
J. Appl. Math. & Computing Vol. 17(2005), No. 1 - 2, pp. 457 - 473

NUMERICAL IMPLEMENTATION OF THE QMR
ALGORITHM BY USING DISCRETE STOCHASTIC

ARITHMETIC

FAEZEH TOUTOUNIAN, DAVOD KHOJASTEH SALKUYEH∗ AND BAHRAM ASADI

Abstract. In each step of the quasi-minimal residual (QMR) method
which uses a look-ahead variant of the nonsymmetric Lanczos process to
generate basis vectors for the Krylov subspaces induced by A, it is necessary
to decide whether to construct the Lanczos vectors vn+1 and wn+1 as reg-
ular or inner vectors. For a regular step it is necessary that Dk = W T

k Vk

is nonsingular. Therefore, in the floating-point arithmetic, the smallest
singular value of matrix Dk, σmin(Dk), is computed and an inner step is
performed if σmin(Dk) < ε, where ε is a suitably chosen tolerance. In prac-
tice it is absolutely impossible to choose correctly the value of the tolerance
ε. The subject of this paper is to show how discrete stochastic arithmetic
remedies the problem of this tolerance, as well as the problem of the other
tolerances which are needed in the other checks of the QMR method with
the estimation of the accuracy of some intermediate results. Numerical
examples are used to show the good numerical properties.

AMS Mathematics Subject Classification : 65F10, 65G50.
Key words and phrases : Iterative methods, QMR method, look-ahead
Lanczos algorithm, error propagation, CESTAC method, discrete stochas-
tic arithmetic, CADNA library.

1. Introduction

The classical conjugate gradient method (CG) of Hestenes and Stiefel [11]
is one of the most powerful iterative schemes for solving a Hermitian positive
definite linear system. For general non-Hermitian matrices, the situation is less
satisfactory. The biconjugate gradient (BCG) method is the ”natural” general-
ization of the classical conjugate gradient for Hermitian positive definite matrices

Received September 24, 2003. Revised August 8, 2004. ∗Corresponding author.

c© 2005 Korean Society for Computational & Applied Mathematics and Korean SIGCAM.

457

458 F. Toutounian, D. Khojasteh Salkuyeh and B. Asadi

to general non-Hermitian linear system. Unfortunately, the original BCG algo-
rithm is susceptible to possible breakdowns and numerical instabilities. In [9],
Freund and Nachtigal have presented a novel BCG-like approach for general
nonsingular non-Hermitian linear system, the quasi-minimal residual algorithm
(QMR), which overcomes the problems of BCG. The method uses a look-ahead
variant of nonsymmetric Lanczos process to generate basis vectors for Krylov
subspaces induced by A.

In section 2, we briefly describe the look-ahead Lanczos algorithm and QMR
method, and we observe that in each step of the look-ahead Lanczos process, it
is necessary to decide whether to construct the Lanczos vectors vn+1 and wn+1

as regular or inner vectors. As we know [9], for a regular step it is necessary
that Dk = W T

k Vk is nonsingular. Therefore, in the floating-point arithmetic, the
smallest singular value of matrix Dk denoted by σmin(Dk) is computed and an
inner step is performed if σmin(Dk) < ε, where ε is a suitably chosen tolerance.
Moreover, in section 2, we observe that there exist the stopping criterions which
require the suitable tolerances. As we know, in floating-point arithmetic, it is
absolutely impossible to choose correctly the value of such tolerances.

In section 3, we give a brief description of stochastic round-off error analysis,
the CESTAC method and the CADNA library [4, 16].

In section 4, we describe the QMR algorithm in the discrete stochastic arith-
metic, and we show that with the appropriate tests, it is possible in constructing
the Lanczos vectors vn+1 and wn+1 to decide correctly, to restart the QMR algo-
rithm if it is necessary, to stop the program as soon as a satisfactory solution or
an approximate solution with desired accuracy is reached, and to save computer
time, because many useless operations and iterations are not performed. Some
numerical results are given to show the good numerical properties.

2. The look-ahead Lanczos and the QMR algorithms

In this section, we briefly review the look-ahead Lanczos algorithm proposed
in [8], and QMR method [9]. In the following, A ∈ CN×N is always assumed
to be a given N × N matrix. Unless otherwise stated, by ‖x‖ we will mean
‖x‖2 =

√
xHx.

2.1. The look-ahead Lanczos algorithm

Let v1, w1 ∈ CN be any two vectors different from the zero vector. Starting
with v1, w1, the look-ahead Lanczos algorithm generate two sequences of vectors
v1, v2, . . . , vn and w1, w2, . . . , wn, n = 1, 2, . . ., that satisfy

span{v1, v2, . . . , vn} = Kn(v1, A),
span{w1, w2, . . . , wn} = Kn(w1, A

T), (1)

Numerical implementation of the QMR algorithm 459

and can be grouped into k = k(n) blocks

Vl = [vnl
vnl+1 . . . vnl+1−1], Wl = [wnl

wnl+1 . . . wnl+1−1], l = 1, 2, . . . , k − 1,

Vk = [vnk
vnk+1 . . . vn], Wk = [wnk

wnk+1 . . . wn],
where

1 = n1 < n2 < . . . < nl < . . . < nk ≤ n < nk+1.

