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Abstract— In this work, we propose a game theoretic frame-
work to analyze the behavior of cognitive radios for distributed
adaptive channel allocation. We define two different objective
functions for the spectrum sharing games, which capture the
utility of selfish users and cooperative users, respectively. Based
on the utility definition for cooperative users, we show that the
channel allocation problem can be formulated as a potential
game, and thus converges to a deterministic channel allocation
Nash equilibrium point. Alternatively, a no-regret learning imple-
mentation is proposed for both scenarios and it is shown to have
similar performance with the potential game when cooperation
is enforced, but with a higher variability across users. The no-
regret learning formulation is particularly useful to accommodate
selfish users. Non-cooperative learning games have the advantage
of a very low overhead for information exchange in the network.

We show that cooperation based spectrum sharing etiquette
improves the overall network performance at the expense of an
increased overhead required for information exchange.

I. INTRODUCTION

With the new paradigm shift in the FCC’s spectrum man-
agement policy [3] that creates opportunities for new, more
aggressive, spectrum reuse, cognitive radio technology lays
the foundation for the deployment of smart flexible networks
that cooperatively adapt to increase the overall network perfor-
mance. The cognitive radio terminology was coined by Mitola
[15], and refers to a smart radio which has the ability to
sense the external environment, learn from the history, and
make intelligent decisions to adjust its transmission parameters
according to the current state of the environment.

The potential contributions of cognitive radios to spectrum
sharing and an initial framework for formal radio etiquette
have been discussed in [16]. According to the proposed
etiquette, the users should listen to the environment, deter-
mine the radio temperature of the channels and estimate
their interference contributions on their neighbors. Based on
these measurements, the users should react by changing their
transmission parameters if some other users may need to use
the channel.

While it is clear that this etiquette promotes cooperation
between cognitive radios, the behavior of networks of cogni-
tive radios running distributed resource allocation algorithms
is less well understood.

As the cognitive radios are essentially autonomous agents
that are learning their environment and are optimizing their
performance by modifying their transmission parameters, their

interactions can be modelled using a game theoretic frame-
work. In this framework, the cognitive radios are the players
and their actions are the selection of new transmission parame-
ters and new transmission frequencies, etc., which influence
their own performance, as well as the performance of the
neighboring players.

Game theory has been extensively applied in microeco-
nomics, and only lately has received attention as a useful
tool to design and analyze distributed resource allocation al-
gorithms (e.g. [5][6][14]). Very recently, the spectrum sharing
problem was analyzed in [7] based on a game model between
providers using bargaining strategies. In [7], the bound of
the price of anarchy was analyzed under the assumption that
users are uniformly distributed, or every AP uses the same
transmission power.

Some game theoretic models for cognitive radio networks
were presented in [18], which has identified potential game
formulations for power control, call admission control and
interference avoidance in cognitive radio networks. The con-
vergence conditions for various game models in cognitive
radio networks were investigated in [19].

In this work, we propose a game theoretic formulation of
the adaptive channel allocation problem for cognitive radios.
Our current work assumes that the radios can measure the
local interference temperature on different frequencies and can
adjust by optimizing the information transmission rate for a
given channel quality (using adaptive channel coding) and
by possibly switching to a different frequency channel. The
cognitive radios’ decisions are based on their perceived utility
associated with each possible action. We propose two different
utility definitions, which reflect the amount of cooperation
enforced by the spectrum sharing etiquette. We then design
adaptation protocols based on both a potential game formu-
lation, as well as no-regret learning algorithms. We study the
convergence properties of the proposed adaptation algorithms,
as well as the tradeoffs involved.

II. SYSTEM MODEL

The cognitive radio network we consider consists of a set of
N transmitting-receiving pairs of nodes, uniformly distributed
in a square region of dimension D∗×D∗. We assume that the
nodes are either fixed, or are moving slowly (slower than the
convergence time for the proposed algorithms). Fig. 1 shows
an example of a network realization, where we used dashed
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lines to connect the transmitting node to its intended receiving
node. The nodes measure the spectrum availability and decide

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

Fig. 1. A snapshot of the nodes’ positions and network topology

on the transmission channel. We assume that there are K
frequency channels available for transmission, with K < N .
By distributively selecting a transmitting frequency, the radios
effectively construct a channel reuse distribution map with
reduced co-channel interference.

