
An Adaptable And Scalable Asymmetric
Cryptographic Processor

Neil Smyth, Máire McLoone and John V. McCanny
The Institute of Electronics, Communications and Information Technology (ECIT)

Queen’s University of Belfast, Belfast, Northern Ireland

Email: (neil.smyth@conexant.com, maire.mcloone@ecit.qub.ac.uk, john.mccanny@ecit.qub.ac.uk

Abstract— In this paper a novel scalable public-key processor
architecture is presented that supports modular exponentiation
and Elliptic Curve Cryptography over both prime GF(p) and
binary GF(2n) extension fields. This is achieved by a high
performance instruction set that provides a comprehensive range
of integer and polynomial basis field arithmetic. The instruction
set and associated hardware are generic in nature and do not
specifically support any cryptographic algorithms or protocols.
Firmware within the device is used to efficiently implement
complex and data intensive arithmetic. A firmware library has
been developed in order to demonstrate support for numerous
exponentiation and ECC approaches, such as different coordi-
nate systems and integer recoding methods. The processor has
been developed as a high-performance asymmetric cryptography
platform in the form of a scalable Verilog RTL core. Various
features of the processor may be scaled, such as the pipeline width
and local memory subsystem, in order to suit area, speed and
power requirements. The processor is evaluated and compares
favourably with previous work in terms of performance while
offering an unparalleled degree of flexibility.

I. INTRODUCTION

Exponentiation is a fundamental cryptographic operation in

asymmetric cryptography. However, the increasingly large key

lengths that are required to maintain sufficiently high levels

of security impose increasing demands on the performance

and memory requirements of both hardware and software

solutions.

Elliptic Curve Cryptography (ECC) was independently pro-

posed by Koblitz [1] and Miller [2] in 1985. ECC is being

adopted as an alternative to exponentiation by an increasing

number of standards due to a number of possible advantages.

These include lower memory requirements and key lengths for

any given security strength and lower complexity arithmetic.

A range of mathematical methods may be applied to both

exponentiation and ECC in order to vary the performance,

memory and power requirements. Such mathematical ”tricks”

include Montgomery reduction [3], Barrett reduction [4] and

integer recoding [5] schemes such as m-ary, non-adjacent
form (NAF) and windowed NAF (w-NAF). This paper details

a processor with a highly efficient mathematical instruction

set suitable for public-key cryptography. This is an extension

of previous work [6] in which a programmable exponentiation

processor was described. The architecture has been revised and

extended to accelerate Montgomery reduction/multiplication

and Montgomery inversion [7], to incorporate a range of

polynomial arithmetic instructions and provide a scalable ar-

chitecture. The resulting processor offers an instruction set that

is sufficiently generic to support a wide range of applications

and mathematical ”tricks”.

ECC over binary fields may be supported by either poly-

nomial or normal basis arithmetic involving large numbers.

For the purposes of this work the seemingly more popular

polynomial basis implementations are provided by a range

of polynomial instructions. Exponentiation and ECC over

prime fields are both enabled by the integer field arithmetic

instructions.

The implementation described in this paper differs from

previous implementations in the following ways.

1) The processor is an entirely self-contained platform

for public-key cryptography, capable of all necessary

computation such that external logic is required only to

transfer the necessary data to and from the processor. All

operations may be performed within the processor thus

reducing both memory bandwidth within a SoC system

and the required MIPS of any host microprocessor.

2) Variables are stored in local RAM rather than registers

providing the ability to operate arbitrary length fields.

3) Integer recoding is provided by software with hardware

support to provide resistance to side-channel attacks.

4) A highly efficient arithmetic instruction set allows com-

plex mathematical algorithms to be abstracted and pro-

vided by a relatively small number of instructions.

5) The power requirements, performance and resource re-

quirements may also be scaled when the system is

synthesised by varying the local memory bandwidth,

processor pipeline width and instruction set.