The blocks are constructed such that we have

W T
j Vl =

{
0 if j 6= l,
Dl if j = l,

j, l = 1, 2, . . . , k,

where Dl is nonsingular, l = 1, 2, . . . , k−1, and Dk is nonsingular if n = nk+1−1.
The first vectors vnl

and wnl
in each block are called regular and the remaining

vectors are called inner. The kth block is called complete if n = nk+1 − 1; in
this case, at the next step n + 1, a new block is started with the regular vectors
vnk+1 and wnk+1 . Otherwise, if n < nk+1 − 1, the kth block is incomplete and at
the next step, the Lanczos vectors vn+1 and wn+1 are added to the kth block as
inner vectors.

With these preliminaries, the basic structure of the look-ahead Lanczos algo-
rithm is as follows.

Algorithm 2.1: A sketch of the look-ahead Lanczos algorithm [8]

0) Choose v1, w1 ∈ CN with ‖v1‖ = ‖w1‖ = 1;
Set V1 = v1, W1 = w1, D1 = W T

1 V1;
Set n1 = 1, k = 1, v0 = w0 = 0, V0 = W0 = ∅, ρ1 = ξ1 = 1;
For n = 1, 2, . . . do:

1) Decide whether to construct vn+1 and wn+1 as regular or inner
vectors and go to 2) or 3), respectively;

2) (Regular step.) Compute

ṽn+1 = Avn − VkD−1
k W T

k Avn − Vk−1D
−1
k−1W

T
k−1Avn,

w̃n+1 = AT wn − WkD−T
k V T

k AT wn − Wk−1D
−T
k−1V

T
k−1A

T wn,
(2)

set nk+1 = n + 1, k = k + 1, Vk = Wk = ∅, and go to 4);
3) (Inner step.) Compute

ṽn+1 = Avn − ζn−nk
vn − (ηn−nk

/ρn)vn−1 − Vk−1D
−1
k−1W

T
k−1Avn,

w̃n+1 = AT wn − ζn−nk
wn − (ηn−nk

/ξn)wn−1 − Wk−1D
−T
k−1V

T
k−1A

T wn;
(3)

4) Compute ρn+1 =‖ ṽn+1 ‖ and ξn+1 =‖ w̃n+1 ‖;
If ρn+1 = 0 or ξn+1 = 0, stop;
Otherwise, set

vn+1 = ṽn+1/ρn+1, wn+1 = w̃n+1/ξn+1,
Vk = [Vk vn+1], Wk = [Wk wn+1], Dk = W T

k Vk.
(4)

460 F. Toutounian, D. Khojasteh Salkuyeh and B. Asadi

Now, we list some properties of Algorithm 2.1 which will be used in the sequel.
First, in view of (4), we have

‖vn‖ = ‖wn‖ = 1, n = 1, 2, (5)

It is convenient to introduce the notation
V (n) = [v1 v2 . . . vn] (= [V1 V2 ... Vk]),

W (n) = [w1 w2 . . . wn] (= [W1 W2 ... Wk]).
(6)

Hence, by (1),
Kn(v1, A) = {V (n)z | z ∈ CN},

Kn(w1, A
T) = {W (n)z | z ∈ CN}. (7)

Moreover, the recursions for the v’s in (2) and (3) can be rewritten in matrix
formulation as follows:

AV (n) = V (n)Hn + [0 . . . 0 ṽn+1]. (8)

Here,

Hn :=

α1 β2 0 . . . 0

γ2 α2 β3
. . .

...

0 γ3
. 0

...
. βk

0 . . . 0 γk αk

, (9)

is a block-tridiagonal matrix of size n × n that is also upper Hessenberg. Fur-
thermore, the diagonal blocks α1, α2, . . . , αk of the matrix Hn are all squares,
and their sizes are just the lengths of the look-ahead steps.

2.2. The QMR method

We now consider linear systems

Ax = b, (10)

with A ∈ CN×N as coefficient matrix and b ∈ CN . Let x0 ∈ CN be an arbitrary
initial guess for the solution of (10), and set r0 = b − Ax0. The goal is to
construct an approximate solutions of (10) of the form

xn ∈ x0 + Kn(r0, A), n = 1, 2, (11)

If we choose v1 = r0/‖ρ0‖ and any w1 ∈ CN , ‖w1‖ = 1, as the starting vectors
for the look-ahead Lanczos algorithm, then, by (7), the right Lanczos vectors
v1, v2, . . . , vn span Krylov subspace Kn(r0, A) in (11). Therefore, any iterate
(11) can be presented in the form

xn = x0 + V (n)zn, zn ∈ Cn, (12)

Numerical implementation of the QMR algorithm 461

and V (n) is the matrix defined in (6). It remains to select the free parameter zn

in (12). Based on the Lanczos matrix (9),Hn, and its extended version, H
(e)
n ,

defined by

H(e)
n =

[
Hn

ρn+1(e
(n)
n)T

]
, (e(n)

n)T = [0 . . . 0 1]T ∈ Rn, (13)

Freund and Nachtigal [9] suggested to choose zn as the solution of the least-
squares problem