The transmission link quality can be characterized by a
required Bit Error Rate (BER) target , which is specific to
the given application. An equivalent SIR target requirement
can be determined by the modulation type and the amount of
channel coding.

The Signal-to-Interference Ratio (SIR) measured at the
receiver j associated with transmitter i can be expressed as:

SIRij =
piGij∑N

k=1,k �=i pkGkjI(k, j)
, (1)

where pi is the transmission power at transmitter i, Gij is the
link gain between transmitter i and receiver j. I(i, j) is the
interference function characterizing the interference created by
node i to node j and is defined as

I(i, j) =




1 if transmitters i and j are transmitting
over the same channel

0 otherwise
(2)

Analyzing (1) we see that in order to maintain a certain
BER constraint the nodes can adjust at both the physical
and the network layer level. At the network level, the nodes
can minimize the interference by appropriately selecting the
transmission channel frequency. At the physical layer, power
control can reduce interference and, for a feasible system,
results in all users meeting their SIR constraints. Alternatively,
the target SIR requirements can be changed (reduced or
increased) by using different modulation levels and various
channel coding rates. As an example of adaptation at the
physical layer, we have assumed that for a fixed transmission
power level, software defined radios enable the nodes to adjust

TABLE I

CODE RATES OF REED-MULLER CODE RM (1, m) AND CORRESPONDING

SIR REQUIREMENTS FOR TARGET BER=10−3

m Code Rate SIR (dB)
2 0.75 6
3 0.5 5.15
4 0.3125 4.6
5 0.1875 4.1
6 0.1094 3.75
7 0.0625 3.45
8 0.0352 3.2
9 0.0195 3.1

10 0.0107 2.8

their transmission rates and consequently the required SIR
targets by varying the amount of channel coding for a data
packet.

For our simulations we have assumed that all users have
packets to transmit at all times (worst case scenario). Multiple
users are allowed to transmit at the same time over a shared
channel. We assume that users in the network are identical,
which means they have an identical action set and identical
utility functions associated with the possible actions.

The BER requirement selected for simulations is 10−3,
and we assume the use of a Reed-Muller channel code RM
(1,m). In table I we show the coding rate combinations
and the corresponding SIR target requirements used for our
simulations [13].

III. A GAME THEORETIC FRAMEWORK

Game theory represents a set of mathematical tools de-
veloped for the purpose of analyzing players interactions in
decision processes [8]. It can be used to predict the outcome
of these interactions and to identify optimal strategies for the
players. The main components of a simple game (strategic
or normal form) are the players (assumed to be intelligent
and rational), their set of actions or decisions, and a set
of preference relationship associated with every action tuple
(usually measured by means of a utility function).

In particular, we can model our channel allocation problem
as the outcome of a game, in which the players are the
cognitive radios, their actions (strategies), are the choice of
a transmitting channel and their preferences are associated
with the quality of the channels. The quality of channels
is determined by the cognitive radios by measurements on
different radio frequencies.

We model our channel allocation problem as a normal
form game, which can be mathematically defined as Γ =
{N, {Si}i∈N , {Ui}i∈N}, where N is the finite set of players
(decision makers who select a particular channel to transmit),
and Si is the set of strategies associated with player i (channels
which could be selected by i).

We define S = ×Si, i ∈ N as the strategy space, and
Ui : S → R as the set of utility functions that the players
associate with their strategies. For every player i in game Γ,
the utility function Ui is a function of si, the strategy selected
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by player i, and of the current strategy profile of its opponents:
s−i. The utility of user i in our channel allocation game can be
considered as the reward received by user i from the network
depending on the channel it selects, si, and on the other users’
choices, s−i. We will discuss shortly how the choice of the
utility function affects the outcome of the game.

In analyzing the outcome of the game, as the players
make decisions independently and are influenced by the other
players’ decisions, we are interested to determine if there
exist a convergence point for the adaptive channel selection
algorithm, from which no player would deviate anymore, i.e.
a Nash equilibrium (NE).