In the next section a brief background on ECC and ex-

ponentiation is provided. Section III presents a description

of the novel scalable processor public-key architecture, while

Section IV provides an evaluation of the processor perfor-

mance. Exponentiation is demonstrated by a range of integer

recoding schemes used with appropriately modified square-
and-multiply algorithms. ECC scalar point multiplications in

both prime and binary extensions fields, GF(p) and GF(2n),
are demonstrated using both integer recoding with appropri-

ately modified double-and add algorithms and with a range of

coordinate systems. For both prime and binary ECC curves and

exponentiation the performance for a variety of field lengths

are presented. Finally, the merits of the presented architecture

Application-specific Systems, Architectures and Processors (ASAP'06)
0-7695-2682-9/06 $20.00 © 2006

are discussed in Section V.

II. MATHEMATICAL BACKGROUND

Modular exponentiation, which is used in public-key cryp-

tography schemes such as RSA [8], requires multiplication and

squaring within an integer field. These integers are potentially

of many thousands of bits in length. ECC may be performed

using different mathematical bases and the processor presented

in this paper supports integer and polynomial basis. In contrast

to exponentiation the field lengths used in ECC are typically

of a few hundred rather than thousands of bits in length.

A. Exponentiation

Exponentiation is typically performed using a square-and-
multiply algorithm, although other methods may be used

[5]. This algorithm traverses the bits of the exponent and

performs squaring and multiplication as appropriate in order

to obtain the exponential. Modular exponentiation forms the

mathematical basis of cryptographic schemes that utilise the

integer factorisation problem [9] (e.g. RSA) or the discrete

logarithm problem [10] (e.g. Diffie-Hellman key exchange

[11]).

B. ECC

ECC is increasingly being found in security standards and

practical implementations due to its advantages over expo-

nentiation based methods. These advantages include lower

memory requirements and key lengths for any given se-

curity strength and lower complexity arithmetic offered by

polynomial and optimal normal basis over binary extension

fields. Analogous to the square-and-multiply algorithm used in

exponentiation, a scalar point multiplication of a point on an

elliptic curve is performed using the double-and-add algorithm

and the chord-tangent law [12].

III. ASYMMETRIC PROCESSOR ARCHITECTURE

The public-key processor (PKP) has been designed as a high

performance hardware solution to public-key cryptography

that complements a general purpose host microprocessor. The

transfer of complex and data intensive mathematical operations

to the PKP allows such a host microprocessor to perform either

additional functionality or the use of a more resource and/or

power efficient host microprocessor. A block diagram of the

general architecture is shown in Figure 1. The PKP has been

developed as a Verilog RTL synthesizable core and may be

scaled to allow the resources and performance to be balanced

as appropriate.

