (STeL,)+ —QIWH]
o
~1
1
]t
o

We assume that the channel matrices H and H; for 7
, M are short-term statistics that may change from packet
to packet. On the other hand, the interference correlation matrix
Q varies at a rate that is much slower than that of the channel
matrices. As a result, it is possible for the receiver to estimate
Q using a number of previous packets and feed back relevant
information to the transmitter, which can then make use of this
information to select the optimal training sequence set for the
estimation of H during the current packet.

=n, -tr [S*AleT + (10)
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III. TRAINING SEQUENCE OPTIMIZATION

We note that the MSE of the BLUE channel estimator
depends on the choice of the training symbol matrix (training
sequence set) S. Hence, it is natural to ask whether there
is an optimal set of training sequences that gives the best
estimation performance. Moreover, it is conceivable that the
optimal training sequence set will depend on the characteristic
of the interference. Hence, in order to obtain the advantage
of employing the optimal training sequence set, information
about the interference has to be measured at the receiver and
fed back to the transmitter so that it can construct the optimal
sequence set. The obvious questions are what information about
the interference we should feed back to the transmitter and
whether this feedback design is practical or not. We study
these questions in this section.

A. Optimal Training Sequence Set

To have a meaningful formulation of the sequence optimiza-
tion problem, we need to limit the maximum total transmit
power of the transmit antenna array to P. The following dis-
cussion provides a constructive method to obtain the optimal
training sequence set under this restriction.

Our goal is to minimize the MSE of the BLUE channel esti-
mator by selecting the optimal training sequence set S with the
total energy constraint tr(SS”) < N P. Therefore, we can ex-
press the training sequence set optimization problem as follows:

-1
1

min tr [S*AX,IST + —214 subject to tr(SS”) < NP.
g

(1D

LetS = SA;,I/ ®. We can rewrite the optimization problem in
(11) in the following form:

o 1 -1 L
min tr [SSH + —214 subject to tr(SANSH) < NP.
S g
(12)

Further, let 11, .. ., i, be the nonnegative eigenvalues of SS*
arranged in a descending order and )\gN), ce )\S\J,V) be the posi-
tive eigenvalues of A y arranged in an ascending order. To pro-
ceed, we need to make use of the following result, whose proof
can be found, for example, in [23, pp. 249].

Lemma 1: Suppose that X and Y are two Hermitian N x N
matrices. Arrange the eigenvalues z1,.. ., zy of X in a de-

’ ’

scending order and the eigenvalues Nyl, ...,yny of Y in an

ascending order. Then tr(XY) > >".°, z;y;.
Applying this lemma to the constraint in (12), we can bound

tr(SANST) = tr(ANSTS) > Y ™. (13)
1=1

Now, consider the following relaxed optimization problem:

¢ 1 -1

> i+
Hiseeosny £ o

=1

min

subject toZu,;)\EN) <NPand py>-->p,, >0. (14)

i=1
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This relaxed optimization problem can be solved by the standard
Karush—Kuhn—Tucker condition technique [25] since the cost
function and the constraint are both convex. Indeed, let

Ny = max{k €{1,2,...,n4}: \/)\,(CN)
k
STYA ST < UQNP} . (15)

k
=1 =1

We note that n, above is well defined and that the inequality
that defines n, in (15) holds for & = 1,...,n,, while it does
not hold fork = n. +1,..., n¢. With this definition, it is not

’ ’

hard to show that the optimal solution is given by

o?NP+3 AN

i_ ) H|—==t—-1] fork=1,...,n,
g = /A(L.N)'Z /AEN)
0 o fork =n.+1,...,n,.
(16)
We note that this solution has the standard water-filling [26]
interpretation.