Definition: A strategy profile for the players, S =
[s1, s2, ..., sN ], is a Nash equilibrium (NE) if and only if

Ui(S) ≥ Ui(s
′
i, s−i), ∀i ∈ N, s′i ∈ Si. (3)

If the equilibrium strategy profile in (3) is deterministic, a pure
strategy Nash equilibrium exists. For finite games, even if a
pure strategy Nash equilibrium does not exist, a mixed strategy
Nash equilibrium can be found (equilibrium is characterized
by a set of probabilities assigned to the pure strategies).

As it becomes apparent from the above discussion, the
performance of the adaptation algorithm depends significantly
on the choice of the utility function which characterizes the
preference of a user for a particular channel. The choice of
a utility function is not unique. It must be selected to have
physical meaning for the particular application, and also to
have appealing mathematical properties that will guarantee
equilibrium convergence for the adaptation algorithm. We
have studied and proposed two different utility functions, that
capture the channel quality, as well as the level of cooperation
and fairness in sharing the network resources.

A. Utility Functions

The first utility function (U1) we propose accounts for the
case of a “selfish” user, which values a channel based on the
level of interference perceived on that particular channel:

U1i(si, s−i) = −
N∑

j �=i,j=1

pjGijf(sj , si). (4)

∀i = 1, 2, ..., N

For the above definition, we denoted P=[p1,p2,...,pN ] as the
transmission powers for the N radios, S=[s1,s2,...,sN ] as the
strategy profile and f(si, sj) as an interference function:

f(si, sj) =




1 if sj = si, transmitter j and i choose
the same strategy (same channel)

0 otherwise

This choice of the utility function requires a minimal
amount of information for the adaptation algorithm, namely
the interference measurement of a particular user on different
channels.

The second utility function we propose accounts for the
interference seen by a user on a particular channel, as well

as for the interference this particular choice will create to
neighboring nodes. Mathematically we can define U2 as:

U2i(si, s−i) =

−
N∑

j �=i,j=1

pjGijf(sj , si) −
N∑

j �=i,j=1

piGjif(si, sj) (5)

∀i = 1, 2, ..., N

The complexity of the algorithm implementation will in-
crease for this particular case, as the algorithm will require
probing packets on a common access channel for measuring
and estimating the interference a user will create to neighbor-
ing radios.

The above defined utility functions characterize a user’s
level of cooperation, and support a selfish and a cooperative
spectrum sharing etiquette, respectively.

B. A Potential Game Formulation

In the previous section we have discussed the choice of the
utility functions based on the physical meaning. However, in
order to have good convergence properties for the adaptation
algorithm we have to ensure that these functions possess
certain mathematical properties. There are some classes of
games that have been shown to converge to a Nash equilibrium
when a best response adaptive strategy is employed. In what
follows, we show that for the U2 utility function, we can
formulate an exact potential game, which converges to a pure
strategy Nash equilibrium solution.

Characteristic for a potential game is the existence of a
potential function that exactly reflects any unilateral change
in the utility function of any player. The potential function
models the information associated with the improvement paths
of a game instead of the exact utility of the game [17].

An exact potential function is defined as a function

P : S → R, if for all i, and si, s′i ∈ Si,

with the property that

Ui(si, s−i) − Ui(s′i, s−i) = P (si, s−i) − P (s′i, s−i). (6)

If a potential function can be defined for a game, the game
is an exact potential game. In an exact potential game, for a
change in actions of a single player, the change in the potential
function is equal to the value of the improvement deviation.
Any potential game in which players take actions sequentially
converges to a pure strategy Nash equilibrium that maximizes
the potential function [17].

For our previously formulated channel allocation game with
utility function U2, we define an exact potential function to be

Pot(S) = Pot(si, s−i) =
N∑

i=1


−1

2

N∑
j �=i,j=1

pjGijf(sj , si) − 1
2

N∑
j �=i,j=1

piGjif(si, sj)




∀i = 1, 2, ..., N (7)
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The function in (7) essentially reflects the network utility.
It can thus be seen that the potential game property (6)
ensures that an increase in individual users’ utilities contributes
to the increase of the overall network utility. We note that
this property holds only if users take actions sequentially,
following a best response strategy.