A. Design Overview

The processor has been provided with an APB (Advanced

Peripheral Bus) slave interface to allow its status, commands

and data to be communicated with a host microprocessor using

a standard system bus. A statistical analysis block attached

to the APB interface allows bit composition measures to be

gathered for any data written to the PKP local RAM. Such

measures may be used to determine the applicability of a

particular technique to improve performance. For example

Fig. 1. Public-Key Processor Block Diagram

S
ta

ti
s
ti
c
a

l
A

n
a

ly
s
is

V
a
ri

a
b

le

S
c
a
n

n
e
r

S
in

g
le

-p
o

rt

In
s
tr

u
c
ti

o
n

R

A
M

/R
O

M

A
P

B
 H

o
s
t

In
te

rf
a
c

e

C
o

n
tr

o
l

A
L

U

C
o

n
tr

o
l

E
x
e
c
u
ti
o
n

P

ip
e
lin

e

C
o
n
tr

o
l

In
te

rf
a
c
e

E
x
e

c
u

ti
o

n
 P

ip
e
li

n
e

H
o

s
t

in
te

rf
a

c
e

,
c

o
n

tr
o

l,

in
s
tr

u
c
ti

o
n

 f
e
tc

h
 a

n
d

 d
e
c

o
d

e

A
ri
th

m
e
ti
c

L
o

g
ic

P
L

IA
R

 A
L

U

E
x
te

rn
a
l
D

a
ta

F

e
tc

h
/S

to
re

 I
n

te
rf

a
c
e

S
in

g
le

-p
o
rt

 D
a
ta

R

A
M

 a
rr

a
y

V
a
ri

a
b

le
 s

c
a
n
n

in
g

a
n

d
 s

ta
ti
s
ti
c
a
l

a
n

a
ly

s
is

 c
o
n

tr
o

l

R
e
g

is
te

r
B

a
n
k

M
e

m
o

ry

S
u

b
s

y
s
te

m

A
P

B
 h

o
s
t

s
y

s
te

m
 b

u
s

D
a
ta

 R
A

M
 0

D
a
ta

 R
A

M
 1

D
a
ta

 R
A

M
 2

D
a
ta

 R
A

M
 3

M
e

m
o

ry

C
o

n
tr

o
ll

e
r

various integer recoding techniques are dependent on the

particular bit distribution of the integer.

All instructions are stored in a 28-bit wide single-port RAM

of sufficient size for the application. A range of registers are

provided at the top-level for control purposes. A number of

these registers are firmware defined and may be programmed

as necessary. The instruction decode logic is used to fetch

instructions from RAM at the requested address and deter-

mine how to execute that instruction. The simple high-level

instructions that control function calls and configuration of

specific functional blocks are 14 bits in length, while the more

complex arithmetic and data manipulation instructions are 28

bits in length. The shorter high-level instructions are therefore

packed together into a 28-bit space in order to reduce the

required storage space. This allows a smaller instruction RAM

resources to be utilized in an SoC design.

The execution pipeline of the PKP is composed of three

distinct hardware blocks. These are the Control ALU, Poly-

nomial and Large Integer Arithmetic (PLIAR) ALU and the

local memory subsystem. Once decoded, VLIW commands

are passed to either the Control or PLIAR ALU’s. The Control

ALU is capable of reading and writing to the local data RAM

through the memory subsystem. It is also provided with access

to all programmable control and status registers within the

PKP as well as 8 data registers of its own. The PLIAR ALU

uses the memory subsystem to access all multiple-precision

operands in order to perform arithmetic operations. The use

Application-specific Systems, Architectures and Processors (ASAP'06)
0-7695-2682-9/06 $20.00 © 2006

of RAM rather than fixed length registers enables the PKP to

operate over fields of arbitrary length.

The processor utilizes three groups of instructions which

are carried out by three different execution paths. The high-

level instructions are used to setup integer scanning hardware,

generate software-driven interrupts and perform branch oper-

ations.

The Control ALU provides a range of instructions that

may be used to perform bit-oriented data manipulation. The

large numbers that are typically used on this processor may

require fine granularity manipulation such as that required

for integer recoding. The Control ALU also provides the

functionality required to setup address pointers which are

used to indicate where large numbers are located in the local

memory subsystem. The control ALU is shown in Figure 2.

Fig. 2. Control ALU block diagram

Data path to read

or write from the
local data RAM

Register operand

(source, target
and destination)

op_a

op_b

Instruction
Interface

Interface with
memory controller

Add / Sub

Register
Bank

(2 read ports,
1 write port)

XOR

OR

AND

Barrel
Shifter

32-bit arithmetic and
logical operations

Result
writeback

Pipeline
Management

The PLIAR ALU performs all integer and polynomial

arithmetic. Operations such as Montgomery multiplication,

Montgomery inversion, addition or division are performed

by a single instruction. The number of cycles that each

of these instructions consume is dependent on the arbitrary

length of the numbers involved and scalable options within

the processor such as the pipeline width and the memory

subsystem configuration. As an example, the 32-bit MEDIUM
configuration of the processor (described later) results in a

Montgomery multiplication time of approximately (m/16)2

cycles for both integers and polynomials, where m is the

length of the modulus. It should be noted that performance

is dependent on the memory subsystem and firmware that

enables optimal burst access from synchronous RAM.