If we can construct a matrix S such that the eigenvalues of
SSH are exactly the solution of the above relaxed optimiza-
tion problem and that tr(SANSH) = Y1, u’{/\,EN), then this
choice of S will be a solution of the original sequence optimiza-
tion problem in (12). It is easy to see that this can be done and

the resulting optimal training sequence set is given by

S. =V diag [\/MT/\W, . \/u,‘;tkg)} oy

a7

where V is an arbitrary n; X m; unitary matrix and Uy is the
N x ny matrix whose columns are the eigenvectors of A v cor-
responding to the n; smallest eigenvalues of A y. With this op-
timal choice of training sequence set, the minimum estimation
error achieved is given by

2
n.o’ (Z:L;l )‘EN))
o?NP +370, )‘z('N)

MSE(M) = + np(ne — ny)o?. (18)

A physical interpretation of this solution is that the optimal
training sequence set put its power to where the effect of the
interference is the smallest, hence the estimation error can be
minimized. We note that the optimal training sequence set is an
orthogonal set if V is chosen to be an identity matrix. However,
the optimal training sequence set, in general, is not necessarily
orthogonal. For instance, it is possible to obtain a choice of V
which spreads power evenly across the transmit antennas with
the use of nonorthogonal sequences. To do so, we need to con-
struct a unitary V to make the diagonal elements of

8.8 = Vdiag [iA™, . AV VE(9)
the same. This is shown to be possible in [24], and sucha 'V can
be constructed using a simple iterative procedure.

We note that not only does the choice of optimal sequence set
minimize the estimation error, but this choice also simplifies the
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implementation complexity of the BLUE for H. It is easy to see
that the BLUE channel estimator in (9) reduces to

H = YUydiag[wy,...,w,, ] VH (20)
where
M fork=1,..., Ths
wp =4 A’ / @1
0, fork=mn.+1,...,n4

Thus, the complexity of the BLUE with the optimal sequence
set reduces to O(nyn, N).

B. Feedback Design

In order to obtain the advantage of the optimal training se-
quence design, long-term statistics of the interference correla-
tion need to be estimated at the receiver and fed back to the
transmitter. We note from Section III-A that the optimal training
sequence set depends on the channel gain variance o2 and the
eigenstructure of the matrix A in (8). As a result, only these
two long-term statistics need to be estimated at the receiver. Ob-
viously it is desirable that only a minimal amount of information
is needed to be fed back from the receiver to gain the advantage
in reducing the estimation error of the short-term channel fading
matrix. In this section, we develop such a feedback scheme
based on the fact that a suitable Toeplitz matrix can be approx-
imated by a circulant matrix.

Since the interferer signals are wide-sense stationary, A
takes the form of a Toeplitz matrix. Indeed, consider a sequence
of complex numbers {a;}72___ such that a; = a*; and the ele-
ments of A  at the sth row and jth column is given by a;_ ;. The
sequence {a; }7° . is obtained by sampling the autocorrelation
function of the interference at the symbol rate. In addition, if the
sequence {a;}52___ is absolutely summable, then it is shown in
[27] that the Toeplitz matrix Ay can be approximated by the
circulant matrix

Ay =FyANFE (22)
where F y is the N x N FFT matrix, i.e., the (k, [)th element
of Fy is (1/v/N)e 7@r(k=1)(=1/N) ‘and Aisan N x N di-

agonal matrix with 6§N)7 ceey 61(\,N) as its diagonal elements.

A reasonable way [27] to obtain 5l(N), forl=1,...,N,is
Nl ork(l-1)
6I(N) = ag + 2R (Z ape’ N ) . (23)
k=1

With this choice of 6§N), cee 6](VN), it can be shown that A y
approaches Ayas N approaches infinity [27]. Moreover, if we

arrange 0, N) ..... JON ™ in an ascending order, we have
; (M| _
Jim {557 =V =0 (24)
forl=1,..., , ¢, and 5 (N) is the Ith smallest eigenvalue among

the set {51( [EA

Now we turn to the estimation of o2 and {ax}n . As
mentioned before, they are both long-term statistics and hence
should be estimated based on the observed training frames of
the previous K packets, where K is smaller than the number
of packets during which the long-term statistics remain the
same. Toward this end, let s; ;(n) denote the (3,/)th element of
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the training matrix S(n) and y; ;(n) denote the (7,/)th element
of the observed training matrix Y (n) as defined in (1) for the
nth packet, respectively. Then it is not hard to see that, for