Hence, to ensure convergence for the spectrum allocation
game, either a centralized or a distributed scheduler should be
deployed. In an ad hoc network, the latter solution is prefer-
able. To this end, we propose a random access for decision
making in which each user is successful with probability pa =
1/N . More specifically, at the beginning of each time slot,
each user flips a coin with probability pa, and, if successful,
makes a new decision based on the current values for the utility
functions for each channel; otherwise, the user takes no new
action. We note that the number of users that attempt to share
each channel can be determined from channel listening as we
will detail shortly. The proposed random access ensures that
on average exactly one user makes decisions at a time, but of
course has a nonzero probability that two or more users take
actions simultaneously. We have determined experimentally
that the convergence of the game is robust to this phenomenon:
when two or more users simultaneously choose channels, the
potential function may temporarily decrease (decreasing the
overall network performance) but then the upward monotonic
trend is re-established.

The proposed potential game formulation requires that users
should be able to evaluate the candidate channels’ utility
function U2. To provide all the information necessary to de-
termine U2, we propose a signaling protocol based on a three
way handshake protocol. The signaling protocol is somewhat
similar to the RTS-CTS packet exchange for the IEEE 802.11
protocol, but intended as a call admission reservation protocol,
rather than a packet access reservation protocol. When a user
needs to make a decision on selecting the best transmission
frequency (a new call is initiated or terminated, and the user
is successful in the Bernoulli trial), such a handshaking is ini-
tiated. In contrast to the RTS-CTS reservation mechanism, the
signaling packets, START, START CH and ACK START CH
(END, ACK END) in our protocol are not used for deferring
transmission for the colliding users, but rather to measure the
interference components of the utility functions for different
frequencies and to assist in computing the utility function. The
signaling packets have a double role: to announce the action of
the current user to select a particular channel for transmission,
and to serve as probing packets for interference measurements
on the selected channel. The signaling packets are transmitted
with a fixed transmission power on a common control channel.
To simplify the analysis, we assume that no collisions occur
on the common control channel. As we mentioned before, the
convergence of the adaptation algorithm was experimentally
shown to be robust in collision situations. For better frequency
planning, it is desirable to use a higher transmission power for
the signaling packets than for the transmitted packets. This will
permit users to learn the potential interferers over a larger area.
For our simulations, we have selected the ratio of transmitted

powers between signaling and data packets to be equal to 2.
We note that the U2 utility function has two parts: a) a

measure of the interference created by others on the desired
user, Id and b) a measure of the interference created by the
user on its neighbors’ transmissions, Io. The first part of U2
can be estimated at the receiving node, whereas the second
part can only be estimated at the transmitter node. Therefore,
the protocol requires that both transmitter and receiver listen
to the control channel and each maintain an information table
on all frequencies, similar to the NAV table in 802.11. In what
follows, we outline the steps of the protocol.

Protocol steps:

1) Bernoulli trial with pa

if 0, listen to the common control channel; break.
if 1, go to 2)

2) Transmitter sends START packet: includes current esti-
mates for the interference created to neighboring users
on all possible frequencies, Io(f) (this information is
computed based on information saved in the Channel
Status Table);

3) Receiver computes current interference estimate for the
user Id(f), determines U2(f) = −Id(f)− Io(f) for all
channels, and decides on the channel with the highest
U2 (in case of equality, the selection is randomized, with
equal probability of selecting the channels);

4) Receiver includes the newly selected channel infor-
mation on a signaling packet START CH which is
transmitted on the common channel;

5) Transmitter sends ACK START CH which acknowl-
edges the decision of transmitting on the newly selected
frequency, and starts transmitting on the newly selected
channel;

6) All the other users (transmitters and receivers) that heard
the START CH and ACK START CH packets up-
date their Channel Status Tables (CST) accordingly.

We note that when a call ends, only a two-way handshake
is required (END, ACK END) to announce the release of the
channel for that particular user. Upon hearing these end-of-
call signaling packets, all transmitters and receivers update
their CSTs accordingly.

We can see that a different copy of the CST should be
kept at both the transmitter and the receivers (CST t and
CST r, respectively). The entries of each table will contain
the neighboring users that have requested a channel, the
channel frequency, and the estimated link gain to the trans-
mitter/receiver of that particular user (for CST r and CST t,
respectively).

The proposed potential game framework has the advantage
that an equilibrium is reached very fast if a best response dy-
namic is followed, but requires substantial information on the
interference created to other users and additional coordination
for sequential updates. We note, however, that the sequential
updates procedure also resolves the potential conflicts which
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may occur upon accessing the common control channel.
The potential game formulation is suitable for designing

a cooperative spectrum sharing etiquette, but cannot be used
to analyze scenarios involving selfish users, or scenarios
involving heterogeneous users (with various utility functions
corresponding to different QoS requirements). In the following
section, we present a more general design approach, based
on no-regret learning techniques, which alleviates the above
mentioned problems.