‖ Ωn+1(fn+1 − H(e)
n zn) ‖= min

z∈Cn
‖ Ωn+1(fn+1 − H(e)

n z) ‖ . (14)

Here, fn+1 = [‖r0‖ 0 . . . 0]T ∈ Rn+1, and

Ωn+1 = diag(ω1, ω2, . . . , ωn+1), ωj > 0, j = 1, 2, . . . , n + 1, (15)

is a weight matrix. The default choice is ωj = 1 for all j, but there are also
situation where other weights are useful (see [10]). We remark that H

(e)
n is an

unreduced upper Hessenberg matrix, and hence, in contrast to Hn, the extended
matrix H

(e)
n is always guaranteed to have full column rank n. Therefore, the

least-squares problem (14) always has a unique solution zn. The motivation for
this choice of zn is as follows. By inserting the scaling matrix Ωn+1, in view of
(8) and (12), we can write the residual vector of any iterate (11) as follows:

rn = V (n+1)(Ωn+1)−1(Ωn+1(fn+1 − H(e)
n zn)). (16)

Hence, in view of (14), the iterate xn is characterized by a minimization of the
second factor in the representation (16) of its residual rn. This is called the
quasi-minimal residual (QMR) property, and the resulting iterative scheme for
solving linear system (10) is the QMR method.

In the QMR algorithm, the least-squares problem (14) is solved by the stan-
dard approach based on a QR decomposition of Ωn+1H

(e)
n :

Ωn+1H
(e)
n = (Qn+1)H

[
Rn

0

]
, (17)

Here Qn+1 is a unitary (n + 1)× (n + 1) matrix, and Rn is a nonsingular upper
triangular n × n matrix. By means of (17), the least-squares problem (14) can
be written in the form

min
z∈Cn

‖Ωn+1(fn+1 − H(e)
n z)‖ = min

z∈Cn

∥∥∥∥ω1Qn+1fn+1 −
[

Rn

0

]
z

∥∥∥∥,

and thus zn is given by

zn = R−1
n tn, where tn =

τ1

...
τn

 ∈ Cn,

[
tn

τ̃n+1

]
= ω1Qn+1fn+1. (18)

462 F. Toutounian, D. Khojasteh Salkuyeh and B. Asadi

Furthermore, we have

‖ Ωn+1(fn+1 − H(e)
n zn)‖ =| τ̃n+1 | . (19)

Since Ωn+1H
(e)
n is upper Hessenberg, the unitary matrix Qn+1 can be chosen

as a product of n Givens rotations. The QR decomposition (17) can then be
updated easily from step to step. In particular, Qn+1 is obtained from Qn by a
simple multiplication with one Givens rotation that modifies the last two rows
only. This implies that the vector tn in (18) differs from the previous one, tn−1,
only by its additional last elements τn. Together with (12) and (18), it follows
that consecutive QMR iterates are connected by the update formula

xn = xn−1 + τnpn, where pn = V (n)R−1
n

0
...
0
1

 . (20)

The basic structure of the resulting QMR algorithm is then as follows.

Algorithm 2.2: A sketch of the QMR algorithm [9]

0) Choose x0 ∈ CN and set r0 = b − Ax0 and ρ0 = ‖r0‖2, v1 = r0/ρ0.
Choose w1 ∈ CN with ‖w1‖ = 1.
For n = 1, 2, . . . , do:

1) Perform the nth iteration of the Look-ahead Lanczos Algorithm

2.1; This yields matrices V (n), V (n+1) and H
(e)
n which satisfy

AV (n) = V (n+1)H
(e)
n .

2) Update the QR factorization (17) of Ωn+1H
(e)
n and the vector

tn in (18).
3) Update the vector pn in (20).
4) Set xn = xn−1 + τnpn.
5) If xn has converged, stop.

The update of the vector pn in step 3) can be implemented with only short
recurrences. This is due to the block tridiagonal structure of Hn; see [9] for
details.

3. The CESTAC method

When some numerical algorithm is performed on a computer, each result thus
provided always contains an error resulting from round-off error propagation. In
this section, we briefly review the CESTAC (Control et Estimation Stochastique
des Arrondis de Calcul) method [14, 16] which is able to estimate the accuracy

Numerical implementation of the QMR algorithm 463

of the results provided by a computer, to detect the numerical instabilities oc-
curring during the run of a scientific code, and to check the branchings that exist
in the code.

3.1. Brief recall of the CESTAC method and its implementation

The basic idea of the method is defined in [13, 14] and consists in:
- performing the same code N times with a different round-off error prop-

agation for each run.
- estimating the common part of these results and to consider that this

part is representative of the exact result.
In practice, these different round-off error propagations are obtained in using

random rounding mode.
Indeed, each result r of a FP operation which is not an exact floating-point

value is always bounded by two floating values R− and R+, each of them being
so representative of the exact result.