i1=1,2,...,n,and k =0,1,...,N — 1,
(N — k)ag
Z Z Yi1()yi k() —o* NRy(F)| - (25)
] =n—-K+1 =1
where
1 n N—k n,
Ry (k) NK Z $m,1(J)Sm,14x (7). (26)

j=n—K+1 I=1 m=1

In addition, let Pg(n) be the N x N projection matrix onto
the subspace perpendicular to the one spanned by the rows
of the training matrix S(n) for the nth packet. Denote the
(¢, Dth element of Y(n)Pg(n) by ¢;;(n) and the (k, [)th
element of Pg(n) by px(n). Then it can be shown that, for

1 =1,2,...,n,, we have
N-1
agRP(0) + 2 Z R [ar RE (K)]
k=1
1 n N
=E|% > 2’| @
j=n—K+1 I=1
where
Ry (k) = K Z Z prisn(i (28)

j=n—K+1 I=1

We note that (25) for k = 0,..., N — 1 together with (27)
provides us 2N equations to solve for the 2N unknowns o2, ag
(both real-valued), and a, for k = 1,..., N — 1 (all complex-
valued). Thus, estimates of o2 and aj, for k = 0,1,...,N — 1
can be obtained by solving this set of linear equations with the
expectation terms replaced by their usual estimates as follows:

a0+U2RS( )

5% St

i=1 j=n—K+1 I=1

_nNK

ap + o* R (k)

n

>

i=1 j=n—K+1

Zyzl yzl+k J)
1=1

nNK

an-1+ JZRS( — 1)

Z Z vi1 ()95 ()

i=1 j=n—K+1
N-1

)+2 > RlaxRE(F)]

k=1

S DD DI e

i=1 j=n—K+1 I=1

- nTNK

CLORp

(29)
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In the above, the biased estimators ((N — k)/N)[(1/n.)
k1 ot Yia ()Yl (G) — oRy(R)]. for
k = 0,1,...,N — 1, have been employed to approximate
the corresponding expectations on the right-hand side of (25).
We note that the use of these biased estimators is similar to
the use of biased autocorrelation function estimators in the
Yule—Walker method of estimating the power spectral density
of an AR process [28].

In summary, we can use the solution of (29) to estimate the
autocorrelation function of the interference at the receiver and
obtain estimates of the 6I(N)’s by (23). Then the estimated value
of o2, the n; smallest § Z(N) ’s, and the corresponding indices are
fed back to the transmitter. At the transmitter, we can replace
Unx by the columns of Fy that are indexed by the feedback
indices to construct the optimal training sequence set for the
current packet.

We note that the estimates of the a;,’s obtained by solving (29)
do not guarantee the resulting estimates of the §;’s and o2 to be
positive, although this is almost always the case when N, K, and
n, are sufficiently large. When the estimate of o2 is negative,
we heuristically use the absolute value of the estimate instead.
In addition, we do not use those ¢ s with negative estimates in
finding the n; minimum values of )\§N)7 R )\%V) as described
before.

C. Asymptotic Estimation Performance Gain

It is illustrative as well as practical to develop a simple mea-
sure that can tell us how much advantage we can obtain by em-
ploying the optimal training sequence set over other choices
of training sequences. For instance, if the receiver determines
that there is not much to gain by using the optimal training
sequences, it can inform the transmitter to keep on using the
current ones. To this end, we employ equal-power orthogonal
training sequences as our baseline for comparison, since these
training sequences are commonly [13]-[16] suggested when the
noise is white.