C. Φ-No-Regret Learning for Dynamic Channel Allocation

While we showed in the previous section that the game
with the U2 utility function fits the framework of an exact
potential game, the U1 function lacks the necessary symmetry
properties that will ensure the existence of a potential function.
In order to analyze the behavior of the selfish users game,
we resort to the implementation of adaptation protocols using
regret minimization learning algorithms.

Learning algorithms determine probabilistic strategies for
players by considering the history of play. A learning algo-
rithm is characterized by two phases: exploring and exploiting
[9]. In the exploring phase, the players try to find the best
actions by exploring the entire space of actions. This is
achieved by selecting all actions with a non-zero probability.
The exploiting phase role is to increase the selection proba-
bility of successfull strategies.

This types of learning algorithms have traditionally been
characterized by regret measures such as external and internal
regret, and were not related to equilibrium concepts. External
regret is defined as the difference between the payoffs achieved
by strategies prescribed by the given algorithm and the payoffs
obtained by playing any other fixed sequence of decisions
in the worst case. Internal regret is defined as the difference
between the payoffs achieved by the strategies prescribed by
the given algorithm, and the payoffs that could be achieved
by a re-mapped sequence of these strategies. If the payoff
difference approaches zero, the algorithm is said to exhibit
no-regret.

More recently, studies have been performed to relate the
performance of the regret minimization algorithms to game
theoretic equilibria [10]. More specifically, in [10], a more
general class of no-regret learning algorithms called Φ-no-
regret learning algorithms were shown to be related to a class
of equilibria named Φ-equilibria. For this class of learning
algorithms, Φ determines the set of strategies against the
current play should be compared. A learning algorithm is
said that satisfies Φ-no-regret, if no regret is experienced
by playing as the learning algorithm prescribes, rather than
playing according to any transformation of the algorithm’s
play, characterized by the elements of Φ.

No-external-regret and no-internal-regret learning algo-
rithms are special cases of Φ-no-regret learning algorithm.
It is shown in [10] that the empirical distribution of play
of Φ-no-regret algorithms converges to a set of Φ-equilibria.
It is also shown that no-regret learning algorithms have the
potential to learn mixed strategy (probabilistic) equilibria, and

that the tightest game theoretic solution concept to which
the Φ-no-regret learning algorithms converge is the correlated
equilibrium. We note that a Nash equilibrium is not a necessary
outcome of any Φ-no regret learning algorithm [10].

We propose an alternate solution for our spectrum sharing
problem, based on the no-external-regret learning algorithm
with exponential updates, proposed in [4].

Let U t
i (si) denote the cumulative utility obtained by

user i through time t by choosing strategy si: U t
i (si) =∑t

st=1 Ui(si, S
st
−i), where the utility Ui(si, S

st
−i) is a nor-

malized utility in the range 0 to 1. For β > 0, the weight
(probability) assigned to strategy si at time t+1, is given by:

wt+1
i (si) =

(1 + β)Ut
i (si)

∑
s′

i∈Si
(1 + β)Ut

i (s′
i)

. (8)

A formal proof for the convergence of this learning algo-
rithm is very hard to provide. In [11], based on simulation
results, it is shown that the above learning algorithm converges
to a Nash equilibrium in games for which a pure strategy Nash
equilibrium exists. In this work, we also show by simulations
that the proposed channel allocation no-regret algorithm con-
verges to a pure strategy Nash equilibrium for cooperative
users (utility U2) and to a mixed strategy equilibrium for
selfish users (utility U1).

By following our proposed learning adaptation process,
users learn how to choose the frequency channels which
maximize their rewards through repeated playing of the game.

For the case of selfish users, the amount of information
required by this spectrum sharing algorithm is minimal: users
need to measure the interference temperature at their in-
tended receivers (function U1) and to update their weights
for channel selection accordingly, to favor the channel with
minimum interference temperature (equal transmitted powers
are assumed). We note that the no-regret algorithm in (8)
requires that the weights are updated for all possible strategies,
including the ones that were not played at the time. The
reward obtained if other actions had been played can be easily
estimated by measuring the interference temperature of all
channels.