The random rounding consists at the level of each FP operation or assignment
to choose as result randomly with an equal probability either R− or R+. Then
when the same code is executed N times with a computer using this random
rounding, N results Rk, k = 1, . . . , N are obtained. It has been proved in [2,
6] that, under some hypotheses, these N results belong to a quasi-Gaussian
distribution centered on the exact result r. So, in practice, by considering the
mean value R of the Rk as the computed result, and using Student’s test, it is
possible to obtain a confidence interval of R with a probability (1−β) and then
to estimate the number of exact significant digits of R by the formula (21)

CR = log10(
√

N |R|/τβσ), (21)

with R = (1/N)ΣN
i=1Ri and σ2 = 1

N−1ΣN
i=1(Ri − R)2. τβ is the value of the

Student distribution for N − 1 degrees of freedom and a probability level 1− β.
In practice N = 3, β = 0.05 and then τβ = 4.4303.

The result provided by equation (21) is reliable if the hypotheses underlying
the method hold in practice. It has been proved that [2, 6, 17], these hypotheses
hold when:

1) The operands of any multiplication are both significant.
2) The divisor of any division is significant.
It is then absolutely necessary during the run of a code to control the points

1) and 2). This control is done with the concept of the informatical zero also
named computational zero or computed zero [15].

Definition 1. Each result provided by CESTAC method is an informatical zero
denoted by @.0 iff one of the two conditions holds:

464 F. Toutounian, D. Khojasteh Salkuyeh and B. Asadi

1) ∀i, i = 1, . . . , N, Ri = 0.
2) CR ≤ 0, (CR obtained with equation (21)).

When CR ≤ 0, then R is an unsignificant value.
From the concept of @.0, discrete stochastic relations (DSR) have been defined

(equality and order relations).

Definition 2. Let X and Y be N -samples provided by CESTAC method,
discrete stochastic equality denoted by s = is defined as:

Xs = Y if X − Y = @.0.

Definition 3. Let X and Y be N -samples provided by CESTAC method,
discrete stochastic inequalities denoted by s > and s ≥ are defined as:

Xs > Y if X > Y and X − Y 6= @.0.

Xs ≥ Y if X ≥ Y or X − Y = @.0.

The Discrete Stochastic Arithmetic (DSA) is the association of the CESTAC
method, the concept of informatical zero and the discrete stochastic relations
(see [5, 7, 17]). With this DSA it is possible to control the run of a scientific
code, to detect the numerical instabilities and the violation of the hypotheses
underlying the method. But in practice how to implement this?

As we observed, the two main specificities of the CESTAC method are:
• The random rounding, which consists in creating R− and R+ and in

choosing randomly one or the other.
• The manner to perform the N runs of a code.

With IEEE arithmetic and the possibilities of ADA, C++, and Fortran to
create new structures and to overload the operators it is easy to implement the
CESTAC method.

The random rounding uses the IEEE rounding toward +∞ and toward −∞.
These roundings occur whenever an arithmetic operation has a result that is
not exact. Then none artificial round-off error is introduced in the computation.
The choice of the rounding is at random with an equal probability for the (N−1)
first samples and the choice of the last one is the opposite of the choice of the
(N − 1)th sample.

We have seen previously that it is absolutely necessary to detect, during the
run of a code, the emergence of @.0 for controlling the validity of the CES-
TAC method. To achieve this it suffices to use the synchronous implementation
which consists in performing each arithmetic operation N times with the ran-
dom rounding before performing the next. Thus for each numerical result we

Numerical implementation of the QMR algorithm 465

have N samples, from which with equation (21) the number of significant digits
of mean value, considered as the computed result, is estimated.

With this implementation the stochastic order relations defined above may
also be easily created. Then during the run of a code a dynamic control may be
done.

3.2. The CADNA library

The CADNA software [3, 4] is a library which implements automatically the
DSA in any code written in Fortran. Using the CADNA library, each standard
floating-point types have their corresponding stochastic types. Every intrinsic
function and operator are overloaded for those types. When a stochastic variable
is printed, only its significant digits are displayed to point out its accuracy. If
a number has no significant digit (i.e., a computed zero), the symbol @.0 is
displayed.

The modifications that the user has to do in his Fortran source are mainly to
change the declaration statements of real type by stochastic type, and the input-
output statement (see [4]). Thus, when a modified Fortran source combined with
the CADNA library is run, it is as (N = 3) identical codes were simultaneously
run on N synchronized computers each of them using the random rounding
mode. So round-off error propagation can be analyzed step by step and then
any numerical anomaly can be dynamically detected. This leads to the self
validation of the method and a numerical debugging scientific codes.

We shall see in the numerical study how the use of CADNA library has allowed
us to stabilize the code of QMR method and to reduce numerical instabilities.

4. Numerical implementation of the QMR algorithm by using
CADNA library

In section 2, we observed that in each step of the look-ahead Lanczos process,
it is necessary to decide whether to construct the Lanczos vectors vn+1 and wn+1

as regular or inner vectors. As we know [9], for a regular step it is necessary that
Dk = W T

k Vk is nonsingular. Therefore, in implementation of QMR algorithm, in
the floating-point arithmetic the smallest singular value of matrix Dk, σmin(Dk),
is computed and the criterion

if (σmin(Dk) < Tol) then go to step 3)

is used to check whether this matrix is singular or close to singular, and to
decide whether to construct the Lanczos vectors vn+1 and wn+1 as regular or
inner vectors. Here Tol is a suitably chosen tolerance. The efficiency of the
algorithm depends on a good choice of the Tol and to construct correctly the

466 F. Toutounian, D. Khojasteh Salkuyeh and B. Asadi

Lanczos vectors vn+1 and wn+1. In addition, if the quantity σmin(Dk) is badly
computed, propagation of round-off errors will affect drastically all the compu-
tations. In order to overcome these drawbacks, we propose to introduce the
discrete stochastic arithmetic in the QMR algorithm, which is able to estimate
the round-off error propagation, and to detect the informatical singularity of the
matrix Dk by means the following simple test,

if (Cσmin(Dk) < 1 or σmin(Dk) = 0) then go to step 3). (22)

In this section CX represents the number of significant digits of computed result
X which is furnished by the CADNA library.

