
1

Privacy-Preserving OLAP:
An Information-Theoretic Approach

Nan Zhang, Member, IEEE, Wei Zhao, Fellow, IEEE

Abstract—We address issues related to the protection of private information in Online Analytical Processing (OLAP) systems, where
a major privacy concern is the adversarial inference of private information from OLAP query answers. Most previous work on privacy-
preserving OLAP focuses on a single aggregate function and/or addresses only exact disclosure, which eliminates from consideration
an important class of privacy breaches where partial information, but not exact values, of private data is disclosed (i.e., partial
disclosure). We address privacy protection against both exact and partial disclosure in OLAP systems with mixed aggregate functions.
In particular, we propose an information-theoretic inference control approach that supports a combination of common aggregate
functions (e.g., COUNT, SUM, MIN, MAX, MEDIAN) and guarantees the level of privacy disclosure not to exceed thresholds pre-
determined by the data owners. We demonstrate that our approach is efficient and can be implemented in existing OLAP systems with
little modification. It also satisfies the simulatable auditing model and leaks no private information through query rejections. Through
performance analysis, we show that compared with previous approaches, our approach provides more effective privacy protection
while maintaining a higher level of query-answer availability.

Index Terms—Online Analytical Processing (OLAP), privacy, information theory.

�

1 INTRODUCTION

ONLINE analytical processing (OLAP) is one of the
most popular decision support and knowledge

discovery techniques in business-intelligence systems
[20]. However, it is a challenge to enable OLAP on
private data without violating the data owners’ privacy.
Traditional studies on database security provide access
control and data sanitization (e.g., removal of personal-
identifiable information) tools for the relational back-end
of OLAP systems [19], [21], [25], [31]. Nonetheless, since
an essential feature of OLAP is to compute the multi-
dimensional aggregates of stored data, a major privacy
concern in OLAP is the adversarial inference of (individ-
ual) private data points from the aggregate information.
This inference problem cannot be fully addressed by
access control and data sanitization techniques.

In this paper, we address privacy protection against
adversarial inference in an OLAP system consisting of a
data warehouse server and a number of users. The data
warehouse server holds private data, and is supposed to
answer OLAP queries [20] issued by users on the multi-
dimensional aggregates of private data. A user may
not have the right to access all individual data points
in the data warehouse, but might be allowed to issue
OLAP queries on the aggregates of data for which it has
no right to access. For example, in a hospital system,
the accounting department (as a user) can access each
patient’s financial data, but not the patients’ medical

• Nan Zhang is with the Department of Computer Science, The
George Washington University, Washington, DC 20052, USA. Email:
nzhang10@gwu.edu.

• Wei Zhao is with The University of Macau, Taipa, Macau SAR, China.
Email: weizhao@umac.mo.

records (an actual HIPAA requirement [33]). Nonethe-
less, the accounting department may query aggregate
information related to the medical records, such as the
total expense for patients with Alzheimer’s disease.

In an OLAP system, a privacy breach occurs if a user
can infer certain information about a private data point
for which it has no right to access from the query an-
swers it receives as well as the data that it has the right to
access. Such privacy breach is referred to as the inference
problem [9]. Protection against the inference problem has
been extensively investigated in the literature of related
areas (e.g., statistical databases [1], [9], [10], [16], [22],
query auditing [13], [23], [24], [29], [30]), which laid solid
foundation for studies in OLAP. Privacy protection in
OLAP faces unique challenges, such as larger queries,
mixed aggregate functions, and increased demand for
shorter response time [34].

There are two types of methods that have been pro-
posed to prevent inference problems from happening
in OLAP systems: inference control (i.e., online query
auditing in OLAP) [26], [34], [35], [37] and input/output
perturbation [4], [16], [32]. With the inference control
approach, after receiving a query from a user, the data
warehouse server determines whether answering the
query may lead to an inference problem, and then
either rejects the query or answers it precisely. The
input/output perturbation approach either perturbs (in-
put) data stored in the data warehouse server with ran-
dom noise and answers every query with an estimation,
or adds random noise to the (output) query answers
in order to preserve privacy. Existing studies support
COUNT [4] and SUM [32] queries for input perturbation,
and general aggregation functions for output perturba-
tion [16].

Digital Object Indentifier 10.1109/TKDE.2010.25 1041-4347/10/$26.00 © 2010 IEEE

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: The George Washington University. Downloaded on February 23,2010 at 08:21:26 EST from IEEE Xplore. Restrictions apply.

2

While both approaches can be very useful for privacy
protection, precise query answers (without perturbation)
are often preferred when important decisions need to
be made based on the data [29]. Thus, we focus on the
inference control approach in this paper1. Most existing
solutions for inference control in OLAP share an assump-
tion that a privacy breach occurs if and only if a user
can infer the precise value of a private data point stored
in the data warehouse server (i.e., exact disclosure) [35],
[37]. This assumption eliminates from consideration an
important class of privacy breaches where partial infor-
mation of a private data point is disclosed (i.e., partial
disclosure), and, as is demonstrated by previous work
[5], [22], [23], [26], [28], [29], does not suffice for many
practical applications. For example, although a malicious
user cannot infer the precise age of a person, it may
be able to estimate the age within error of one year.
In practice, many people would consider this to be a
violation of their privacy. As such, existing solutions for
inference control in OLAP cannot satisfy the privacy-
protection requirements of many real-world systems.

In this paper, we address privacy protection against
both exact and partial disclosure in OLAP systems.
We first define a continuous measure on the partial
disclosure of privacy information, which can be used
(with precautions) by the data owners to specify their
maximum acceptable (or tolerable) level of privacy dis-
closure. Then, we propose an inference control approach
based on an information-theoretic formulation of OLAP
queries, which quantitatively measures the amount of
private information disclosed by each query. Basically,
our approach maintains an estimated upper bound on
the amount of private information disclosed by all an-
swered queries, and rejects a query iff such an estimation
would exceed the owner-specified threshold. We shall
demonstrate that our approach has the following fea-
tures to distinguish itself from previous approaches:

• By exploiting the common information-theoretic
properties of various aggregate functions, we ad-
dress a combination of aggregation functions in-
cluding the most common ones such as SUM, AVG,
COUNT, MIN, MAX, etc, in contrast to the SUM-
only [7], [26], [35], [36], [37], COUNT-only [4], or
MIN/MAX-only [29] approaches in previous work.

• Our approach is effective against both exact and
partial disclosure. To the best of our knowledge, our
approach is the first to guarantee the level of privacy
disclosure not to exceed owner-specified thresholds
in OLAP systems with queries of mixed aggregate
functions. Furthermore, our inference control algo-
rithm satisfies the simulatable auditing model [23]
and leaks no private information through rejections.