First, we want to obtain the worst-case MSE, MSES\Q(, when

equal-power orthogonal training sequences are employed and
the total transmit power is P. It is not too hard to see that

-1
1
max tr [SAleH + —21m]
SSH=NPI o

Uz

)\min (SAJ_\IlsH) + O.LQ

< ;
min

SSH=NPI

Nt

NP 1 1

ne A + o

-1
1
max tr [SAleH + —21m]
o

SSH=NPI
n
= in A tSA_lsH L
min » -
SSH:NPI max ( N ) + 0.2
Uz
T NP1 1 (30)
ng A o?

N—ng+1
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where Apin(-) and Apax(-) are the minimum and max-
imum eigenvalues of a Hermitian matrix, respectively, and
(1) (V) : .
A7, .., Ay are the eigenvalues of Ay arranged in an as-
cending order. From (10), we can bound the worst-case MSE as
TNt
NP 1

VNG
e AN—nt+1

TNt
NP 1 1°
e A T

< MSEWY) <

max

T 31)

On the other hand, from (18), when the optimal training se-

quence set is employed, the minimum MSE can be bounded by

T Moy T Moy

N)

<MSEW) < . (32)
1A - NP 1 1A
a7 XM . XM T 57 ()

(o

NP 1
Ny A(IN)

Combining (31) and (32), we can bound the ratio between the
minimum MSE and the worst-case MSE by

1,1 Tt S
- A +o= NP MSE&N) N A0 NP
me 1 a2 w0 “MSE®) Ty 11 aY
N T o2 XN NP AT e A NP

C C

(33)
This MSE ratio gives the maximum possible relative reduction
in the estimation error that we can obtain by using the optimal
sequence set under a specific set of interferers. Here we obtain a
simpler performance metric by considering the asymptotic value
of this MSE ratio when N is very large.

To do so, we employ the following results regarding the ex-
tremal eigenvalues of the sequence of Toeplitz matrices { Ay}
in [29, Ch. 5]. Suppose that the sampled autocorrelation se-
quence, {a,}5> __, of the wide-sense stationary interference
process is absolutely summable. Let

(e}

§ : anefjnw

n=—oo

Alw) =

be the discrete-time Fourier transform of {a,, }52 Then, for

1 =1,2,...,n, we have

—00"

lim )\EN)
N —o00

lim AV =

N—oo N—itl

min  A(w)
0<w<L2m

max A(w).

0<w<L27

(34)

From (15) and (34), we see that limy_,oc 7+« = n¢. Applying
this and (34) to (33), the asymptotic maximum MSE reduction
ratio is given as follows:

MSE(V) 0<rgi<n27r A(w)
F:A}im EkN) === Aw) (35)
T MSEpay 205, A

IV. NUMERICAL EXAMPLES

In this section, we consider two examples to illustrate the po-
tential advantage of employing the optimal training sequence
set. The first example considers the case when the interference
signals are described by first-order autoregressive (AR) random
processes. The second example considers the case in which the
interference is caused by cochannel interferers whose signal
structures are exactly the same as that of the desired signal. We
assume that the desired user has two transmit antennas and three
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receive antennas. In each example, we evaluate the MSEs of
the BLUE channel estimator when the following three different
training sequence sets are employed:

1) the Hadamard sequence set, i.e., the first two rows of a
Hadamard matrix are used as the training sequences;

2) the optimal training sequence set described in Sec-
tion III-A; and

3) theapproximate optimal training sequence set described

in Section III-B.

A. AR(1) Jammers

We assume that there are two jammers in the system. Both
jammers have one transmit antenna. The interference signals
from the jammers are modeled by two first-order AR processes
with AR parameters 0 < a1, as < 1, respectively. For instance,
the AR model of the first jammer is given by

55,1) = alsg )1

+ U (36)

where wu; ; is a white Gaussian random process with zero mean
and variance o2 ;. The AR parameter can be interpreted as the
intensity of correlation among the symbols of the jammer. It is
easy to verify that, for this case, we have

2 o2

Z mum 2

. 37
— 1+ a2, —2amcosw+0“’ 37)

Hence, the asymptotic maximum MSE reduction ratio is given
by

Qm

22 02 P, 1 —
m=1 o2

— 41
1+ a,, +
2
Zm:l

I =

(38)

o2 P, 14 77
o

1—a,, +1
where P,
jammer.