A block diagram of the PLIAR ALU is shown in Figure

3. All data processing is handled by an arithmetic processing

block that contains all multiplicative and additive arithmetic

and logical operations. Data is directed into this block from

the client memory interface. This control logic is composed

of a number of finite state machines that are under the control

of the decoded VLIW command. Arbitrary field lengths may

be supported by the control logic by defining the length of

the field with control registers which the host microprocessor

may program. The complex arithmetic such as Montgomery

multiplication/reduction may use these control registers to

define the length of various operands. The firmware may

utilise these registers with the PLIAR instructions to provide

a flexible and adaptable means of supporting arbitrary field

lengths using the same firmware library.

Fig. 3. PLIAR ALU block diagram

Status and

Control

Interface

PLIAR Control

Integer single-

pass arithmetic

Integer multi-

pass arithmetic

Montgomery

Inversion

Montgomery

Reduction /

Multiplication

Integer

Division
Polynomial

Division

Poly. single-

pass arithmetic

Poly. multi-

pass arithmeticLogical single-

pass operations

Shared control logic Polynomial logic Integer logic

Memory

subsystem

write bus

Memory

subsystem

read bus

Adaptable instruction

control logic

VLIW

Data read control

Control

parameters

Scalable

Fetch/Store

Buffers

Data MUX

Output Data

Buffer

Carry-Save

Arithmetic and

Logic

Processor

Datapath

control

B. Scalability
The architecture is scalable in terms of both the instruc-

tion set and the hardware within the execution pipeline that

supports these instructions. For example, all of the integer

instructions may be omitted if binary field ECC is foreseen

as the only application. Alternatively, if an application such as

RSA will be used exclusively all polynomial basis instructions

may be omitted.
Hardware within the processor may be scaled or omitted en-

tirely. Adjusting the instruction set will remove the associated

control and arithmetic logic. It is possible to vary the execution

pipeline width between 8, 16, 32, 64 and 128 bits. This will

adjust the width of arithmetic hardware such as multipliers and

adder trees as appropriate. The multipliers (both integer and

polynomial) may be varied between full parallel and Karatsuba

[13] multi-cycle implementations. Montgomery multiplication

may be supported by optimised hardware using two multipliers

in parallel as shown in Figure 4. To reduce hardware resources

this functionality may be supported by Montgomery reduction

proceeding multiple-precision multiplication which requires

only a single multiplier, as shown in Figure 5.

Fig. 4. Optimised Montgomery multiplier circuit block diagram

Q[n-1:0]

2n

n

n

Q[2n:n]

*a

b

c

clk

n
2n+1

2n+1+
n

c

d

e

clk

a

b
n

n

n

Q[n-1:0]

2n

n

n

Q[2n+1:n]

2n+2
2n+2

+

2n

*

*

n

The local memory subsystem may also be varied in terms

of its width (which varies with the execution pipeline width),

the available memory depth and the number of parallel single-

port RAMs. The latter option offers the greatest variation in

Application-specific Systems, Architectures and Processors (ASAP'06)
0-7695-2682-9/06 $20.00 © 2006

Fig. 5. Montgomery reduction circuit block diagram

Q[n-1:0]

2n

n

n

Q[2n:n]

*a

b

c

clk

n
2n+1

2n+1+
n

c

d

e

clk

a

b
n

n

n

Q[n-1:0]

2n

n

n

Q[2n+1:n]

2n+2
2n+2

+

2n

*

*

n

terms of performance and power requirements. The PLIAR

ALU is provided with four read ports that access data RAM

through a memory controller. A total of 1, 2 or 4 RAMs

may be contained within the memory subsystem. This will

directly affect the available memory bandwidth provided for

the PLIAR ALU.

The range of options provided to scale the processor archi-

tecture must be carefully balanced. For example, a resource

efficient and relatively low performance PLIAR ALU should

not be paired with a high performance memory subsystem.