In addition, for step 5) of Algorithm 2.2 a convergence criterion is needed. In
the floating-point arithmetic, for stopping the process at iteration n, we can use
the following termination criterion,

if (‖rn‖ ≤ ε1) then stop, (23)

where ε1 is a suitably chosen tolerance. As explained in [15], in floating-point
arithmetic, it is absolutely impossible to choose correctly the value of the con-
vergence tolerance ε1. It is possible, due to numerical instabilities or/and sta-
tionarity, that this stopping criterion is never satisfied. So, we need to use a
termination criterion for stopping the process as soon as the desired approxi-
mate solution is reached, or the numerical instabilities or/and stationarity occur
during the run of the program and the computer is not able to improve the com-
puted solution, because of round-off error propagation. With CADNA library
and using the stopping criterion

if (‖rn‖ ≤ ε1 or C‖rn‖ < 1) then stop, (24)

it is possible to stop the iterative process in the above cases.
Finally, it has been shown in [9] that, in exact arithmetic, the stopping crite-

rion in step 4) of algorithm 2.1 will be satisfied after at most N step - except in
a very special situation. If ρn+1 = 0 or ξn+1 = 0 then Kn(v1, A) is A-invariant
subspace or Kn(w1, A

T) is AT -invariant subspace. In the first case xn is the
exact solution and the QMR algorithm must be stopped. In the second case,
by restarting the QMR method and using the last available QMR iterate xn−1

(which is a good choice [9]) as the new initial guess, it is possible to improve the
approximate solution. In floating-point arithmetic, the experiments show that
when ρn+1 or ξn+1 have small values the method has slow convergence. So, in
floating-point arithmetic for checking the sizes of ρn+1 and ξn+1 and deciding
to restart QMR algorithm, we must use the following criteria after the stopping
criterion (23),

if (ρn+1 ≤ ε2) then restart, (25)

if (ξn+1 ≤ ε2) then restart. (26)

Numerical implementation of the QMR algorithm 467

In addition, it is necessary to check the size of τ̃n+1 which is defined by the
relations (18) and (19). The following similar criterion allows us to check this
coefficient,

if (τ̃n+1 ≤ ε2) then restart. (27)
The experiments show that when ε2 has a small or large value the method has
slow convergence. We observed that, for double precision, ε2 = 10−8 is a good
value. But, there are the cases (examples 1 and 2), in which, due to round-off
errors propagation, the coefficients ρn+1, ξn+1, and τ̃n+1 become nonsignificant
and in the same time they have a large magnitude. In this situation, it is clear
that the iterations of QMR method are not able to improve the approximate
solution. In order to avoid the performance of many useless operations and to
prevent the instabilities which may occur, we can define with CADNA library
the tests

if (ρn+1 ≤ ε2 or Cρn+1 < 1) then restart, (28)

if (ξn+1 ≤ ε2 or Cξn+1 < 1) then restart, (29)

if (τ̃n+1 ≤ ε2 or Cτ̃n+1 < 1) then restart, (30)
which allow us, by checking the value of the coefficients ρn+1, ξn+1, and τ̃n+1

to prevent the slow convergence and the instabilities which may occur and to
restart QMR algorithm.

Remark. It should be mentioned here that we also used, in floating-point
arithmetic, the stopping criterion

if (ω2 ≤ έ1) then stop, (31)

with ω2 = ‖rn‖∞/(‖A‖∞‖xn‖1 + ‖b‖∞), which has been proposed in [1], and
we observed that it is absolutely impossible to choose correctly the value of the
convergence tolerance έ1. The following examples show that when έ1 is chosen
too large, the QMR process is stopped too soon, and the solution furnished is
not the best that the computer may provide. When έ1 is chosen too small many
useless iterations are performed without improving the accuracy of the solution.

Let us now, to present the examples and the results which we obtained by
the Fortran code of the QMR algorithm, with floating-point arithmetic for
Tol = 10−4 which is suggested by Parlett [12], and this code with CADNA
library and the tests (22),(24), (28)-(30). ε2 = 10−8 has been taken for all cases.
Computations have been performed on a PC computer in double precision and
the maximum number of iterations allowed set to 200000. For all the examples
the initial guess has been x0 = [0, 0, . . . , 0]T , and the values of έ1, for stopping
criterion (31), have been chosen so that the computed solutions have about the
same accuracy as those corresponding to the values of ε1, for stopping criterion
(23).

