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Abstract 

We present several techniques for knowledge 
engineering of large belief networks (BNs) based 
on the our experiences with a network derived 
from a large medical knowledge base. The noisy
MAX, a generalization of the noisy-OR gate, is 
used to model causal independence in a BN with 
multi valued variables. We describe the use of leak 
probabilities to enforce the closed-world 
assumption in our model. We present Netview, a 
visualization tool based on causal independence 
and the use of leak probabilities. The Netview 
software allows knowledge engineers to 
dynamically view subnetworks for knowledge 
engineering, and it provides version control for 
editing a BN. Netview generates sub-networks in 
which leak probabilities are dynamically updated 
to reflect the missing portions of the network. 

1 INTRODUCTION 

Given the relative maturity of algorithm development in the 
Bayesian reasoning community, attention is now starting to 
focus on applying these algorithms to real-world 
applications. The Quick Medical Reference-Decision 
Theoretic (QMR-DT) project seeks to develop practical 
decision analytic methods for large knowledge-based 
systems. The first stage of the project converted the 
Internist-1 knowledge base [Miller, Pople et al. 1982] 
(QMR 's predecessor) into a binary, two-layered belief 
network (BN) [Middleton, Shwe et al. 1991; Shwe, 
Middleton et al. 199 1]. In the second stage of the QMR-DT 
project we are creating a multilayer belief network with 
mu1tiva1ued variables, and developing efficient inference 
algorithms for the network. This paper will concentrate on 
the knowledge engineering issues we faced when building a 
large multilayered BN. 

To create a large multilevel, multivalued BN we took 
advantage of a rich knowledge base, the Computer-based 
Patient Case Simulation system (CPCS-PM), developed 
over two years by R. Parker and R Miller [Parker and 
Miller 1987] in the mid-1980s as an experimental extension 
of the Internist-! knowledge base. 

This paper makes contributions both in knowledge 
engineering and in algorithm development and 
implementation for large BNs. We describe the CPCS BN 
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that we developed, the dynamic network tool that we 
designed and implemented to aid knowledge engineering 
for CPCS, and the Bayesian network algorithms that we 
employed for this large, complex network. 

The CPCS is one of the largest BNs in use at the current 
time, and its sheer size makes most tasks, such as 
knowledge engineering or evaluation, challenging. The 
development of CPCS necessitated the implementation of 
algorithms that could make inference in BNs of this size 
more efficient. An example of this is a generalization of the 
noisy-OR gate [Cooper 1986; Peng and Reggia 1987; Pearl 
1988] that is commonly used in binary valued networks to 
model causal independence. The CPCS BN contains nodes 
that are multivalued, for example, disease nodes may have 
four values (absent, mild, moderate, severe), consequently 
we use a generalization of the noisy-OR gate called the 
noisy-MAX. The specification of a complete conditional 
probability matrix for a node m with sm values and n 

predecessors requires the assessment of (sm -l)IJ�=I s; 
probabilities, where s;is the number of values of 
predecessor i (for a binary network this reduces to 2n ) . In 
contrast, the causal independence assumption in the form of 
a noisy-gate reduces this assessment task to Ln(sm -l)s; 
probabilities. thereby simplifying knowledge dcquisition 
and greatly reducing storage requirements. 

To aid in the editing and refinement of the CPCS BN, we 
have developed a network visualization tool we named 
Netview. The Netview tool provides dynamic views of the 
BN, and can generate subnetworks by taking advantage of 
the noisy-MAX and leak assumptions. For inference, the 
network, or subnetworks generated by Netview, are sent to 
the IDEAL package [Srinivas and Breese 1989] for 
inference. Netview is a flexible tool which can be used in 
any BN that uses noisy-gates, and is described in section 
5.1. 

Like the Internist- 1-derived B N, the CPCS BN uses leak 
probabilities [Henrion 1988] to represent the chance of an 
event occurring when all of its modeled causes are absent. 
We discuss our use of leak probabilities, and the 
modifications to the leak probabilities required by the 
dynamic network tool, in section 5.2. 

2 KNOWLEDGE BASE TO BELIEF NETWORK 

The CPCS-PM system is a knowledge base and simulation 
program designed to create patient scenarios in the medical 
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sub-domain of hepatobiliary disease, and then evaluate 
medical students as they managed the simulated patient's 
problem. Unlike that of its predecessor lnternist-1, the 
CPCS-PM knowledge base models the pathophysiology of 
diseases-the intermediate states causally linked between 
diseases and manifestations. The original CPCS-PM system 
was developed in FranzLisp. Diseases and intermediate 
pathophysiological states (IPSs) were represented as Lisp 
frames [Minsky 1975]. 