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of the processor

a comparison is provided between the different schemes it

supports. In addition, a comparison is provided with previous

work reported in the literature. In all cases a fixed 32-bit

pipeline width implementation is used. This comprises the

full instruction set, optimised Montgomery multiplication and

an optimal configuration of 4 parallel data RAMs within the

memory subsystem.

A. Modular Exponentiation

The results shown in Table I illustrate the variation in per-

formance offered by different square-and-multiply algorithms

used in conjunction with various integer recoding schemes.

It can be seen that 4-NAF integer recoding offers the fastest

computation time when used with left-to-right exponentiation,

followed by the two m-ary methods. The NAF methods offer

superior performance to binary exponentiation methods, but

the large initialization phase of NAF and w-NAF is time-

consuming. Therefore the impact of pre-computation must be

carefully considered when determining the best method in a

given situation. The extra memory requirements of the integer

recoding methods must also be considered in a constrained

system.

TABLE I

1024-BIT FIELD MODULAR EXPONENTIATION PERFORMANCE USING

VARIOUS SQUARE-AND-MULTIPLY AND INTEGER RECODING METHODS

Integer Computation Integer recoding
Recoding (clock cycles) gain (excluding
Scheme Pre Exponentiation Post preprocessing)

L-R Binary 17898 3870400 2592 -
R-L Binary 17889 3896082 2591 -
L-R M-Ary 38422 3277709 2592 15.3 %
R-L M-Ary 19456 3277813 22012 14.8 %
L-R NAF 834401 3452544 2592 10.8 %
L-R 4-NAF 866299 3265005 2592 15.6 %

B. Prime Field ECC

Three different coordinate systems have been utilised in

determining the performance of prime field ECC - affine,

standard projective and Jacobian projective. The performance

of these coordinate systems is shown in Table II. It is observed

that standard projective coordinates offers a marginally better

performance than the Jacobian projective system, while it may

be no surprise that affine coordinates are highly inefficient due

to the abundant use of field inversion. As such performance

figures were obtained only for 192-bit GF(p) NIST curves.

It should be noted that the affine coordinate system requires

only 60% of the instruction RAM consumed by the projective

methods due to the relative simplicity of its point doubling and

point addition algorithms and the PKPs high-level arithmetic

instructions which reduce the complexity of firmware.

TABLE II

PRIME FIELD ECC WITH VARIOUS COORDINATE SYSTEMS

NIST Curve Coordinate system Computation time
(clock cycles)

P192 Standard Projective 820770
Jacobian Projective 823972
Affine 19776563

P224 Standard Projective 1147098
Jacobian Projective 1157667

P256 Standard Projective 1799233
Jacobian Projective 1817877

P384 Standard Projective 4082364
Jacobian Projective 4127213

The performance of various integer recoding schemes when

used with standard projective coordinates are shown in Table

III. It can be seen that the same raw performance improve-

ments are present as that observed in modular exponentiation.

NAF and w-NAF methods require more pre-computation than

the binary or m-ary methods. This pre-computation is in the

form of an expensive field inversion required for every pre-

computed point on the curve. When including the cost of pre-

computation the m-ary method offers the fastest computation

time, otherwise w-NAF is marginally the fastest method when

pre-computation can be ignored. Knowledge of the application

may aid in determining the most applicable method as some

elements of pre-computation may be considered as a one-

time setup. For example, Diffie-Hellman may re-use the same

base point and field thereby allowing the pre-computation of

a number of points on the field for various integer recoding

methods.