468 F. Toutounian, D. Khojasteh Salkuyeh and B. Asadi

Example 1. We consider the ill-conditioned linear system Hx = b with the
Hilbert matrix H (hij = 1/(i + j − 1)), and dimension equal to 100. The right
hand side is determined so that the exact solution x is 1 everywhere. This allows
an easy verification of the results. With ε1 = 10−6, 10−7, 10−8, by using floating-
point arithmetic and CADNA library the results obtained are presented in Tables
1 and 2, respectively. The results obtained, by using floating-point arithmetic
and stopping criterion (31) with έ1 = 0.56×10−9, 0.41×10−10, 0.44×10−11, are
also presented in columns 3, 5, 7 of the Table 1, respectively.

Table 1. The results of the example 1, using floating-point arithmetic
ε1 = 10−6 έ1 = 0.56 ε1 = 10−7 έ1 = 0.41 ε1 = 10−8 έ1 = 0.44

×10−9 ×10−10 ×10−11

x(1) 1.0001660 1.0001635 0.9999542 0.9999539 1.0000064 1.0000063
x(2) 0.9982230 0.9982621 1.0007666 1.0007826 0.9998362 0.9998376
x(3) 1.0024256 1.0023395 0.9977080 0.9976219 1.0008133 1.0008104

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x(98) 0.9935930 0.9936288 0.9968849 0.9968086 0.9986009 0.9985950
x(99) 0.9928798 0.9929182 0.9964407 0.9963570 0.9983446 0.9983380
x(100) 0.9921452 0.9921863 0.9959814 0.9958868 0.9980741 0.9980667

RN 1385 1403 6405 6068 59332 58525
TN 4519 4574 19579 18568 138312 136700

‖rn‖ 0.999 × 10−6 0.998 × 10−6 1.0 × 10−7 1.06 × 10−7 0.996 × 10−8 1.04 × 10−8

Table 2. The results of the example 1, using CADNA library

ε1 = 10−6 ε1 = 10−7 ε1 = 10−8

x(1) 1.0002 1.0000 1.0000
x(2) 0.9978 0.999 1.00
x(3) 1.003 0.999 0.999

...
...

...
...

x(98) 0.9932 0.995 0.995
x(99) 0.9924 0.994 0.995
x(100) 0.9917 0.994 0.994

RN 1342 3336 3886
TN 3808 6036 6669
‖rn‖ 0.1 × 10−5 0.6× 10−6 0.4× 10−6

At last lines of these Tables we can find the corresponding number of restart
of QMR Algorithm, the total number of iterations, and residual norm; which are
denoted by RN, TN, and ‖rn‖, respectively. As we observe, for different values of
ε1 (and the corresponding values of έ1) the results corresponding to the floating-
point arithmetic and CADNA library have not significantly difference. But with

Numerical implementation of the QMR algorithm 469

CADNA library the solution was reached with TN = 3808, 6036, 6669 iterations
which are very less than those needed with floating-point arithmetic, TN =
4519, 19579, 138312 (and TN = 4574, 18568, 136700 for the corresponding values
of έ1), respectively. It must be noted that with ε1 = 10−9 (and έ1 = 0.5×10−12)
and floating-point arithmetic, no solution has been obtained after 200000 allowed
iterations. On the contrary, with ε1 = 10−9, 10−10, . . . and CADNA library, the
solution which is similar to that of ε1 = 10−8, has been obtained at the iteration
6841st with ‖rn‖ = @.0. The ‖rn‖ = @.0 shows that, after the iteration 6841st,
the computer is not able to distinguish the vector rn from the null vector and to
improve the computer solution, because of the round-off error propagation. So
for this example, the algorithm using the CADNA library and appropriate tests
is more efficient than that using floating-point and we observe that the CADNA
library is able to stabilize the algorithm and to save computer time, because
many useless operations are not performed.

Table 3. The results of the Table 4. The results of the
example 2, using CADNA example 2, using floating − point
library arithmetic

x(1) 1.0 x(51) 1.0
x(2) 1.0 x(52) 1.0
x(3) 1.0 x(53) 1.0

...
...

...
...

x(25) 1.01 x(75) 1.01
x(26) 1.01 x(76) 1.01

...
...

...
...

x(48) 1.0 x(98) 1.0
x(49) 1.0 x(99) 1.0
x(50) 1.0 x(100) 1.1

x(1) 1.11 x(51) 1.03
x(2) 1.09 x(52) 1.03
x(3) 1.07 x(53) 1.03

...
...

...
...

x(25) 0.964 x(75) 0.967
x(26) 0.967 x(76) 0.964

...
...

...
...

x(48) 1.03 x(98) 1.07
x(49) 1.03 x(99) 1.09
x(50) 1.03 x(100) 1.11

Example 2. We consider the ill-conditioned linear system Ax = b with the
coefficients matrix A with aij =| i−j |, and different dimensions. The right hand
side is determined so that the exact solution x is 1 everywhere. With ε1 = 10−1

(and ε1 = 10−2), and dimension N ≤ 8 (and N ≤ 5, respectively), by using
floating-point arithmetic, we obtained the approximate solution with desired
accuracy. For these cases the results obtained with CADNA library are similar
to those of floating-point arithmetic. For smaller ε1 and larger dimension no
solution has been obtained with floating-point arithmetic, because an arithmetic
exception occurred during the run of code. On the contrary, with CADNA

470 F. Toutounian, D. Khojasteh Salkuyeh and B. Asadi

library which detects the numerical instabilities the code has been run without
any difficulty. For example, for dimension equal to 100 and ε1 = 10−1 the result
obtained, which has ‖x − xn‖∞ = 0.1, is presented in Table 3.