• While providing rigid privacy protection, our ap-

1. Our proposed scheme can also be seamlessly integrated with the
input/output perturbation approach for scenarios where the input data
or the query answers can be perturbed to improve the performance
of both approaches. Due to space limitations, we present such an
integration in the technical report [41].

proach also maintains a high level of query avail-
ability. In particular, we derive theoretical lower
bounds on the percentage of queries answered by
our approach, and use simulation results to show
that our approach can answer substantially more
queries than existing approaches while providing
better privacy protection.

The idea of using information theory to model in-
ference control was first used in our work for exact
disclosure [40]. Significant differences between our work
in this paper and [40] include:

• The difference in objective of privacy protection:
We are dealing with both exact and partial privacy
disclosure in this paper, instead of exact disclosure
only in [40].

• The difference in supported OLAP queries: The
inference control algorithm proposed in [40] only
allows (n − 1)- and n-dimensional queries for n-
dimensional data cubes, while this paper supports
queries with all dimensionalities.

The rest of the paper is organized as follows. We
briefly review the background in Section II. In Section
III, we present the system settings, performance mea-
sures, and problem statement. Also in this section, we
define a continuous measure on the partial disclosure
of privacy information. In Section IV, we introduce an
information-theoretic formulation of OLAP queries, and
identify what aggregate functions we support and do
not support with our formulation. Then, we propose
an inference control approach in Section V, followed by
theoretical analysis in Section VI. We present simulation
results on the performance of our approach in Section
VII. In Section VIII, we discuss various extensions to our
approach. We compare our results with related work in
Section IX, and conclude the paper with final remarks in
Section X.

2 BACKGROUND

2.1 OLAP System Model
We consider an OLAP system where the data ware-
house server stores data in an n-dimensional data cube,
in order to support aggregate queries on an attribute-
of-interest over selected data [20]. We refer to such
attribute-of-interest as the measure attribute. Besides the
measure attribute, there are n dimension attributes, each
of which is represented by a dimension of the data cube.
Each (base) cell of the data cube is the value of the mea-
sure attribute for the corresponding value combination
of dimension attributes. For example, Table 1 shows a 2-
dimensional data cube with a measure attribute of sales
and two dimension attributes of product and time. Each
cell of the data cube in Table 1 is the sales amount (i.e.,
measure attribute) of a product (e.g., Book) in a month
(e.g., April). As in real cases, some cells in the data cube
can be missing or not applicable (i.e., N/A in Table 1).

By changing the group by clause and the aggregation
function, a user of the data warehouse can query various

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: The George Washington University. Downloaded on February 23,2010 at 08:21:26 EST from IEEE Xplore. Restrictions apply.

3

TABLE 1
An Example of Inference Problem

April May June July Sum
Book 10 12 15 7 q5 = 47
CD 20 23 27 N/A q6 = 70
DVD 23 35 16 36 q7 = 110
Game N/A 25 30 14 q8 = 69
Sum q1 = 53 q2 = 95 q3 = 88 q4 = 57

aggregates (e.g., COUNT, SUM, MIN, MAX, MEDIAN)
of the measure attribute for different subcubes of the
data cube. The answer to an OLAP query is the output
of aggregation function on all cells in the subcube. We
say that a subcube is h-dimensional if and only if it
covers all values for (each of) h dimension attributes in
the data cube. We refer to a query on an h-dimensional
subcube of the data cube as an h-dimensional query. For
example, query q5 (i.e., SUM of row “Book”) in Table 1 is
a 1-dimensional SUM query that covers a 1-dimensional
subcube of Book×{April, May, June, July}. Note that the
answer to an h-dimensional query can also be considered
as a cell in the corresponding (n−h)-dimensional cuboid
[20] of the data cube. As is commonly assumed in the
literature, we consider skeleton queries2 [35], [38] to be
the granularity of queries issued by the users [35], [37],
[40]. However, note that this does not indicate that our
algorithm only supports skeleton queries. Instead, we
focus on the processing of skeleton queries in the up-
coming discussions only for the ease of understanding.
Our proposed algorithms readily apply to non-skeleton
queries, as we shall discuss in Section 5.5.

2.2 Privacy Requirements

Due to privacy concerns, the owner of a data cube may
not want a user to have access to all the information
stored in it. Privacy requirements on a data cube may
be defined over the cells in the data cube, and/or the
data tuples in the relational back-end of it. In this paper,
we choose a cell as the granularity for specification of
privacy requirements due to our focus on the processing
of OLAP queries. Nonetheless, as evidenced by our
privacy measure in Section 3, privacy requirements on
tuples can also be transformed to requirements on data
cube cells. In our model, a user does not have the right
to access all cells in the data cube. We refer to all cells
that a user cannot access as sensitive cells for the user.

A user should not be capable of compromising the
value of a sensitive cell from the query answers it
receives. There are two measures for the compromise of
a sensitive cell: exact and partial disclosure. While exact
disclosure occurs iff the exact value of cell is known to
a user, partial disclosure occurs whenever a user has a

2. A query is a skeleton query if and only if the query covers either
all values of a dimension attribute or only one value of it [35]. For
example, a query on a row or a column of the 2-dimensional data cube
is a skeleton query. In Table 1, each qi is the answer to a 1-dimensional
skeleton query with function of SUM.

significant change between its prior and posterior belief
on the value of a cell. We shall introduce the formal
definitions for exact and partial disclosure in Section 3.3.

2.3 External Knowledge
In practice, besides receiving aggregate query answers, a
user may also learn certain information about a sensitive
cell from sources outside the OLAP system. We refer to
such information as the external knowledge of the user.
There are various types of external knowledge which
may lead to the disclosure of sensitive cells. For example,
if a user knows that the maximum employee salary of
a company belongs to Alice, its CEO, then the salary of
Alice can be inferred from just one aggregate query on
the maximum salary in the data cube. Even a MAX query
on the salary of a subset of the employees can be privacy-
divulging, as the answer can be used by an adversary as
a lower-bound estimate on Alice’s salary. It is difficult,
if not possible, to have a universal model that captures
all types of external knowledge. The proper modeling
of external knowledge is still an open problem drawing
considerable attention from data privacy studies [8], [27].

In this paper, we consider the type of external knowl-
edge that is most commonly assumed and addressed in
the literature of privacy-preserving OLAP [36], [37], [40]
- a subset of cells in the data cube are known by the users
as pre-knowledge. To ensure the security of sensitive
cells, we adopt a conservative assumption that if a cell
is not sensitive to (i.e., can be accessed by) a user, then
the user knows the value of the cell as pre-knowledge.
We refer to such non-sensitive cells as pre-known cells of
the user. Table 2 shows the access privileges of a user on
Table 1. For the ease of understanding, we count all pre-
known cells as 0 in the computation of query answers
(i.e., q1 to q8) in the table.