To construct the BN we converted the CPCS-PM knowledge 
base to CommonLisp and then parsed it to create nodes. We 
represented diseases and IPSs as four levels of severity in 
the CPCS BN-absent, mild, moderate, and severe. 
Predisposing factors of a disease or IPS node were 
represented as that node's predecessors, and findings and 
symptoms of a disease or IPS node as the successors for that 
node. In addition to the findings, CPCS contained causal 
links between disease and IPS frames, we converted these 
links into arcs in the BN. Frequency weights [Shwe, 
Middleton et al. 1991] from the CPCS-PM ranged from 0 to 

5 and were mapped to probability values, as described in 
the next section. Frequency weights from the CPCS-PM 
were mapped to probability values based on previous work 
in probabilistic interpretations of Internist-1 frequencies. 

We generated the CPCS BN automatically, we did manual 
consistency checking using domain knowledge to edit the 
network. Because the CPCS-PM knowledge base was not 
designed with probabilistic interpretations in mind, we had 
to make numerous minor corrections to remove artifactual 
nodes, to make node values consistent and to confinn that 
only mutually exclusive values were contained within a 
node. 

The resultant network has 448 nodes and 908 arcs (Figure 
1). A total of seventy four of the nodes in the network are 
predisposing factors and required prior probabilities, the 
remaining nodes required leak probabilities assessed for 
each of their values. We thus had to assess over 560 
probabilities to specify the network fully. 

Figure I. A small portion of the CPCS BN displayed in the Netview visualization program. The node ascending
cholangitis in the third row shown in inverse has been selected by the user. 
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While the CPCS-PM knowledge base is derived from the 
Internist-! knowledge base it has been significantly 
augmented by inclusion of the IPS states, and multi valued 
representations of both diseases and manifestations of 
disesase. The original QMR-BN transformation of the 
Internist-! knowledge base used only binary valued disease 
and manifestation nodes. While conceptually simple, this 
approach does not adequately reflect the potential variation 
in presentation of disease manifestations, or the severity of 
diseases. 

3 GENERALIZATION OF THE NOISY-OR 

3.1 NOISY-OR 

The noisy-OR is a simplified BN representation that 
requires far fewer parameters than the full conditional
probability matrix. The noisy-OR is defined over a set of 
binary-valued variables, and is typically described for a 
two level network partitioned into two sets of variables, 
which are interpreted as either cause and effect variables 
respectively, or disease and manifestation variables 
respectively [Peng and Reggia 1987]. Consider an effect 
variable X that has n cause variables or predecessors 
D1, ••• ,Dn· The noisy-OR can be used when ( 1) each D has 
an activation probability p; being sufficient to produce the 
effect in the absence of all other causes, and (2) the 
probability of each cause being sufficient is independent of 
the presence of other causes [Henrion 1988]. 

In this paper, we define variables using upper-case letters, 
and values that variables can take on using lower-case 
letters. The domain of possible values for variable X is 
ilx. If variable X is present it is denoted using the letter x; 
if it is absent, it is denoted using x . 

The activation of a variable X by a predecessor variable D; 
is independent of the value of D;. Under the noisy-or 
assumption, X is activated when D; is active,_ with a 
conditional probability given by P; = P(x I d; {'·dk). In 
other words, this activation probability deh'

otes the 
probability when lJi is active and all other predecessors are 
inactive. 

For a two-level noisy-OR network, we define a set V of 
cause or disease variables, and a set W of effect or 
manifestation variables. If there is a set VI of V of 
predecessors of X e W that are present, then since the D; 
in VI are independent, X will be false when all D; are false: 

P(X= X I VI)= II P(D; =d;) 
i:D;eV1 

P(X =X I Vj) = II (1- P;). 
i:D;eV1 

From this, it is simple to derive 

P(X=xiVI)=l- II(l-p;). 
i:D1eV1 
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Figure 2. A node x with 
predecessors D i• n, E \tf having 

ordered states {0,1,2,3 }. The 
shaded area represents the 

probabilities required to calculate 
the P(X= 2! VI). 