Table 5. The results of the example 3, using floating − point arithmetic

ε1 = 10−6 ε1 = 10−12 ε1 = 10−16, 10−17

and έ1 = 10−10 and έ1 = 0.9 × 10−16 and έ1 = 10−19, 10−20

x(1) 0.99999999602 1.0000000000000000000 1.0000000000000000000
x(2) 0.99999999934 0.99999999999999966693 1.0000000000000000000
x(3) 0.99999999994 1.0000000000000004441 1.0000000000000000000
...

...
...

...

x(798) 1.00000000208 1.0000000000000000000 1.0000000000000000000
x(799) 0.99999999340 1.0000000000000002220 1.0000000000000002220
x(800) 1.00000000260 0.99999999999999988898 0.99999999999999988898

RN 13 67 113
TN 202 273 319
‖rn‖ 0.805 × 10−6 0.937 × 10−12 0.0

Table 6. The results of the example 3, using CADNA library

ε1 = 10−6 ε1 = 10−12 ε1 = 10−16, 10−17

x(1) 0.99999999602 1.00000000000000 1.00000000000000
x(2) 0.99999999934 0.999999999999999 1.00000000000000
x(3) 0.99999999994 1.00000000000000 1.00000000000000

...
...

...
...

x(798) 1.0000000021 1.00000000000000 1.00000000000000
x(799) 0.99999999340 1.00000000000000 1.00000000000000
x(800) 1.0000000026 0.999999999999999 1.00000000000000

RN 13 67 105
TN 203 274 312
‖rn‖ 0.805 × 10−6 0.938 × 10−12 @.0

It is necessary to mention that for all values of ε1 ≤ 10−1 the same results
have been obtained, because, in these cases, the process was stopped by the
stopping criterion (24) at iteration 44th with ‖rn‖ = @.0. By using the old-
type function which exists in the CADNA library we obtained the classical type
value of residual norm ‖rn‖ = 44.9561 with C‖rn‖ = 0 which shows that this
residual norm has no significant digit. When the process runs with floating-point

Numerical implementation of the QMR algorithm 471

arithmetic, the computer is not able to detect this numerical instability and the
value of residual norm becomes larger and larger. In this case, the stopping
criterion (23) was never satisfied, and an arithmetic exception occurred during
the run of code.

For this example, we also used the stopping criterion (31). The computed
solution obtained with έ1 = 0.16 × 10−3 is presented in Table 4. This solution
has been obtained at second iteration with ‖rn‖ = 42.409. As we observe, this
computed solution is less accurate than that obtained with CADNA library.
With έ1 = 0.15×10−3 (and έ1 = 0.15×10−4) we could only obtain the solution
for N ≤ 6 (and N ≤ 4, respectively).

As we observe, for this example, the algorithm using the CADNA library is
also more efficient than that using floating-point arithmetic.

Example 3. We consider

A =

2 1
0 2 1
1 0 2 1

.
1 0 2 1

1 0 2

, b =

3
3
4
...
4
3

,

with dimension equal to 800. The exact solution is given by [1, 1, . . . , 1]T . The
results obtained by using the floating-point arithmetic and CADNA library with
different values of ε1 (and corresponding values of έ1) are presented in Tables 5
and 6, respectively.

As we observe, for this example which is a well-conditioned system, the similar
solutions have been obtained. In addition, with ε1 = 10−12, 10−16, 10−17, all
the digits of the solutions obtained by using CADNA library are significant.
The residual norm ‖rn‖ = @.0 shows that the solution obtained with ε1 =
10−16, 10−17, is a satisfactory informatical solution, and this solution was reached
with 312 iterations which is less than that needed with floating-point arithmetic,
NT = 319. As we observe, for this example with a well conditioned system, the
algorithm using the CADNA library is as efficient as that using floating-point
arithmetic.

5. Conclusion

In this paper we have seen, in the floating-point arithmetic, that the QMR
method has to face the two inherent difficulties:

• How to determine the singularity or near singularity of matrix Dk?

472 F. Toutounian, D. Khojasteh Salkuyeh and B. Asadi

• How can the iterative process be restarted or stopped correctly?
We observed that the use of CADNA library allows us to solve these problems. It
has been shown that it is possible, on the one hand, by using the number of sig-
nificant digits of σmin(Dk) which is furnished by CADNA library, to determine
correctly the informatical singularity of matrix Dk, if it is, and to prevent the
numerical instabilities which may occur, and, on the other hand, by using the
number of significant digits of some intermediate coefficients and residual norm
in the appropriate tests, to continue the iterations, to restart the QMR method
if it is necessary, to stop correctly the iterative process, to detect numerical
instabilities, to prevent an arithmetic exception which may occur, and to save
computer time, because many useless iterations are not performed. The numer-
ical experiments show that, the total number of iterations in the run of iterative
process with CADNA library is a reasonable number versus that needed with
floating-point arithmetic, and QMR algorithm with CADNA library is a stable
algorithm for ill-conditioned systems as well as for well conditioned systems.
Consequently, QMR algorithm with CADNA library is a stable and efficient al-
gorithm and can be used without any difficulty for solving large nonsymmetric
systems of linear equations.