TABLE 2
An Example of Inference Problem

April May June July Sum
Book 10 Known 15 Known q5 = 25
CD 20 Known 27 Known q6 = 47
DVD Known 35 16 36 q7 = 87
Game Known 25 Known 14 q8 = 39
Sum q1 = 30 q2 = 60 q3 = 58 q4 = 50

The formal definition of inference problem will be in-
troduced in the next section. Intuitively, inference prob-
lem occurs if a user can infer certain information about
a sensitive cell from the received query answers as well
as the pre-known cells. For example, inference problem
may occur in Table 2, in terms of the exact disclosure
of sensitive cell 〈DVD, June〉, if the user learns query
answers q1, q3, q5, and q6: The user can infer the sales
amount of DVD in June by computing 〈DVD, June〉 =
q1 + q3 − (q5 + q6) = 16.

3 SYSTEM MODEL
In this section, we introduce the system models for
privacy protection in OLAP. In particular, we present the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: The George Washington University. Downloaded on February 23,2010 at 08:21:26 EST from IEEE Xplore. Restrictions apply.

4

system settings, models of privacy intrusion attacks and
defensive countermeasures, performance measures for
privacy disclosure and query availability, as well as the
formal problem definition of inference control in OLAP.

3.1 System settings

Let there be one data warehouse server and a number
of users C1, . . . , CU in the system. For each user Ck (k ∈
[1, U]), let Gk be the set of cells in the data cube that
Ck has the right to access. We refer to Gk as the set of
pre-known cells of Ck. Since the data warehouse server
needs to properly enforce access control on the sensitive
cells, we assume that it knows Gk for k ∈ [1, U] as pre-
knowledge.

To model the processing of OLAP queries in many
real systems, we follow an online setting of the inference
control problem [23], [29] which assumes that each user
issues multiple OLAP queries sequentially, and the data
warehouse server has no knowledge of the upcoming
queries. In Section 8.2, we shall discuss an extension of
our results to cases where a user can submit multiple
queries in a batch. We shall show that while all results
in the paper still apply to these cases, the simultaneous
submission of multiple queries may allow us to further
optimize the performance of inference control.

We denote a query q by a 2-tuple 〈F, {x1, . . . , x|q|}〉,
where F is the aggregate function of q, |q| is the number
of cells (including both pre-known and sensitive cells)
covered by q, and x1, . . . , x|q| are the covered cells. If a
cell x is covered by q, we say that x ∈ q. For each query
q, let q be the correct answer to q. For a given time, let Qk

be the set of queries q for which user Ck has received
answers.3 We refer to Qk as the query history of Ck at
the given time. Both the data warehouse server and Ck

knows Qk.

3.2 Models of Privacy Intrusion Attacks and Defen-
sive Countermeasures

A user Ck can be an adversary intending to compromise
the private information about sensitive cells x (x �∈ Gk)
that it has no right to access. In order to do so, Ck may
launch an inference attack by inferring private information
about x from the pre-known cells in Gk as well as the
historic query answers in Qk. Throughout this paper, we
make a worst-case assumption that each (malicious) user
is computationally unbounded in that its inference attack
may compromise the maximum possible private infor-
mation about x (x �∈ Gk) from Qk and Gk irrespective
of the computational cost. In the majority of the paper,
we follow a common assumption in the literature [1]
that the users do not share Gk and Qk with each other.
Nevertheless, we shall extend our approach to address
the threats from colluding users in Section 8.1.

3. With a slight abuse of notation but without introducing ambiguity,
we also use Qk to denote the set of query answers received by Ck .

In order to defend against inference attacks, the data
warehouse server may employ an inference control com-
ponent to control the query answers issued to the users.
When the data warehouse server receives a query q from
a user Ck, the inference control component of the data
warehouse server either rejects the query or provides the
correct answer by transmitting q to Ck. The decision is
made based on the received query q as well as the pre-
known set Gk and the query history Qk of the user.

3.3 Performance Measures
An inference control approach should be measured by
its ability to protect privacy and answer OLAP queries.
We define the measures for privacy disclosure and query
availability respectively, as follows.

3.3.1 Privacy Disclosure Measure
We define a continuous measure for privacy disclosure
in order to capture both exact and partial disclosure of
private information. For each cell x, we assume that the
prior distribution of x is public information to both the
data warehouse server and the users. This is a reasonable
assumption in practice because many attributes, such as
age and salary, have underlying probability distributions
that both the data warehouse server and the users can
learn from external knowledge [23]. We restrict our
discussion in this paper to discrete distributions of x -
we assume a simple discretization of continuous data
to resemble discrete values. For the sake of simplicity,
we also assume that a user cannot directly compromise
information about a sensitive cell x from the pre-known
cells in Gk (i.e., H(x) = H(x|Gk) where H(·) is informa-
tion entropy [12]), because otherwise no inference control
approach can prevent such disclosure from happening.
Note that 1) this does not mean that we assume the
cells to be independent (we shall propose in Section 5.2
an algorithm that supports interdependent cells), and 2)
when information about a sensitive cell x can indeed
be inferred from the pre-known set Gk, we can always
adjust our definition of the privacy disclosure measure
accordingly by changing the belief of the data warehouse
server and the users on the prior distribution of x.

Definition 1. For a given user Ck and its query history Qk,
the level of privacy disclosure on a sensitive cell x �∈ Gk is
defined as:

lp(x; Qk) =
I(x; Qk|Gk)

H(x)
. (1)

where H(x) is the information entropy of x, and I(x; Qk|Gk)
is the mutual information between x and Qk given Gk.

Note that since Gk does not change during the query
answering process, we do not include it as a variable
in lp(x; Qk). Please refer to information theory textbook
[12] for the formal definitions of information entropy
and mutual information. Intuitively, H(x) measures the
amount of information in (i.e., the degree of uncertainty

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: The George Washington University. Downloaded on February 23,2010 at 08:21:26 EST from IEEE Xplore. Restrictions apply.

5

of) x, while I(x; Qk|Gk) measures the amount of ad-
ditional information about x that one can infer from
Qk given Gk as pre-knowledge. Due to our assump-
tion of H(x) = H(x|Gk), the privacy disclosure level
lp(x; Qk) ∈ [0, 1] measures the percentage of informa-
tion about x that Ck can infer from Qk and Gk. For
example, when Ck is able to infer the precise value
of x, there is I(x; Qk|Gk) = H(x) and lp(x; Qk) = 1.
When Ck can infer no information about x, there is
I(x; Qk|Gk) = lp(x; Qk) = 0. The greater lp(x;Qk) is, the
more information about x can be inferred by Ck from
Qk and Gk.