If there are multiple "manifestation" variables Aj, for 
j=1 , .. . ,l, then we obtain 

P(Xi =xi I VI)=1- II(l-pii) 
i:D;eV1 

where Pij is the link probability on the arc from D; to Xi 

The simple noisy-OR is insufficient for the CPCS BN 
application, since we need to accommodate n-ary variables. 
For example, CPCS BN disease and IPSs can take on values 
such as absent, mild, moderate, and severe. 

3.2 NOISY- MAX 

Consider a generalization of the noisy-OR situation in 
which each variable is allowed to have a finite discrete state 
space (rather than just a binary state space). This 
generalization was first proposed by [Henrion 1988], but he 
did not describe the algorithmic details. In developing this 
generalization, we assume that we have a set V of 
predecessor variables D1, ... ,Dn. Consider first the case 
where we have a variable X with a subset V1 of V that are 
present, with the predecessors indexed by i,j, ... ,q. 

The variable domains in CPCS BN are all partially ordered, 
for example, {absent, mild, moderate, severe}, and it turns 
out that such a partial ordering is necessary for all variable 
domains. For the remainder of our work we assume that all 
variables have ordered domains. 

We now want to compute 

The value xis given by x = max(i,j, .. . ,q) [Henrion 1988]. 
In other words, X takes on as its value the maximum of the 
domain values of its predecessors, given that the 
predecessors are all independent. 
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This computation of P(X ==xI V1) can be viewed as setting 
up a hypercube of dimensions i x j x · · · x q and summing 
the cells, each of which contains a probability value 
fljk··q P;jk··q. As an example of the derivation of the general 

formula, we consider the case of two predecessors D; and 
{}_j. If these variables take on values i,j respectively, then 
the probability P(X =xI V1) , where x = max(i,j) . For 
example, Figure 2 graphically depicts the conditional 
probability matrix for D; and D j, both of which have 
ordered states {0, 1,2,3}. If x=2, then P(X=21D;.Dj) 
consists of the shaded squares of the grid. 

In this multivalued noisy-MA X  situation, the probabilities 
that are being calculated in these hypercubes are cumulative 
probabilities, that is, P(X s; xI D s; d) . For notational 
convenience, we define the cumulative probability for a 
variable X that has a single predecessor D with maximum 
domain value d as: 

\f(x I d)= P(X s; xI D s; d) . 

Under the generalized noisy-OR assumption, for a given 
variable X with a set of q predecessors D1, ... , Dq for 
which each D; has maximum value d;, we know that 

i:D;E� 

= IJ'P(xld;), 
i:D;eV1 

Note that using this transformation, we can define the 
probability assigned to X taking on a particular value Xk : 

The unconditional probability assigned to a variable can be 
derived in an analogous fashion. First, we need to derive 
the unconditional probability of variable D;. assuming no 
predecessors. As described in [Provan 1994], this is given 
by 

P(X $. x) = P(L s; 1) IJ [p;P(D; s; d;) + (1- P; )]P(x I V1). 
i:D,eV1 

The unconditional probability is given by 

P(XS:x) = IJ[p;P(D; :S:d;)+(l-p;) ]. 
i:D;EV 

The unconditional probability assigned to X taking on a 
particular value x is: 

Using this approach, the value P(x I V1) can be computed in 
time proportional to the number of predecessors in V1. This 
generalized noisy-MAX has been implemented in IDEAL. 

Figure 3. Explicit representation 
of the leak probability as a cause 

of X. 

4 LEAKS 

As in any other knowledge representation scheme, the BN 
representation suffers from incompleteness, in that it 
typically cannot model every possible case. A leak variable 
can be used to enforce the closed-world assumption [Reiter 
1978]. The leak variable represents the set of causes that 
are not modeled explicitly. A leak probability is assigned as 
the probability that the effect will occur in the absence of 
any of the causes D1 , ... ,D n that are explicitly modeled. If 
the leak variable is explicitly modeled, then it can be 
treated like any other cause and can be depicted as such 
(Figure 3). In this representation, the leak node is always 
assumed to be "on", that is P(L=true) = 1.0. 

If the leak L with value l is factored into the calculation of 
the unconditional probability for variable X, then we obtain 

P(X s; x) = P(L s; l) TI [p;P(D; s; d; )+(1- P;)], 
i:D,�V 

Explicitly representing leak nodes in the CPCS BN would 
almost double the size of the network, so leaks are 
implicitly represented in the probability tables of a node's 
conditioning parents. The Netview knowledge engineering 
tool, described in section 5, facilitates the maintenance and 
editing of leak probabilities. Netview stores leak values 
separately, as if they were explicit nodes, and then inserts 
the leak values into the appropriate probability tables when 
exporting a network for inference in IDEAL. 