C. Binary Field ECC

Four different coordinate systems were used to evaluate the

performance of binary field ECC - affine, standard projective,

Jacobian projective and López-Dahab projective. However,

the performance using affine coordinates is vastly inferior to

that of the projective systems. Table IV provides the average

performance using these projective coordinate systems and a

binary double-and-add algorithm. It is shown that Jacobian

coordinates offer the fastest computation time. López-Dahab

Application-specific Systems, Architectures and Processors (ASAP'06)
0-7695-2682-9/06 $20.00 © 2006

TABLE III

PRIME FIELD ECC WITH VARIOUS INTEGER RECODING SCHEMES

NIST Integer Computation (clock cycles) Integer recoding
Curve Recoding Pre Double- Post gain (excluding

Scheme and-Add preprocessing)

P192 Binary 2216 788886 29668 -
M-Ary 15050 703914 29405 9.0
NAF 108870 698732 29665 12.9

4-NAF 123170 690573 29525 12.6
P224 Binary 2722 1105351 39024 -

M-Ary 17998 974360 39734 9.0
NAF 134796 974549 39150 13.4

4-NAF 151782 968807 39301 12.9

followed by standard projective coordinates are marginally

slower. It follows that the increased computation and storage

requirements of Jacobian coordinates provides for an optimal

computation time. The use of affine coordinates unsurprisingly

offers the longest computation time and lowest use of both

instruction and data RAM due to its low complexity.

The performance gains offered by integer recoding in binary

field ECC are very similar to that offered by integer recoding

when used with ECC over prime fields. Table V shows the

performance gains offered by integer recoding and Jacobian

coordinates. The windowed NAF method offers a nominally

better performance than the other integer recoding methods.

The two NAF methods require relatively expensive field in-

versions to be performed as part of the pre-computation step.

When the base point and curve are repeatedly used this field

inversion may be considered as a one-time setup operation and

ignored.

TABLE IV

BINARY FIELD ECC WITH VARIOUS COORDINATE SYSTEMS

NIST Curve Coordinate system Computation time
(clock cycles)

B111 Standard Projective 261201
Jacobian Projective 253965

López-Dahab Projective 258253
B163 Standard Projective 608658

Jacobian Projective 593822
López-Dahab Projective 598345

B233 Standard Projective 1286818
Jacobian Projective 1258493

López-Dahab Projective 1260072

D. Comparison to related work

The relative performance of the processor in comparison to

previous work presented in the literature and commercial so-

lutions is shown in Table VI. The range in performance of the

processor’s scalable execution pipeline is demonstrated using

five common measurements - 192-bit and 1024-bit integer field

multiplication, 163-bit polynomial field multiplication, 192-bit

integer field addition and 163-bit polynomial field addition.

Three scaled implementations of the processor were chosen

to compare the resource and performance metrics:

TABLE V

BINARY FIELD ECC WITH VARIOUS INTEGER RECODING SCHEMES

NIST Integer Computation (clock cycles) Integer recoding
Curve Recoding Pre Double- Post gain (excluding

Scheme and-Add pre-processing)

B111 Binary 24406 214262 15296 -
M-Ary 32564 183899 15014 7.2
NAF 77698 179890 15212 19.1

4-NAF 86728 174942 14903 22.5
B163 Binary 56581 506926 30315 -

M-Ary 69201 426795 30284 5.2
NAF 159197 423800 30211 19.6

4-NAF 173170 416956 30657 21.6
B233 Binary 119372 1082903 56218 -

M-Ary 137126 887423 55582 5.4
NAF 306861 895839 56560 20.9

4-NAF 326446 885300 55467 22.3

Compact 8-bit pipeline

1 x 2048x8 single-port data RAM

Supports up to 2040-bit fields

Medium 32-bit pipeline

2 x 512x32 single-port data RAMs

Supports up to 2016-bit fields

Ultra 128-bit pipeline

4 x 256x128 single-port data RAMs

Supports up to 3968-bit fields

These all utilise both integer and polynomial instructions,

optimised Montgomery multiplication support and a 512x28

word instruction RAM. Note that the Medium implementation

has a reduced memory bandwidth compared to the 32-bit

implementation used in the previous performance analysis.

Table VI illustrates the variation in performance and re-

source usage of the public-key processor presented in this pa-

per. The low power and resource efficient compact implemen-

tation of the processor is shown to offer high performance and

efficient resource usage. While the 8-bit parallel Montgomery

multiplier circuit offers high performance it is not a low power

design in comparison to [15]. However the resource usage of

the Compact design is efficient by comparison.