The MSEs of the BLUE channel estimator with the three
different training sequence sets are shown and compared in
Figs. 1 and 2 for the two different combinations of «; and as.
In each case, we consider different lengths (N = 16, 32, 64,
128,256, 512, and 1024) of the training sequences and different
received signal-to-interference ratios ((0? P/o? P;) = 0 dB and
—20 dB for ¢« = 1 and 2). The received signal-to-noise ratio
(SNR) (02P/02) is set to 10 dB. The technique described in
Section III-B is employed to obtain the approximate optimal
training sequences. We have assumed that the received training
signals from ten previous packets are employed to estimate
the jammer information at the receiver. The training sequences
used in the previous ten packets are the Hadamard sequences
described above.

From these figures, we observe that there exist only min-
imal differences between the MSEs of using the optimal training
sequence set and approximate optimal training sequence set.
Obviously, this is a desirable result, because it indicates that
we can obtain comparable performance to the optimal training
sequence set by estimating the jammer information at the re-
ceiver and feeding back only a small amount of information to
the transmitter. In general, we see that the optimal training se-
quence set significantly outperforms the Hadamard sequence set
in all the cases considered. The advantage of using the optimal

=07 ,,/(1 — a2,) is the transmit power of the mnth
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AR(1) jammers ,=0.3, ¢,,=0.5
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Fig. 1. Comparison of MSEs obtained by using different training sequence

sets. Two AR(1) jammers with vy = 0.3 and o2 = 0.5.

AR(1) jammers 0,,=0.7, 0,,=0.9

10' :
0
107 ¢
® 10
= 10
10—2 — Optimal seq. set, SIR=0dB
—— Approx. optimal seq. set, SIR=0dB
— - Hadamard seq. set, SIR=0dB
© Optimal seq. set, SIR=-20dB ~
-6~ Approx. optimal seq. set, SIR=—20dB
-O- Hadamard seq. set, SIR=—20dB
0—3 L 5 A 5
10' 10 10
N

Fig. 2. Comparison of MSEs obtained by using different training sequence
sets. Two AR(1) jammers with o; = 0.7 and 2 = 0.9.

training sequence set increases as the correlation parameters
a;’s increase. The asymptotic maximum MSE reduction ratios
for the cases considered above are shown in Table I. For com-
parison, the MSE reduction ratios obtained by using the optimal
sequenceset against the Hadamard sequence set for N = 1024
are also included in Table I. We can deduce from the table that
the Hadamard sequence set is rather inefficient. In addition,
much more reduction in MSE can be obtained using the optimal
sequence set when both of the a;’s are close to 1.

B. Cochannel Interferers

In this example, we assume that the interference is caused by
two cochannel interferers whose signal format is similar to that
of the desired user. More precisely, let us assume that the trans-
mitted signal at the sth transmit antenna of the mth interferer is

given by
,/ Z 0Pt —IT — 1) (39)

l=—00
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TABLE 1
COMPARISON OF ASYMPTOTIC MAXIMUM MSE REDUCTION RATIO AND MSE
RATIO BETWEEN USING OPTIMAL AND HADAMARD SEQUENCES IN THE
CASE OF AR JAMMERS

] = 0.3, Qg = 0.5

. MSE with optimal segs. _
SIR Asymp. max. MSE reduct. ratio | prep——mr ey Segs. (N =1024)
0dB —7.08dB —4.81dB
—20dB —7.46dB —3.37dB
a1 =07, as = 0.9
. MSE with optimal segs. o
SIR Asymp. max. MSE reduct. ratio | prep——m e Sogs. (N =1024)
0dB —18.77dB —15.56dB
—20dB —20.30dB —10.05dB

where bET) is the sequence of data symbols, which are assumed

to be i.i.d. binary random variables with zero mean and unit

variance, from the ith antenna of the mth interferer, 1 (t) is

the symbol waveform, 7" is the symbol interval, and 7, is the

symbol timing difference between the mth interferer and the

desired signal. Without loss of generality, we can assume that
€ [0,T). We also assume that [~ |¢(t)|?dt = 1.