5 TOOLS FOR KNOWLEDGE ENGINEERING 

5.1 NETVIEW: A TOOL FOR NETWORK 

VISUALIZATION AND EDITING 

Verification and refinement of the structure of the CPCS BN 
is an important part of the QMR -Df project for two reasons. 
First, because the CPCS BN was generated from a pre
existing knowledge base. Second, the effect of model 
structure on network performance and accuracy is an 
important aspect of the QMR -Df project. 

During the knowledge engineering process, it became 
obvious that available tools were not suitable for 
visualizing and editing a network the size of CPCS BN 
(Figure 1). In particular, most tools only permit a static 
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view of the network, a limitation that made editing the 
CPCS network very hard. 

Netview was created to help knowledge engineering efforts 
by allowing knowledge engineers to focus on portions of 
the network. The program is implemented in Macintosh 
CommonLISP 2.01. The main features of Netview are 

o dynamic network layout 
o semantic labeling of nodes 
o version control 
• subnetwork generation and dynamic 

leak modification 
o leak value editing 

Because of the causal independence assumptions implied 
by the use of the noisy-MAX and noisy-0 R gates, 
knowledge engineers are can select smaller parts of the 
CPCS BN for viewing. Netview allows the user to view all 
ancestors, all predecessors, or all ancestors and 
predecessors of selected nodes. For example, in Figure l 
while the node ascending-cholangitis is selected (inverse 
color), we can use Netview's ability to show all successors 
and predecessors of the selected node or nodes, resulting in 
the subnetwork view shown in Figure 4 .  Other options 
include viewing nodes' Markov blanket, and immediate 
successors or predecessors. 

Netview uses a dynamic layout algorithm to display the 
selected nodes. The knowledge engineer is able to move 
rapidly between views by selecting nodes and choosing 
viewing options, or by retrieving previously saved views. 
Quickly viewing a node's predecessors allows rapid 
assessment of leak probabilities. 

In addition to subnetwork selection, Netview allows 
semantic labeling of nodes, and filtering based on semantic 
labels. For example, nodes in CPCS BN are labeled "lab 
finding," "symptom," "sign," "disease," "IPS," "liver 

disease," and so on. A node may have any number of 
semantic labels. Semantic labeling is a useful technique for 
filtering nodes to focus attention during knowledge 
engineering. It is possible, say, to focus only on "gastric" 
findings and diseases when dealing with the appropriate 
domain expert. In the future we will also use the semantic 
labels in the dynamic layout algorithm to improve the 
appearance of subnetwork views. 

It is useful to keep track of modifications while editing the 
BN. To facilitate this, Netview includes basic version 
control to store deleted and added arcs and nodes and 
changes to probability tables. Arc and node additions and 
removals between versions are displayed through the use of 
different colors. 

5.2 SUBNETWORK GENERATION AND DYNAMIC 

LEAK MODIFICATION 

5.2.1 Subnetwork generation 

The Netview program is used only for network 
visualization and editing; Netview saves files in IDEAL 
format for inference. Because of the size of the CPCS BN it 
is not always desirable to send the entire network to IDEAL 
for inference. If we are only interested in verifying a small 
set of diseases we can generate a subnetwork including 
only those diseases of interest and their associated findings, 
IPSs and predisposing factors. When we run test cases 
against a subnetwork we don't require the system to 
compute the posterior probabilities of diseases that we are 
not interested in. 

5.2.2 Dynamic leak modification 

Subnetworks we select from the full CPCS BN using 
Netview can be exported to IDEAL for inference. It is 
possible to select subsets of the larger CPCS BN for 
inference due to the presence of leaks . 