The Domain Specific Reconfigurable Cryptographic Proces-

sor (DSRCP) [17] is capable of the same operations. However,

the PKP offers a scalable architecture for SoC integration, is

not limited to a maximum field size of 1024 bits and offers

software definable integer recoding rather than a hardcoded

scheme. Furthermore, the PKP is not limited to the affine

ECC coordinate system and offers a complete solution to

perform ECC point multiplications over prime fields that does

not require external resources. No hardware resources for the

DSRCP are stated in order to make a fair comparison of

performance.

Also of relevance is [16] which describes a dual-field ECC

processor. This shares many design features of the PKP in a

compact architecture that outperforms our implementation. For

example, our 32-bit 90.9K gate (logic) PKP compared to their

32-bit 43.52 K gate (logic) processor performs ECC 160-bit

point multiplication in 3.94 ms GF(p) and 3.72 ms GF(2n)

Application-specific Systems, Architectures and Processors (ASAP'06)
0-7695-2682-9/06 $20.00 © 2006

TABLE VI

RESOURCE AND PERFORMANCE COMPARISON

Version Resource Operation Computation
metrics time

This work 200MHz INTEGER:
- COMPACT TSMC 130 nm 1024-bit mult. 347.5 μs

(worst case) 192-bit mult. 13.9 μs
42.7k logic gates 192-bit addition 770 ns
36.5k RAM gates POLYNOMIAL:

163-bit mult. 10.7 μs
163-bit addition 340 ns

This work 166 MHz INTEGER:
- MEDIUM TSMC 130 nm 1024-bit mult. 20.31 μs

(worst case) 192-bit mult. 1.04 μs
90.9k logic gates 192-bit addition 126 ns
34.9k RAM gates POLYNOMIAL:

163-bit mult. 840 ns
163-bit addition 90 ns

This work 133 MHz INTEGER:
- ULTRA TSMC 130 nm 1024-bit mult. 2.20 μs

(worst case) 192-bit mult. 98 ns
339 k logic gates 192-bit addition 83 ns
51 k RAM gates POLYNOMIAL:

163-bit mult. 98 ns
163-bit addition 60 ns

[14] 0.5 μm CMOS 1024-bit integer 43 μs
27k logic gates multiplication
80 MHz, Mult.
circuit only

[15] 0.18 μm CMOS 1024-bit integer 180 ms
59k gates, 2kB multiplication
RAM, 50 MHz,
Mult. circuit only,
low power

[16] 0.13 μm CMOS 256-bit int mult 190 cycles
32-bit version 160-bit poly mult 72 cycles
178.6 MHz

[17] FPGA, 50 MHz 1024-bit int mult 2048 cycles
resources not 192-bit poly mult 31.25 μs
stated

compared to 1.71 ms GF(p) and 0.34 ms GF(2n) respectively.

Our design is a firmware driven processor and not a sequencer

driven hardware implementation that uses fixed support for

algorithms. This results in the increased gate count and lower

performance of the PKP. However, our design offers much

greater flexibility as seen by its greater support of different

ECC and modular exponentiation approaches.

V. CONCLUSION

This paper describes a processor architecture for public-key

cryptography applications. A relatively high performance 32-

bit implementation of the processor is used to illustrate the

performance advantages when using different mathematical

optimisation techniques. These techniques are provided as

firmware that may be downloaded to the instruction RAM.

Such reprogrammable functionality is a unique feature of the

described architecture. Such flexibility enables the host system

to randomly select from a range of integer recoding, coordinate

systems and double-and-add algorithms for every ECC point

multiplication in order to offer resistance to timing attacks.

The processor is capable of supporting integer and poly-

nomial arithmetic. Optimised instructions are provided to

enable highly efficient multiplication, addition and inversion

within fields. Such arithmetic is necessary for supporting

many public-key cryptography methods which include expo-

nentiation and ECC point multiplication over both prime and

binary fields. The supported field and operand lengths are only

restricted by the data RAM provided in the design, contrary

to many other published designs that have fixed field lengths.