In order to provide an intuitive explanation of our
privacy disclosure measure, we show that a data owner
can specify its privacy requirements on the posterior
probability P (x|Qk, Gk) in terms of an upper bound
on lp(x;Qk). Suppose that x is a discrete variable with
domain set of V (x). We have the following theorem:

Theorem 3.1. For all users Ck, cells x, and values x0 ∈
V (x), no user can have expected probability of Pr{x =
x0|Qk, Gk} > p1 or Pr{x = x0|Qk, Gk} < p2, where
p1 > 1/|V (x)| and p2 < 1/|V (x)|, if

lp(x; Qk) ≤ 1 + min
i∈{1,2}

(1− pi) · log 1−pi
|V (x)|−1

+ pi log pi

H(x)
. (2)

Due to space limitations, please refer to [41] for the
proof. As we can see from the theorem, the more differ-
ence there is between Pr{x = x0|Qk, Gk} and 1/|V (x)|,
the greater lp(x;Qk) will be. For example, when the prior
distribution of x is uniform on {0, 1}, no user can have
expected probability of Pr{x = 1|Qk, Gk} > 3/4 or < 1/4
if lp(x; Qk) ≤ 0.188. Similar to the transformation from
P (x|Qk, Gk) to lp(x; Qk) demonstrated in the theorem, a
data owner can also transform many other probabilistic
notions of privacy requirements, such as the probabilis-
tic compromise measure [23] and the ρ1-to-ρ2 privacy
measure [17], to upper bounds on lp(x;Qk).

Note that when we adopt the information-theoretic
measure of lp(x; Qk) to capture the partial disclosure
of private information, we also introduce an inherent
problem of information-theoretic measures found in ex-
isting work [17]: Since an information-theoretic measure
quantifies the average amount of disclosed information,
there may exist extreme-case privacy disclosure with a
small probability of occurrence that cannot be captured
by information-theoretic measures. We shall further elab-
orate on such extreme-case privacy disclosure by ex-
amples shown in Section 4.2. In addition, we provide
a solution in the technical report [41]. Nonetheless, we
argue that the information-theoretic measure lp(x; Qk) is
still suitable for measuring privacy disclosure in OLAP
because 1) as we shall show in Section 4.2, the extreme-
case privacy disclosure only occurs with a rather small
probability, and 2) as we shall show in [41], when
such extreme-case privacy disclosure occurs, it can be
effectively eliminated by integrating inference control
with input/output perturbation.

3.3.2 Query Availability Measure
Another important performance measure for privacy
protection in OLAP is the system’s ability to provide
accurate answer queries to the users (i.e., the utility
of inference control [29]). Since an inference control
approach either rejects a query or answers it correctly,
for a given user Ck, we define the query availability
level la(Ck) ∈ [0, 1] as the percentage of queries issued by
Ck that are (correctly) answered by the data warehouse
server. Note that the query availability level depends not
only on the set of pre-known cells Gk and the queries
issued by Ck, but also on the order in which the queries
are issued. Formally, we have the following definition:

Definition 2. Let �Q = 〈q1, . . . , qm〉 be a sequence (i.e.,
ordered list) of queries issued by Ck. The query availability
level for Ck is defined as:

la(Ck) =
|{qi|qi is answered when Ck issues �Q}|

m
. (3)

3.4 Problem Statement

Based on the performance measures defined in the above
subsection, we can now formally state the problem of in-
ference control. As we can see, the objective of inference
control in OLAP is to answer as many queries as possible
without violating the privacy requirements imposed by
the data owners. It is impractical to guarantee that abso-
lutely no private information will be disclosed because
almost every query answer that covers a sensitive cell x
may disclose a certain (albeit small) percentage of private
information about x (i.e., I(q; x|Gk) > 0 for x ∈ q and
x �∈ Gk). For example, a MIN query answer q = v on
100 cells always reveals that every cell included in the
query has value of at least v, and thus may disclose
certain information about each cell. As such, we allow
the owners of private cells to specify an upper bound on
the level of privacy disclosure as follows.

Definition 3. For a given cell x, the maximum acceptable
level of privacy disclosure on x is an upper bound l(x) ∈ (0, 1]
specified by the owner of x such that for each user Ck which
does not know x as pre-knowledge (i.e., x �∈ Gk), the data
warehouse server must guarantee that at any time, the query
history Qk of the user satisfies

lp(x; Qk) < l(x). (4)

Due to the definition, the greater l(x) is, the more
private information about x is allowed to be disclosed
by Qk. An intuitive reference point for l(x) is l(x) = 1,
in which case a privacy breach occurs if and only if
the exact value of x can be learned by a user Ck with
x �∈ Gk. This essentially reduces the problem to the exact
disclosure investigated in previous work [35], [37], [40].
When l(x) < 1, recall that Theorem 3.1 provides guide-
lines for a data owner to properly transform its privacy
requirements on the posterior probability P (x|Qk, Gk) to
an upper bound on lp(x; Qk).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: The George Washington University. Downloaded on February 23,2010 at 08:21:26 EST from IEEE Xplore. Restrictions apply.

6

Note that although we allow data owners the freedom
to assign arbitrary l(x) to their cells, some of the bounds,
if not carefully chosen, may not be meaningful in real
systems due to the interdependency between values of
different cells. For example, consider the case where
two cells x1 and x2 always have the same value (i.e.,
x1 ≡ x2). If the owner of x1 specifies l(x1) = l1, any
bound on x2 with l(x2) > l1 is meaningless because
by the time a user Ck reaches lp(x2; Qk) ≥ l(x2), the
user must have already violated the privacy of x1 (i.e.,
lp(x1; Qk) = lp(x2; Qk) ≥ l(x2) > l1). In this paper, we
address such “inconsistent” owner-specified thresholds
by designing inference control approaches that satisfy
the maximum acceptable disclosure levels imposed on
all cells. This way, our design always follows the most
restrictive bound such as l1 in the above example.

Based on the definition of maximum acceptable pri-
vacy disclosure level, we can now define the safety of a
query:

Definition 4. For a given user Ck and its query history Qk,
a query q issued by Ck is safe if and only if ∀x �∈ Gk,

lp(x; Qk ∪ {q}) < l(x). (5)

According to the definition, a query is safe if and
only if by answering the query, the data warehouse
server will not violate the maximum acceptable level
of privacy disclosure imposed by the data owners. Re-
call that the data warehouse server has no knowledge
about future queries. Hence, an ideal inference control
approach should answer a query if and only if the query
is safe. Nonetheless, it is difficult, if not impossible, to
achieve this ideal objective efficiently. Indeed, a special
case of the problem, where l(x) = 1 for all cells x, has
been proven to be NP-hard in statistical databases with
the presence of mixed SUM and MAX queries [9], [14].
In order to design efficient inference control approaches,
a common compromise is to reject all unsafe queries, and
to answer as many safe queries as possible. Formally, the
problem of inference control is stated as follows.

Definition 5. (Problem Statement). For a given user Ck,
the objectives of inference control on processing queries from
Ck include:

• Objective O1: to reject all unsafe queries submitted by
Ck, and

• Objective O2: to maximize the query availability level
la(Ck) when O1 is achieved.

In the following sections, we shall propose inference
control algorithms based on the problem statement.