Wlth the model described above, the elements of the interfer-
ence signal matrix S,,, in (1) are samples at the matched filter
output at the receiver at time k7. Specifically, the (¢, k)th ele-
ment of S,,, is given by

(M)

Z b (k= DT = 7,) (40)
|l=—00
where
b0 = [ vt =9 (s)as 41)

is the autocorrelation of the symbol waveform. Thus, it is easy
to see that the sampled autocorrelation sequence

an—ZJ Py, Z 1/1 (Il=n)T

l=—00

— ) V(1T =7) + 05,60

(42)
and its discrete-time Fourier transform is given by

2

2 o
Aw) =3 > DT + e +0?
m—1 n=—oo
2 2 oo ) 2
o= P, o fw— 27k J(w=27k)Tm
R
DY
m—1 T n=—oo T
o2 (43)

Vyhere P, is the transmit power from the mth interferer,
V(Q) = [¥(Q)]% and ¥(R) is the Fourier transform of the
symbol waveform ) (t).

To illustrate how the use of the optimal training sequence set
can benefit the channel estimation process, let us consider the
following two common symbol waveforms:
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Co-—channel interferers (rectangular pulse) 1,=0.3T, 1,=0.5T

10 T
0
10° ¢
% 1o
=10
2 | -
10 — - Optimal seq. set, SIR=0dB
—— Approx. optimal seq. set, SIR=0dB .
— - Hadamard seq. set, SIR=0dB T
©- Optimal seq. set, SIR=—20dB
-6~ Approx. optimal seq. set, SIR=-20dB
-O- Hadamard seq. set, SIR=—20dB
-3 L N
10 1 2 3
10 10 10
N
Fig. 3. Comparison of MSEs obtained by using different training sequence

sets. Two cochannel interferers with rectangular waveforms and delays 7, =
0.3T, 7o = 0.5T.

1) Rectangular Symbol Waveform: In this case

t 0<t<T
1 R T =t=
p(y=4 1 OSIST g yiy={ oot T<i<or
0, otherwise T .
0 otherwise.

From (43), we have

2 2 2
San ()0
mz::lom ) T T

+2 (%’”) (1- T) cosw| + 02, (44)
Hence, the asymptotic maximum MSE reduction ratio is
o? 2
Y2 Tmlm (2T 1) 41
r= L o ( ) (45)

S

0.2

From (45), the use of the optimal training sequence provides no
gain when the cochannel interferers are symbol-synchronous to
the desired user signal, i.e., ; = 7o = 0. On the other hand,
when 7; = 19 = 0.57, the asymptotic maximum MSE reduc-
tion ratio attains its smallest possible value. This means that we
can almost completely eliminate the effect of the interferers by
using the set of long optimal training sequences.

As before, we compare the MSEs of the BLUE channel es-
timator with the three different training sequence sets in Fig. 3
by considering the case in which 71 = 0.37 and 7» = 0.57.
The other parameters are chosen as in the AR jammer example
before. Again, from Fig. 3, we observe that there exist only min-
imal differences between the MSEs of using the optimal training
sequence set and approximate optimal training sequence set,
and that the optimal training sequence set significantly outper-
forms the Hadamard sequence set in all the cases considered.
The asymptotic maximum MSE reduction ratios for the cases
considered above are shown in Table II. For comparison, the
MSE reduction ratios obtained by using the optimal sequence
set against the Hadamard sequence set for N = 1024 are also
included in Table II. We can deduce from the table that the
Hadamard sequence set is rather inefficient.
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TABLE 11
COMPARISON OF ASYMPTOTIC MAXIMUM MSE REDUCTION RATIO AND MSE
RATIO BETWEEN USING OPTIMAL AND HADAMARD SEQUENCES IN
THE CASE OF COCHANNEL INTERFERERS