6. Acknowledgements

We would like to thank Professor J. Vignes, Professor J. M. Chesneaux, and
the anonymous referee for advise on many aspects of this work.

References

1. M. Arioli, I. S. Duff and D. Ruiz, Stopping criteria for iterative solvers, SIAM J. Matrix
Anal. Appl. 13 (1992), 138-144.

2. J. M. Chesneaux, Study of the computing accuracy by using probabilistic approach, Con-
tribution to Computer Arithmetic and Self Validating Numerical methods, IMACS, New
Brunswick, NJ, (1990), 19-30.

3. J. M. Chesneaux, CADNA: An ADA tool for round-off errors analysis and for numerical
debugging, Congress on ADA in Aerospace, Barcelon, (1990), 390-396

4. J. M. Chesneaux, Descriptif d’utilisation du logiciel CADNA-F, MASI Report, No. 92-
32(1992), 855-860.

5. J. M. Chesneaux, Stochastic arithmetic properties, Computational and Applied Mathemat-
ics, I-Algorithms and Theory, edited by C. Brezinski (North Holland, Amsterdam, 1992),
81-91.

6. J. M. Chesneaux and J. Vignes, Sur la robustesse de la méthode CESTAC, C. R. Acad. Sci.
Paris, Sér. I, Math. 307 (1988), 855-860.

7. J. M. Chesneaux and J. Vignes, Les fondements de l’arithmétique stochastique, C. R. Acad.
Sci. Paris, Sér. I, Math. 315 (1992), 1435-1440.

Numerical implementation of the QMR algorithm 473

8. R. W. Freund, M. H. Gutknecht and N. M. Nachtigal, An implementation of the look-ahead
Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput. 14 (1993), 137-158.

9. R. W. Freund and N. M. Nachtigal, QMR:a quasi-minimal residual method for non-Heritian
linear systems, Numer. Math. 60 (1991), 315-339.

10. R. W. Freund and T. Szeto, A transpose-free quasi-minimal residual squared algorithm
for non-Heritian linear systems. In Advances in Computer Methods for Partial Differential
Equations-VII, R. Vichnevetsky, D. Knight, and G. Richter, Eds. IMACS (1992), 258-264.

11. M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Res. Nat1. Bur. Stand 49 (1952), 409-436.

12. B. N. Parlett, Reduction to tridiagonal form and minimal realizations, Preprint, Berkeley,
January (1990), 409-436.

13. J. Vignes, Error analysis in computing, International Federation for Information Process-

ing congress. Proceedings, Stockholm, (1974), 610-614
14. J. Vignes, New methods for evaluating the validity of the results of mathematical compu-

tations, Math. Comp. Simul, Vol. 20(1978), 227-249.
15. J. Vignes, Zéro mathématique et zéro informatique, C. R . Acad. Sci., Paris, sér I Math.

303 (1986), 997-1000; also La Vie des Sciences 4 (1987), 1-13.
16. J. Vignes, A stochastic arithmetic for reliable scientific computation, Math. Comp. Simul.

35 (1993), 233-261.
17. J. Vignes, A stochastic approach to the analysis of round-off error propagation, A Survey

of the CESTAC Method. Proceeding of Real Numbers and Computer Conference. Marseille,
(1996), 233-251.

Faezeh Toutounian received her B. Sc in Mathematics from Ferdowsi University of Mash-
had, Iran, two degree of M. Sc in Mathematical statistics and applied computer and her Ph.
D in Mathematics from Paris VI University, France. She spent two sabbatical years in 1985
and 1996 at Paris VI University. She is currently a professor of Mathematics at Ferdowsi
University of mashhad. Her research interests are mainly numerical linear algebra, iterative
methods and error analysis.

Department of Mathematics, School of Mathematical Sciences, Ferdowsi University of Mash-
had, P.O. Box 1159-91775, Mashhad, Iran
e-mail: toutouni@math.um.ac.ir

Davod Khojasteh Salkuyeh received his B. Sc from Sharif University of Technology,
Tehran, Iran and his M. Sc from Ferdowsi University of Mashhad, Mashhad, Iran. He
received his Ph. D degree under supervision of professor Faezeh Toutounian at Ferdowsi
University of Mashhad in 2003. He is currently an assistant professor of Mathematics at
Mohaghegh Ardabili University of Ardabil, Iran. His research interests are mainly iterative
methods for sparse linear systems and finite element method.

Department of Mathematics, Mohaghegh Ardabili University, P. O. Box. 56199-11367, Ard-
abil, Iran
e-mail: khojaste@uma.ac.ir & khojaste@math.um.ac.ir

Bahram Asadi received his M. Sc degree under supervision of professor Faezeh Toutounian
at Ferdowsi University of Mashhad, Iran. He is currently a lecturer in Islamic Azad Univrsity
of Hamadan, Iran. His research interest is mainly iterative methods for sparse linear systems.

Department of Mathematics, Islamic Azad University of Hamadan, Hamadan, Iran
e-mail: brasadi@yahoo.com