4 OUR NEW APPROACH

In this section, we present the basic idea of our
information-theoretic approach for inference control. We
first introduce the basic workflow of our approach.
Then, we define two categories of aggregate functions,
namely MIN-like and SUM-like functions, based on their

information-theoretic properties. We use examples to
illustrate our basic ideas of dealing with these two types
of functions respectively. The detailed algorithms of our
approach will be presented in Section 5.

4.1 Basic Workflow

We first briefly introduce the basic workflow of our
inference control approach. Recall that Objective O1 of
inference control is to guarantee lp(x; Qk) < l(x) for
all sensitive cells x �∈ Gk. Also note that we cannot
directly compute lp(x; Qk) for each and every cell x
because of the large number of possible cells (which
grows exponentially with the dimensionality n). Thus, in
order to achieve Objective O1, we propose to maintain
an upper-bound estimate of maxx lp(x; Qk) as lmax(Qk) for
each user Ck, such that ∀x �∈ Gk, lmax(Qk) ≥ lp(x;Qk). As
such, when a new query q is received from Ck, the data
warehouse server only needs to compute lmax(Qk ∪{q})
based on lmax(Qk), Qk, Gk, and q, and answers q if and
only if lmax(Qk ∪{q}) < l(x). If q is answered, the server
needs to update lmax(Qk) to lmax(Qk ∪ {q}).

Since a loose upper bound on lmax(Qk) may prevent
future queries from being answered, in order to achieve
Objective O2 of inference control, the estimated upper
bound on lmax(Qk) must be tight enough to support an
acceptable level of query availability. The computation
of such upper-bound estimate must also be efficient in
order to answer (or reject) queries in a timely manner.
Thus, the key challenge is to find an efficient approach
that generates a fairly tight upper-bound estimate on
lmax(Qk). We focus on our ideas for tackling this chal-
lenge in the rest of this subsection.

Note that lp(x; Qk) = 0 when Qk is empty. Thus, in
order to generate an upper-bound estimate on lmax(Qk∪
{q}), we only need to compute

lmax(q|Qk) = max
x

(lp(x; Qk ∪ {q}) − lp(x; Qk)). (6)

which is (intuitively) the additional amount of infor-
mation about x that one can derive from the query
answer q given Qk and Gk are pre-knowledge. A crit-
ical step for efficiently computing a (fairly) tight upper
bound on lmax(q|Qk) is to change the view of computing
lmax(q|Qk) as follows.

lmax(q|Qk) = max
x

I(x; {Qk, q}|Gk) − I(x; Qk|Gk)
H(x)

(7)

= max
x

I(x; q|Qk, Gk)
H(x)

(8)

= max
x

I(q; x|Qk, Gk)
H(x)

(9)

= max
x

H(q|Qk, Gk) − H(q|Qk, Gk, x)
H(x)

. (10)

Intuitively, H(q|Qk, Gk)−H(q|Qk, Gk, x) in the equation
is the additional amount of information about q that
can be derived from x while given Qk and Gk as
pre-knowledge. This transformation is critical in that it

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: The George Washington University. Downloaded on February 23,2010 at 08:21:26 EST from IEEE Xplore. Restrictions apply.

7

enables us to change our view from considering how
much information about x is disclosed by q to how much
information about q can be derived from x. After the
transformation, the computation of lmax(q|Qk) can be
restated as follows:

Given Gk and the current value of Qk, how much additional
information about q can Ck learn if it knows one more cell as
pre-knowledge?

As we shall show in the next subsection, the restated
problem allows us to efficiently derive an upper bound
on lmax(q|Qk) (for all x) without computing lp(x; Qk ∪
{q}) for each and every x �∈ Gk. In particular, we
shall use some examples to illustrate our basic idea
of computing lmax(q|Qk) for various types of aggregate
functions. The detailed computation of lmax(q|Qk) will
be illustrated in the inference control algorithms pre-
sented in Section 5.

We would like to note that the basic workflow intro-
duced above is not limited to inference control in OLAP.
More generally, if we consider x as a sensitive data point
and q as an aggregate query over such data points, then
the above workflow readily applies to the traditional
problem of inference control for statistical databases [1].
Nonetheless, the following discussions on the actual pro-
cessing of various aggregate functions, especially SUM-
like ones, are specific to an OLAP system. Due to space
limitations, we discuss in the technical report [41] the
extension of our results to the generic inference control
problem.

4.2 Basic Ideas for Various Aggregate Functions

The computation of lmax(q|Qk) critically depends on the
aggregate function of q (e.g., MIN or SUM). In this
subsection, we shall introduce two categories of com-
mon aggregate functions, namely MIN-like and SUM-
like functions, each of which is composed of functions
that share common characteristics in the computation of
lmax(q|Qk). For each category, we shall present our basic
ideas for computing lmax(q|Qk) of queries with aggregate
functions in that category.

4.2.1 MIN-like Functions
MIN-like functions include MIN and MAX. A common
property of MIN-like functions is, for query size |q| � 1,
there is H(q) � H(x). We demonstrate this property in
the following example:

Suppose that each cell x is chosen uniformly at ran-
dom from 0 and 1. Consider query q which is the
minimum of 100 such cells (i.e., |q| = 100). Suppose that
all log(·) in the paper is logarithm with base 2. We have
H(x) = log(2) = 1, and H(q) ≈ 100/2100 � 1.

With this property of H(q) being extremely small with
large |q|, we can compute an upper bound on lmax(q|Qk)
as follows: ∀Qk and Gk, we have

lmax(q|Qk) ≤ max
x

H(q)
H(x)

≈ 1
293

. (11)

That is, due to the upper bound derived in (11), we can
safely answer about 293 · l(x) of such MIN queries with-
out violating the privacy requirements of data owners.
As we can see, this lower bound is tight enough for
many practical OLAP applications. Thus, the property
of MIN-like functions can enable us to derive effective
upper bounds of lmax(q|Qk) as maxx(H(q)/H(x)). As
we shall show in Section 5, this is our basic idea of
dealing with MIN-like functions in the proposed infer-
ence control algorithms. Note that such computation is
extremely efficient (with complexity of O(1)) and does
not require the storage of any historical queries (other
than the original value of lmax(Qk) in order to properly
update it to lmax(Qk ∪ {q})).

There may be a question, as in the above example, of
what will happen if the answer to the MIN query is q = 1
when |q| = 100? The user can then infer that every cell
covered by q has a value of 1. This is an example of the
extreme-case privacy disclosure problem we mentioned
in Section 3.3. Note that extreme-case privacy disclosure
has a small probability of happening, but (once it hap-
pens) can result in serious privacy breaches. Since the
probability of q = 1 is extremely small, our information-
theoretic privacy measure (for the average case) cannot
capture such disclosure. Our approach may be extended
to prevent such extreme-case disclosure from happening.
Due to space limitations, we present such an extension
in the technical report [41].