Figure 4. A subnetwork of the CPCS BN displayed in Netview. This view comprises all predecessors and 
successors of the node ascending-cholangitis. 
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Figure 6. Subnetwork creation. Node D3is removed from the network, the value of the leak node /, p , is 
updated to p ' based on the probability of D3• 

When a subnetwork is saved Netview updates the leak 
probabilities to take into account the missing diseases. In 
the CPCS BN the node hepatomegaly has parents shown in 
figure 5, The leak probability for hepatomegaly is therefore 
calculated based on this set of predecessors. In figure 4 a 
subnetwork was selected based on the ancestors and 
predecessors of the disease ascending-cholangitis. Conse
quently, the only parent of hepatomegaly in the subnetwork 
is ascending-cholangitis, its other parents are not included. 
The transformation of leak probabilities required during 
subnetwork creation is shown in Figure 6. The leak 
probability must be updated from p to p'. This updating is 
done in order to preserve the total probability mass. If the 
value I of L is updated to a value l' for new leak L', we can 
compute the updated leak node probability as 

p' = P(L '5.lA D3 '5. d3) 
= P(L '5.l)P(D3 '5. d3) 
=[p3P(D3 '5.d3)+(l- p3)] 

If we want to combine a set of Q nodes into a leak node, 
where each node d1 in Q has link probability, then the new 
leak node probability is given by: 

p' =P(L'5.lAD1 '5.d1A···ADq '5.dq) 

= P(L '5./) fl P(Dt '5. d;) 
i:D1eQ 

=P(L-5./) n[p;P(D;'5.d;)+(l-p;)]. 
i:D1eQ 

We prove in [Provan 1994] that if the network is 
hierarchical and there are no arcs between nodes at the 
same level of the hierarchy, then the leak updating is sound, 
that is, the probability assigned to X given the new set of 
predecessors is the same as the probability assigned to X 
with the original predecessors. This proof holds if the 
subnetwork consists of a Markov blanket of a node, all 
predecessors and successors of a node, or all successors of 
a node. The assumption for the proofs holds for the CPCS 

��-
Figure 5. Parents of the node hepatomegaly. 

BN, and we are exploring how much the network 
performance changes when the assumption is relaxed. 

5.2.3 Information metrics 

When subnetworks are created some information is lost as 
parts of the network are excluded. A future area of research 
is to use Netview to calculate the information Joss of a 
subnetwork based on information metrics [Provan 1993], 
and to compare differences in posterior probability between 
the complete network and the subnetwork which has been 
selected. 

6 RELATED WORK 

The generalization of the noisy-OR was first proposed in 
[Henrion 1988], and the derivation and implementation 
described here follow that original proposal. Two related 
generalizations are described in [Srinivas 1993] and [Diez 
1993]. The generalization of the noisy-OR by Srinivas is 
different to this proposal, and is intended for a different 
application. This generalization is for circuits (or other such 
devices) which can be either functional or non-functional. 
In the case of medicine, findings can take on values such as 
{absent, mild, moderate, severe}, in which case the binary 
generalization of Srinivas is insufficient to deal with 
arbitrary n-ary variables. The noisy-MAX generalization in 
[Diez 1993] is virtually identical to the one described here, 
and we have derived our noisy-MAX independent of that in 
[Diez 1993). Also, the proposal in [Diez 1993] is described 
within the context of learning models for OR-gates, and its 
application to inference in Bayesian networks is not directly 
apparent. 

To our knowledge, there is no other tool which allows 
dynamic selection of subsets of Bayesian networks. There 
are several graphical tools for creating Bayesian networks, 
including IDEAL Edit, Ergo, Hugin [Andersen, Olesen et al. 
1989], and Demos [Morgan, Henrion et al. 1987]. But these 
tools do not provide dynamic network layout and do not 
have features aimed at knowledge engineering large BNs. 

7 CONCLUSION 

In this paper we have presented several methods for 
representing, and a software tool for managing, large BNs 
based on our experience with the CPCS BN. The noisy-MAX 
is a generalization of the noisy-OR gate for multivalued 



490 Pradhan, Provan, Middleton, and Henrion 

variables which reduces the complexity of the knowledge 
acquisition task and storage requirements for a network. 
Leak probabilities are used in the CPCS BN to model causes 
other than those explicitly modeled in the network. 

Based on the causal independence assumptions of the 
noisy-MAX, and the use of leak probabilities we have 
developed Netview, a tool for visualizing BNs based on the 
dynamic layout of subnetworks, and which also provides 
basic version control for editing networks. The creation of 
subnetworks allows for more efficient knowledge 
engineering, and for easier verification of the B N. We 
describe a technique for updating leak probabilities based 
on the excluded parents of a node in subnetworks. 

Recent advances in creating BNs from pre-existing data or 
knowledge bases will result in networks that are larger and 
more complex than those created manually. We believe that 
the techniques described in this paper are important to 
facilitate the management and verification of such 
networks. 
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