The design is also not restricted to any particular parameters

of the exponentiation or ECC scheme being performed.

An ASIC in the field utilising this application specific

processor could be adapted using new firmware to support

different applications. The instruction set of the processor

may also allow the processor to adapt to new public-key

cryptography techniques as they evolve from experimental

methods. Future work will evaluate the processors ability

to support hyperelliptic- and torus-based cryptography and

support for hybrid GF(p) and GF(2n) arithmetic hardware.

ACKNOWLEDGMENT

This work was sponsored by Conexant Systems Inc.

REFERENCES

[1] N. Koblitz, ”Elliptic curve cryptosystems,” Mathematics of Computation,
vol. 48, pp. 203209, 1987.

[2] V. Miller, ”Use of elliptic curves in cryptography,” CRYPTO 85, 1985.
[3] P. L. Montgomery. Modular multiplication without trial division. Mathe-

matics of Computation, vol. 44, no. 170, pp. 519-521, 1985.
[4] P. Barrett, Implementing the Rivest Shamir and Adleman public key

encryption algorithm on a standard digital signal processor, in Advances
In Cryptology CRYPTO 86 (LNCS 263) (A. M. Odlyzko, ed.), pp.
311323, 1987.

[5] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography. CRC Press, 1996. http://www.cacr.math.uwaterloo.ca/hac/.

[6] N. Smyth, M. McLoone and J. McCanny, ”Reconfigurable Processor for
Public-Key Cryptography”, SIPS 2005, Proceedings, IEEE International
Conference on 2-4 November 2005, pp. 110-115.

[7] B. S. Kaliski Jr., T he Montgomery inverse and its applications, IEEE
Transactions on Computers, 44(8), pp. 10641065, Aug 1995.

[8] PKCS #1: RSA Cryptography Standard,
www.rsasecurity.com/rsalabs/pkcs/pkcs-1/, March 2006.

[9] D. Knuth. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, Third Edition. Addison-Wesley, 1997. ISBN 0-201-89684-2.
Section 4.5.4: Factoring into Primes, pp. 379417.

[10] Discrete logarithm, Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Discrete logarithm, March 2006.

[11] W. Diffie and M. E. Hellman, New Directions in Cryptography, IEEE
Transactions on Information Theory, vol. IT-22, Nov. 1976, pp. 644-654.

[12] M. Rosing, Implementing Elliptic Curve Cryptography, K. Antonsen,
Ed. Manning Publications Co., 1999.

[13] A. Karatsuba and Y. Ofman, ”Multiplication of Many-Digital Numbers
by Automatic Computers,” Doklady Akad. Nauk SSSR 145, 293-294,
1962. Translation in Physics-Doklady 7, 595-596, 1963.

[14] A. F. Tenca and C. K. Koς , A Scalable Architecture for Modular
Multiplication Based on Montgomerys Algorithm, IEEE Transactions on
Computers, Vol. 52, No. 9, September 2003.

[15] Hee-Kwan Son and Sang-Geun Oh , Design and implementation of
scalable low-power montgomery multiplier, Computer Design: VLSI
in Computers and Processors, 2004. ICCD 2004. Proceedings. IEEE
International Conference on 11-13 Oct. 2004 pp. 524 531.

[16] A. Satoh and K. Takano, ”A Scalable Dual-Field Elliptic Curve Crypto-
graphic Processor,” IEEE Trans. Computers, vol. 52, pp. 449-460, 2003.

[17] J. Goodman and A. P. Chandrakasan, ”An energy efficient reconfigurable
public-key cryptography processor architecture,” In Proceedings of 2nd
International Workshop on Cryptographic Hardware and Embedded Sys-
tems (CHES), number 1965 in Lecture Notes in Computer Science, pages
174-191, Worcester, Massachusetts, USA, August 17-18 2000. Springer-
Verlag.

Application-specific Systems, Architectures and Processors (ASAP'06)
0-7695-2682-9/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