4.2.2 SUM-like Functions
SUM-like functions include COUNT, SUM, AVG, ME-
DIAN, MODE, and STANDARD DEVIATION.

Our basic idea of processing a SUM-like query is to
count the number of cells covered by the query that
can independently change the query answer without
influencing (or violating) the historic queries answers
and the prior knowledge of the adversaries. Therefore,
we define SUM-like functions as non-MIN-like aggregate
functions that share the following property: For a given
query q, when a sensitive cell x ∈ q changes its value
from x0 to x1, for any other cell y ∈ q, there always exists
a pair of values y0 and y1, such that when y also changes
from y0 to y1 and no other cell in q changes, the query
answer q remains the same. As we can see, the definition
of SUM-like queries mandates that a cell can change
without alternating a SUM-like query answer that covers
it. For example, when the function is SUM, there exists
y1 = x0+y0−x1. Note that MIN and MAX do not satisfy
this condition. For example, when the minimum cell x
covered by a MIN query changes from x0 to x0 − 1, the
query answer q can never remain the same no matter
how the other cells change their values.

We now introduce our basic idea to compute
lmax(q|Qk) for SUM-like functions. In order to do so, we
first define the maximum self-supportive subset of a SUM-
like query q. Based on the definition of a SUM-like query,
a self-supportive subset further isolates a set of cells that
can independently change a SUM-like query answer.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: The George Washington University. Downloaded on February 23,2010 at 08:21:26 EST from IEEE Xplore. Restrictions apply.

8

Definition 6. Given Qk and q, a subset Ω of cells covered
by q (i.e., Ω ⊆ q) is self-supportive iff Ω consists of sensitive
cells only (i.e., Ω ∩ Gk = ∅), and for all x ∈ Ω, there exists
a corresponding set of sensitive cells S(x) such that

1) x ∈ S(x),
2) ∀x1 ∈ Ω with x1 �= x, S(x) ∩ S(x1) = ∅, and
3) When x changes its value and all cells in the data cube

except those in S(x) remain unchanged, all answers to
SUM-like queries in Qk can still remain the same.

A self-supportive subset Ω of q is maximum self-supportive iff
there is no self-supportive subset Ω′ of q such that |Ω| < |Ω′|.

To illustrate the definition of self-supportive subset,
consider the example shown in Table 2 of Section 2.
When Qk = {q1, q3, q5} and q = q6, {CD/June}
is self-supportive with S(CD/June) = {CD/June,
DVD/June} because S(CD/June) ∩ q = CD/June, and
when CD/June changes its value, say from 27 to 29,
no query answer in Qk will change if DVD/June
changes accordingly from 16 to 14. {CD/April} is
also self-supportive with S(CD/April) = {CD/April,
Book/April, Book/June, DVD/June}. Nevertheless, q6

itself ({CD/April, CD/June}) is not self-supportive
because S(CD/April) and S(CD/June) have either
DVD/June or CD/April in common, which violates
Condition 2 of Definition 6. Thus, both {CD/June} and
{CD/April} are maximum self-supportive subsets of q.

Let nq be the size of a maximum self-supportive
subset of q. We propose to process SUM-like queries
by computing an upper-bound estimate of lmax(q|Qk)
based on nq. The basic idea of such computation is due
to the following two properties of SUM-like functions
which we shall demonstrate in Section 6: 1) the value
of H(q|Qk, Gk) − H(q|Qk, x, Gk) decreases when nq in-
creases, and 2) a lower bound on nq can be efficiently
derived from the number of sensitive cells covered by
q and by the query history Qk. As such, our methodol-
ogy for computing lmax(q|Qk) is to first derive a lower
bound on nq, and then compute lmax(q|Qk) based on the
derived lower bound.

For example, consider a 2-dimensional data cube with
each cell chosen uniformly at random from 0 and 1.
Suppose that Qk ∪ {q} is composed of skeleton queries
on the SUM of a row or a column of the data cube. As
we shall prove in Section 6, there is

lmax(q|Qk)
1 − lmax(Qk)

≤ 1
2

log
(

nq

nq − 1

)
. (12)

Consider the case where Qk = ∅. When nq = 2, we have
lmax(q|Qk) ≤ 1/2. Nonetheless, when nq increases to 100,
the value of lmax(q|Qk) can be reduced to less than 1/100.
As we can see, when nq is large, the value of lmax(q|Qk)
derived from nq can serve as an effective upper-bound
estimate for processing queries with SUM-like functions.

4.2.3 Discussions of MIN-like and SUM-like functions
MIN-like and SUM-like functions cover most of the
common aggregate functions: In this paper, we consider
the following lists of MIN-like and SUM-like functions:

• MIN-like functions: MIN and MAX
• SUM-like functions: SUM, AVG, COUNT, MEDIAN,

and STANDARD DEVIATION.
We would like to note that our processing of MIN-like

functions can also be extended to other similar functions,
such as RANGE (i.e., MAX-MIN), as long as the function
has entropy much smaller than that of the covered data
points. Nonetheless, MIN-like and SUM-like functions
do not constitute a comprehensive classification of all
aggregate functions. For example, consider an aggregate
function that returns, as a result, a 2-tuple q = 〈q1, q2〉
where q1 and q2 are the MIN and SUM of all covered
cells, respectively. This function does not satisfy the
property of MIN-like functions because H(q) ≥ H(q2) ≥
H(x). It is not SUM-like either because as we have
shown above, the q1 component with MIN function does
not satisfy the property of SUM-like functions. Thus, this
aggregate function is neither MIN-like nor SUM-like4.

Note that our definition of MIN-like and SUM-like
functions is independent of the classification of aggre-
gation functions into distributive, algebraic, and holistic
ones [20]. For example, a SUM-like function can be
distributive (e.g., SUM), algebraic (e.g., AVG), or holistic
(e.g., MEDIAN).

5 INFERENCE CONTROL ALGORITHM

In this section, we present the detailed algorithm of
our information-theoretic inference control approach. In
order to help readers better understand the methodology
of our proposed approach, we first show the algorithm
on a simple case of 2-dimensional data cube in which
each cell follows a uniform distribution on {0, 1} and
has a constant l(x). After that, we present a generic
algorithm for n-dimensional data cubes with cells of
arbitrary distribution and heterogeneous l(x). At the
end of this section, we shall show that both algorithms
satisfy the simulatable auditing model [23] and disclose
no private information through query rejections.

5.1 Algorithm A: A Simple 2-Dimensional Case
We first consider a simple case with a 2-dimensional
d1 × d2 data cube, in which each sensitive cell x is
uniformly distributed on {0, 1}, and has a constant
owner-specified threshold l(x) = l ∈ [0, 1]. Note that
the assumptions of uniform distribution and constant
l(x) (for all cells) are certainly not realistic models of
real-world data. Nonetheless, we would like to remark
that the introduction of Algorithm A is not intended to
promote the practical usage of it. Instead, we use it as a
simple demonstration of the power of our information-
theoretic approach, and a foundation for the introduc-
tion of Algorithm B, which is a generic and practical
algorithm for n-dimensional data cubes with arbitrary
distribution.