For the case of cooperative users, the information needed
to compute U2 is similar to the case of potential game
formulation. We note that, while the learning algorithm does
not require sequential updates to converge to an equilibrium,
the amount of information exchange on the common control
channel requires coordination to avoid collisions. One possible
approach to reducing the amount of signaling would be to
maintain the access scheme proposed in the previous section,
which would ensure that on average only one user at a time
will signal changes in channel allocation.

IV. SIMULATION RESULTS

In this section, we present some numerical results to il-
lustrate the performance of the proposed channel allocation
algorithms for both cooperative and selfish users’ scenarios.
For simulation purposes, we consider a fixed wireless ad
hoc network (as described in the system model section) with
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N = 30 and D = 200 (30 transmitters and their receivers
are randomly distributed over a 200m × 200m square area).
The adaptation algorithms are illustrated for a network of 30
transmitting radios, sharing K = 4 available channels. A ran-
dom channel assignment is selected as the initial assignment,
and for a fair comparison, all simulations start from the same
initial channel allocation.
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We first illustrate the convergence properties of the proposed
spectrum sharing algorithms. We can see that for cooperative
games, both the potential game formulation, as well as the
learning solution converge to a pure strategy Nash equilibrium
(Figures 2, 4, 10 and 11). In Figure 3, we illustrate the changes
in the potential function as the potential game evolves, and it
can be seen that indeed by distributively improving their utility,
the users positively affect the overall utility of the network,
which is approximated by the potential function.

By contrast, the selfish users’ learning strategy converges to
a mixed strategy equilibrium, as it can be seen in Figures 13
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Fig. 4. Potential game: strategy evolution for selected arbitrary users

and 14.
We consider the achieved SIRs and throughputs As perfor-

mance measures for the proposed algorithms(adaptive coding
is used to ensure a certain BER target, as previously explained
in Section II). We consider the average performance per user as
well as the variability in the achieved performance (fairness),
measured in terms of variance and CDF.

We first give results for the potential game based algorithm.
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Fig. 5. SIRs for initial channel assignment channels

The choice of the utility function for this game enforces a
certain degree of fairness in distributing network resources, as
it can be seen in figures 5, 6, 7 and 8. Figures 5 and 6 illustrate
the SIR achieved by the users on each of the 4 different
channels for initial and final assignments, respectively. We can
notice the SIR improvement for the users that initially had a
low performance, although it comes at the expense of a slight
penalty in performance for users with an initially high SIR. It
can be seen in Figure 7 that at the Nash equilibrium point, the
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Assignment

number of users having an SIR below 0 dB has been reduced.
Furthermore, Figure 8 shows that the percentage of users who
have an SIR below 5 dB decreases from 60% to about 24%,
at the expense of a slight SIR decrease for users with an SIR
greater than 12.5 dB.

The advantage of the potential game is illustrated in Figure
9, in terms of the normalized achievable throughput at each
receiver. For the initial channel assignment, 62% of the users
have a throughput less than 0.75. At the equilibrium, this
fraction is reduced to 38%. Aggregate normalized throughput
improvements for the potential game formulation are illus-
trated in Table II.

Our simulation results show very similar performances
for the learning algorithm in cooperative scenarios with the
potential game formulation. Figures 7 and 12 show the initial
and final assignment for this algorithm, as well as the achieved
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Fig. 8. CDF for the achieved SIRs. Initial Channel Assignment vs. Final
Channel Assignment

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CDF of Throughputs over the nodes in Potential Game

Value of Throughput

Initial Assignment
Final Assignment ( Potential Game)
Final Assignment ( Learning U2)

Fig. 9. CDF for the achieved throughputs. Initial Channel Assignment vs.
Final Channel Assignment

SIRs after convergence for all users in the network. In terms
of fairness, the learning algorithm performs slightly worse
than the potential game formulation (Figure 9). However, even
though the equilibrium point for learning is different than that
of the potential game, the two algorithms achieve very close
throughput performance (Table II).