Rectangular waveform 71 = 0.37, 79 = 0.5T

. MSE with optimal segs. _
SIR Asymp. max. MSE reduct. ratio | prep—mr e SO, (N =1024)
0dB —9.07dB —6.55dB
—20dB —10.94dB —7.08dB
ISI-free waveform 71 = 0.37, 79 = 0.57
. MSE with optimal segs. _
SIR Asymp. max. MSE reduct. ratio MSE with Hadamard segs. (N =1024)
0dB —6.73dB —4.54dB
—20dB —7.62dB —4.34dB

2) ISI-Free Symbol Waveform With Raised Cosine Spectrum
[30]: In this case, we have

T, 0<|0|< =02
w(1-03 w(1-3
s | Fosols -2
< 7(1+8)
— T
0, > =02

where 0 < 3 < 1 is the roll-off factor. Since >, _ U ((w—
27k)/T) = T for all w and W() is positive, it can be deduced
from (43) that o max Aw) = 32 _ 02 P, + 02. To find

m=1

0<rni<n2 A(w), because of symmetry of ¥(Q), it is enough to
consider the interval w € [r(1 — f3),7]. Over this interval, by

(43), we have

2 2
O P
Aw) =37 T

m=1
2
y { [Hm [M”
20
- - _—
—7(1 20T,
+ _1+cos %ﬁ—}_ﬂ) +2cos< ﬂ; >
- fo (1 )]
X 1+COS M
I L 268 ]
- (1 o
X [14cos M }—l—ag,. (46)
I L 28 ]
Simple calculus reveals that min  A(w) =
0<w<L27
2 02 Py cos®(n7,/T) + o2. Thus, the asymp-
totic maximum MSE reduction ratio is
an: 0,2,(;2Pm COSZ T Tom _|_1
T B o (%) o

Smt B 1
From (47), the use of the optimal training sequence provides no
gain when the co-channel interferers are symbol-synchronous
to the desired user signal, i.e., 71 = 72 = 0. On the other hand,
when 71 = 7 = 0.57, the asymptotic maximum MSE reduc-
tion ratio attains its smallest possible value. This means that we
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Co—channel interferers (ISI-free waveform) T =0.3T, 12=O.5T

10 T
0
10 ¢
B 11
s 10
10—2 L — - Optimal seq. set, SIR=0dB
— Approx. optimal seq. set, SIR=0dB
— - Hadamard seq. set, SIR=0dB RN
©- Optimal seq. set, SIR=-20dB
-6~ Approx. optimal seq. set, SIR=—20dB|
—O- Hadamard seq. set, SIR=—20dB
1 0—3 ! A
1 2 3
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N

Fig. 4. Comparison of MSEs obtained by using different training sequence
sets. Two cochannel interferers with ISI-free waveform waveforms and delays
71 = 0.37, 70 = 0.5T.

can almost completely eliminate the effect of the interferers by
using the set of long optimal training sequences.

As before, we compare the MSEs of the BLUE channel esti-
mator with the three different training sequence sets in Fig. 4 by
considering the case in which 7y = 0.37 and 75 = 0.57". The
roll-off factor of the ISI-free waveform is chosen to be 5 = 0.5.
The other parameters are chosen as in the AR jammer example
before. The conclusions from Fig. 4 are similar to those for the
rectangular waveform.

V. CONCLUSION

We have solved the problem of optimal training sequence de-
sign for MIMO systems over flat fading channels in the presence
of colored interfering signals. In order to obtain the advantage
of the optimal training sequence design, we have also developed
an information feedback scheme that requires a minimal amount
of information from the receiver to approximately construct the
optimal training sequence set.

Numerical results show that the MSE of the channel estimator
at the transmitter can be significantly reduced by using the
optimized training sequence set over the Hadamard training
sequence set that is often used in the case of white noise. In
addition, we observe that comparable estimation performance
can be achieved by using the approximate optimal training
sequence set obtained by the proposed feedback scheme.
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