4. Nevertheless, this function can be supported by our approach if
we consider it as two separate queries on MIN and SUM.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: The George Washington University. Downloaded on February 23,2010 at 08:21:26 EST from IEEE Xplore. Restrictions apply.

9

Before presenting the inference control algorithm, we
first introduce some basic notions: Given user Ck and
received query q, let rk(q) be the number of cells in q
that belong to Gk (i.e., known by Ck as pre-knowledge).
Recall that |q| is the number of all cells in q. Let QS

k be the
set of SUM-like queries in the query history Qk, and |QS

k|
be the number of queries in QS

k. Let σk be the number
of pre-known cells covered by at least one query in QS

k.
That is,

σk = |{x|x ∈ Gk, ∃q ∈ QS
k such that x ∈ q}|. (13)

Let μk be the minimum number of sensitive cells covered
by a SUM-like query in the query history:

μk = min
q:q∈QS

k

(|q| − rk(q)). (14)

Algorithm A shows our inference control algorithm for
the simple case. In the algorithm, we use lp to denote the
current upper-bound estimate on lmax(Qk). When Qk =
∅, the initial values of the parameters are μk = ∞, σk =
0, and lp = 0. With the algorithm, when a new query
q is received, the data warehouse server computes an
upper-bound estimate on lmax(q|Qk) as l0, and answers
the query if and only if lp + l0 is less than the owner-
specified threshold l.

Algorithm A Inference Control for a d1 × d2 data cube
with {0, 1}-Uniform Distribution

1: {When a query q is received.}
2: if function of q is MIN-like then
3: l0 ← |q| − log(2|q| − 1) + log(2|q|−1)

2|q| .
4: else if function of q is SUM-like and μk > 1 then
5: μ ← min(μk, d1 + d2 − |QS

k|, d1/2, d2/2).
6: n0 ← |q| − rk(q) − max(0, � σk−(μ−1)|q|

d1+d2−|q|+1−2μ�).
7: l0 ← 1−lp

2 log n0
n0−1 .

8: end if
9: if lp + l0 ≥ l then

10: return ∅. {Reject query q}
11: else
12: if function of q is SUM-like then
13: μk ← min(μk, (|q| − rk(q)).
14: σk ← σk + rk(q).
15: |QS

k| ← |QS
k| + 1.

16: end if
17: lp ← lp + l0.
18: return q. {Answer query q correctly}
19: end if

In particular, if the received query q has MIN-like
aggregate function, l0 is computed in Step 3 as

l0 =
H(q)
H(x)

= |q| − log(2|q| − 1) +
log(2|q| − 1)

2|q|
. (15)

Since lmax(q|Qk) ≤ H(q)/H(x) for MIN-like functions
(due to (11)), MIN-like query answers issued by Al-
gorithm A will not violate the privacy requirements
specified by the data owners.

If the received query q has SUM-like aggregate func-
tion, the data warehouse server first computes in Steps
5 and 6 a lower-bound estimate of nq as n0 based on
μk, σk, and |QS

k|. Recall that nq is the number of cells in
the maximum self-supportive subset of q. Then, the data
warehouse server computes l0 in Step 7 as

l0 =
1 − lp

2
log

n0

n0 − 1
, (16)

we shall justify the computation of l0 in Section 6 by
proving that lmax(q|Qk) ≤ l0 for SUM-like functions.

If lp + l0 < l (i.e., query answer q can be issued to user
Ck), then the data warehouse server updates the values
of μk, σk, |QS

k|, and lp in Steps 12 to 17. As we can see,
only lp needs to be updated for MIN-like queries while
all four parameters are updated for SUM-like ones.

TABLE 3
Execution of Algorithm A on Table 2

Case 1:
After Value of n0 and l0 Response Value of μk and σk

q1 n0 = 2, l0 = 1/2 q1 = 30 μk = 2, σk = 2
q5 n0 = 2, l0 = 1/4 q5 = 25 μk = 2, σk = 4
q6 n0 = 2, l0 = 1/8 q6 = 47 μk = 2, σk = 6
q3 n0 = 1, l0 = ∞ Reject μk = 2, σk = 6

Case 2:
After Value of n0 and l0 Response Value of μk and σk

q1 n0 = 2, l0 = 1/2 q1 = 30 μk = 2, σk = 2
q3 n0 = 3, l0 ≈ 0.15 q3 = 58 μk = 2, σk = 3
q5 n0 = 2, l0 ≈ 0.08 q5 = 25 μk = 2, σk = 5
q6 n0 = 1, l0 = ∞ Reject μk = 2, σk = 5

Table 3 demonstrates the execution of Algorithm A
for the two-dimensional data cube defined in Table 2.
Since the processing of MIN-like queries is relatively
straightforward, we study two sequences of SUM-like
queries, Case 1: 〈q1, q5, q6, q3〉 and Case 2: 〈q1, q3, q5, q6〉,
respectively, as examples. For each sequence, Table 3
shows the values of n0 and l0 after each query is received
and the answer/reject decision made when the owner-
specified threshold is l = 1 (i.e., only exact disclosure
is of concern), as well as the values of μk and σk

after the decision. As we can see from Table 3, the
query answer/reject decisions made by Algorithm A
conforms to our analysis in Section 2 which concludes
that both sequences will result in the exact disclosure of
DVD/June, and thus should be rejected at the last query
when only exact disclosure is of concern.

5.2 Algorithm B: A Generic n-d Algorithm
We now present Algorithm B as a generalization of
Algorithm A to n-dimensional data cubes. Compared
with Algorithm A, Algorithm B removes the assumption
of uniform distribution and constant l(x) on all cells.
Instead, Algorithm B supports cells of arbitrary prior
distribution and heterogeneous owner-specified thresh-
olds l(x). Most of the variables used in Algorithm B are
the same as those in Algorithm A. To accommodate the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: The George Washington University. Downloaded on February 23,2010 at 08:21:26 EST from IEEE Xplore. Restrictions apply.