As we previously mentioned, the learning algorithm for
selfish users does not lead to a pure strategy Nash equilibrium
channel allocation. In Figure 13 we illustrate the convergence
properties for an arbitrarily chosen user, which converge to a
mixed strategy allocation: selects channel 1 with probability
0.575 or channel 3 with probability 0.425. The evolutions of
the weights for all the users in the network are shown in Figure
14.

We compare the performance of the proposed algorithms
for both cooperative and non-cooperative scenarios. The per-
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TABLE II

SIR AND NORMALIZED THROUGHPUT OF ALL USERS AT INITIAL AND

FINAL CHANNEL ASSIGNMENT

Total Normalized Throughput
Initial 9.4

Final (Potential Game) 16.5
Final (Learning U2) 15.3
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Fig. 10. No-regret learning for cooperative users: weights distribution
evolution for an arbitrary user

formance measures considered are the average SIR, average
throughput per user and total average throughput for the
network. At the beginning of each time slot, every user will
either choose the same equilibrium channel for transmission
(in cooperative games with pure strategy Nash equilibrium
solutions), or will choose a channel to transmit with some
probability given by the mixed strategy equilibrium (i.e. learn-
ing using U1). In the random channel allocation scheme, every
user chooses a channel with equal probability from a pool of
four channels.

Figure 15 shows the CDF of the Time Average SIR in
different games. All learning games and the potential game
outperform the random channel allocation scheme. The po-
tential game has the best throughput performance, followed
closely by the cooperative learning scheme. It can be seen in
Figure 16 that half of the users have an average throughput
below 0.3 in the random allocation scheme. The percentage
of users whose average throughput is below 0.3 is 23% in
potential game, 27% for learning using U2 and 34% for
learning using U1, while the fraction is 51% for the random
selection.

In Figure 17 we summarize performance comparisons
among the proposed schemes: total average throughput, av-
erage throughput per user and variance of the throughput
per user. The variance performance measure quantifies the
fairness, with the fairest scheme achieving the lowest vari-
ance. Among all the proposed schemes, the potential channel
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Fig. 11. No-regret learning for cooperative users: weights distribution
evolution for all users
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Fig. 12. No-regret learning for cooperative users: SIR of users in different
channels at Nash equilibrium

allocation game has the best performance. It is interesting to
note that in terms of average obtained throughput per user, the
three schemes perform similarly but differ in the performance
variability across users. It seems that even when cooperation
is enforced by appropriately defining the utility, the potential
game formulation provides a fairness advantage over the no-
regret learning scheme.

V. CONCLUSION

In this work, we have investigated the design of channel
sharing etiquette for cognitive radio networks for both coop-
erative and non-cooperative scenarios. Two different formula-
tions for the channel allocation game were proposed: potential
game formulation, and no-regret learning. We showed that all
the proposed spectrum sharing policies converge to a channel
allocation equilibrium, although a pure strategy allocation can
be achieved only for cooperative scenarios. Our simulation
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Fig. 13. No-regret learning for selfish users: weights evolution for an arbitrary
user
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Fig. 14. No-regret learning for selfish users: Evolution of weights for all
users

results have showed that the average performance in terms
of SIR or achievable throughput is very similar for both
learning and potential game formulation, even for the case
of selfish users. However, in terms of fairness, we showed
that both cooperation and allocation strategy play important
roles. While the proposed potential game formulation yields
the best performance, its applicability is limited to cooperative
environments and significant knowledge about neighboring
users is required for the implementation. By contrast, the
proposed no-regret learning algorithm is suitable for non-
cooperative scenarios and requires only a minimal amount of
information exchange.

This work represents a first step in understanding the
spectrum sharing problem for cognitive radio networks. In
future work, we will extend the proposed solutions to address
more practical scenarios, such as the case of users with
unequal powers, power controlled networks, as well as the
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case of heterogeneous users, characterized by different utility
functions.

ACKNOWLEDGEMENT

This work was supported in part by the NSF, grant number:
CNS-0435297.

277

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on July 25, 2009 at 14:47 from IEEE Xplore.  Restrictions apply. 



    
0

2

4

6

8

10

12

14

16

18

Total Average Throughput 
overall Users

U1   U2   POT RND
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Average Throughput 
per User

0

0.02

0.04

0.06

0.08

0.1

0.12

Variance of the Throughput 
per User

U1   U2   POT RND U1   U2   POT RND

Fig. 17. Total Average-Throughput, The Mean and the Variance of the
Throughput per user

REFERENCES

[1] V.D. Chakravarthy, A.K. Shaw, M.A. Temple, J.P. Stephens, ”Cognitive
radio - an adaptive waveform with spectral sharing capability” Wireless
Communications and Networking Conference, 2005 IEEE Volume 2, 13-
17 March 2005 Page(s):724 - 729

[2] J. Farago, A. Greenwald and K. Hall, “Fair and Efficient Solutions to the
Santa Fe Bar Problem ,” In Proceedings of the Grace Hopper Celebration
of Women in Computing 2002 . Vancouver, October, 2002.

[3] ”Facilitating Opportunities for Flexible, Efficient, and Reliable Spectrum
Use Employing Cognitive Radio Technologies” FCC Report and Order,
FCC-05-57A1, March 11, 2005

[4] Y. Freund and R. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting”, In Computational Learning
Theory: Proceedings of the Second European Conference, pages 23-37,
Springer-Verlag, 1995

[5] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, ”Efficient power
control via pricing in wireless data networks”, IEEE Transactions on
Communications, vol. 50, pp. 291303, February 2002.

[6] David J. Goodman and Narayan B. Mandayam, Network Assisted Power
Control for Wireless Data, Mobile Networks and Applications, vol. 6,
No. 5, pp. 409- 415, 2001

[7] M. M. Halldorsson, J. Y. Halpern, L. Li, and V. Mirrokni,”On spectrum
sharing games”, Procedings of the Twenty-Third Annual ACM Sympo-
sium on Principles of Distributed Computing, 2004, p. 107-114

[8] D. Fudenberg and J.Tirole, ”Game Theory”, The MIT Press, 1991
[9] D. Fudenberg and D. Levine, ”The Theory of Learning in Game”, The

MIT Press, 1998
[10] A. Greenwald, A. Jafari, “A General Class of No-Regret Algorithms

and Game-Theoretic Equilibria ” Proceedings of the 2003 Computational
Learning Theory Conference. Pages 1-11, August, 2003.

[11] A. Jafari, A. Greenwald, D. Gondek and G. Ercal, On No-Regret
Learning, Fictitious Play, and Nash Equilibrium , In Proceedings of the
Eighteenth International Conference on Machine Learning, pages 226-
223, Williamstown, June, 2001.

[12] J. Lansford, ”UWB coexistence and cognitive radio” Ultra Wideband
Systems, 2004. Joint UWBST and IWUWBS. 2004 International Work-
shop Joint with Conference on Ultrawideband Systems and Technologies.
on 18-21 May 2004 Page(s):35 - 39

[13] H. Mahmood,”Investigation of Low Rate Channel Codes for Asyn-
chronous DS-CDMA”, M.Sc Thesis, University of Ulm, Ulm, Germany,
August 2002.

[14] R. Menon, A. MacKenzie, R. Buehrer, J. Reed, ”Game Theory and In-
terference Avoidance in Decentralized Networks” SDR Forum Technical
Conference November 15-18, 2004.

[15] J. Mitola III, ”Cognitive Radio: An Integrated Agent Architecture
for Software Defined Radio” Doctor of Technology Dissertation, Royal
Institute of Technology (KTH), Sweden, May, 2000

[16] J. Mitola III, ”Cognitive Radio for Flexible Mobile Multimedia Com-
munications”, IEEE 1999 Mobile Multimedia Conference (MoMuC,
November, 1999).

[17] D. Monderer and L. Shapley “Potential Games”. Games and Economic
Behavior 14, pp124-143, 1996.

[18] J. Neel, J.H. Reed, R.P. Gilles ” The Role of Game Theory in the
Analysis of Software Radio Networks”, SDR Forum Technical Confer-
ence November, 2002.

[19] J. Neel, J.H. Reed, R.P. Gilles. ”Convergence of Cognitive Radio
Networks,” Wireless Communications and Networking Conference 2004.

[20] H. Yamaguchi, ”Active interference cancellation technique for MB-
OFDM cognitive radio” Microwave Conference, 2004. 34th European
Volume 2, 13 Oct. 2004 Page(s):1105 - 1108

278

Authorized licensed use limited to: Isfahan University of Technology. Downloaded on July 25, 2009 at 14:47 from IEEE Xplore.  Restrictions apply. 