10

arbitrary thresholds l(x), we introduce two additional
parameters l(q) and lk. l(q) is the minimum value of
l(x) for all cells x included in a query q,

l(q) = min
x:x∈q

l(x), (17)

while lk is the minimum value of l(q) for all q ∈ Qk.

lk = min
q:q∈Qk

l(q). (18)

To accommodate the arbitrary distribution of x, we
introduce three auxiliary inputs: H(x), fmax(q, c), and
fmin(q, c), all of which can be derived from the prior dis-
tribution of cells, which is public information available
to both the data warehouse server and the users due to
our system settings presented in Section 3. In particular,
H(x) is the minimum entropy of a sensitive cell x while
fmax(q, c) and fmin(q, c) are, respectively, the maximum
and minimum entropy of a query answer which has
the same aggregate function as q and is composed of
c cells in q. For example, in the simple case addressed
by Algorithm A, we have

fmax(q, c) = fmin(q, c) = c− log(2c − 1) +
log(2c − 1)

2c
(19)

for queries q with MIN-like aggregation functions, and

fmax(q, c) = fmin(q, c) ≈ 1
2

log
(πec

2

)
(20)

for queries q with SUM function. It is easy to verify that
for the simple case, Algorithm B can be reduced to Algo-
rithm A if we substitute l(q) and lk with l, and substitute
fmax(q, c) and fmin(q, c) with the corresponding values
in (19) and (20). Note that in the general case addressed
by Algorithm B, the values of fmax and fmin might be
different (i.e., fmax(q, c) > fmin(q, c)) when cells covered
by q follow different distributions or are correlated with
each other (i.e., I(x1, x2) > 0 for x1, x2 ∈ q).

The execution process of Algorithm B is similar to
that of Algorithm A, with an exception that instead of
maintaining one copy of parameters μk, σk, and |QS

k| for
each user, Algorithm B maintains a different copy of μk

and σk for each of the previously answered SUM-like
queries. In particular, for each subcube Θ corresponding
to a SUM-like query answer q0 ∈ QS

k, Algorithm B
maintains 〈Θ, μk(Θ), σk(Θ)〉 in the subcube-history set
ΘS

k, where μk(Θ) is the number of sensitive cells in Θ
and σk(Θ) is the number of pre-known cells in Θ that
has not been covered by any query answer issued prior
to q0. With the subcube-history set ΘS

k, while processing
an h-dimensional SUM-like query q, the data warehouse
server computes l0 as the maximum value for all (h+1)-
dimensional (skeleton) subcubes Θi (defined in Step 6)
that contain q as a subset. In the computation for each
Θi (Steps 7 to 11), we take into consideration the values
of μk(Θ′) and σk(Θ′) for all Θ′ in the subcube-history ΘS

k

that satisfies Θ′ ⊆ Θi. As we can see, when n = 2 and h =
1 (i.e., the two-dimensional case addressed by Algorithm
A), there is only one (h+1)-dimensional subcube which
is the data cube itself. Thus, |Γi|, min{μk(Θ)|Θ ∈ Γi} and∑{σk(Θ)|Θ ∈ Γi} in Algorithm B will be reduced to QS

k,
μk, and σk in Algorithm A, respectively.

Algorithm B for n-d Arbitrary Distribution

Require: h-dimensional query q on subcube
(a1, . . . , an−h,ALL, . . . ,ALL), l0 = 0.

1: {When a query q is received.}
2: if function of q is MIN-like then
3: l0 ← fmax(q, |q|)/H(x).
4: else if function of q is SUM-like then
5: for i ← 1 to n − h do
6: Θi ← (a1, . . . , ai−1, ALL, ai+1, . . . , an−h,

ALL, . . . ,ALL).
7: Find Γi ← {Θ′|Θ′ ∈ ΘS

k, Θ′ ⊆ Θi}.
8: μ ← min(min{μk(Θ′)|Θ′ ∈ Γi}, di + dn−h+1 +

dn−h+2+· · ·+dn−|Γi|, di/2, dn−h+1/2, . . . , dn/2).
9: t ← the maximum integer that satisfies∑{σk(Θ′)|Θ′ ∈ Γi} ≥ t(di−μ)+ t

h−1
h (μ−1)(d1 +

d2 + · · · + dh − ht
1
h), assuming 00 = 1.

10: n0 ← |q| − rk(q) − t.
11: l0 ← max(l0, (1 − lp) · (fmax(q, n0) − fmin(q, n0 −

1))/H(x)).
12: end for
13: end if
14: if lp + l0 ≥ min(lk, l(q)) then
15: return ∅. {Reject query q}
16: else
17: if function of q is SUM-like then
18: μk(Θ) ← μ(Θ).
19: Γ ← {Θ′|Θ′ ∈ ΘS

k, Θ′ ⊆ Θ}.
20: σk(Θ) ← σ(Θ) − ∑

Θ′∈Γ σk(Θ′).
21: ΘS

k ← ΘS
k ∪ 〈Θ, μk(Θ), σk(Θ)〉.

22: end if
23: lk ← min(lk, l(q)).
24: lp ← lp + l0.
25: return q. {Answer query q correctly}
26: end if

5.3 Simulatability of Algorithms A and B

We now show that both Algorithms A and B satisfy the
simulatable auditing model [23]. Note that either algo-
rithm makes the answer/reject decision for a received
query q based on q, the query history Qk, the pre-known
set Gk, the prior distribution of the cells, and nothing
else. Neither algorithm uses the values of sensitive cells
or the answer to q as input. As such, all inputs to
Algorithms A and B are public information available to
the users. Thus, the answer/reject decisions made by the
data warehouse server are fully simulatable by the users.
Due to the definition of simulatable auditing [23], the
auditor (i.e., the data warehouse server) is simulatable
with Algorithms A and B.

Note that due to the simulatable auditing property, the
data warehouse server will not disclose any additional
private information through query rejections. Thus, the
rejected queries need not be taken into account by the
inference control algorithm. This is reflected in the de-
sign of Algorithms A and B, as the rejected queries are
not recorded by the data warehouse server.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: The George Washington University. Downloaded on February 23,2010 at 08:21:26 EST from IEEE Xplore. Restrictions apply.

11

5.4 Efficiency of Algorithms A and B
Algorithm A is efficient in terms of both time and space.
The time complexity of answering each query is O(1).
For each user Ck, the data warehouse server only needs
to maintain four parameters:

• μk the minimum number of sensitive cells covered
by a SUM-like query issued by Ck,

• σk, the cumulative sum of the number of pre-known
cells covered by SUM-like queries issued by Ck,

• |QS
k|, the number of SUM-like queries issued by Ck,

• lp, the current cumulative sum of the privacy dis-
closure level.

The space required is O(1) for each user.
For Algorithm B, the computation of lmax(q)(q|Qk)

remains the same for MIN-like queries, having time
complexity of O(1). For SUM-like queries, in order to
further optimize the query availability level for high-
dimensional data cubes, we propose to store more infor-
mation. In particular, for each cuboid covered by a user-
issued SUM-like query, two parameters, the number of
sensitive cells μ and the number of pre-known cells σ,
should be recorded. If the inference control component
is implemented independently of the OLAP system,
the worst-case time complexity for processing an h-
dimensional SUM-like query is O((n−h)·|QS

k|) (i.e., when
the search for Γi in Step 7 is achieved by a linear search
on ΘS

k). Nonetheless, note that the storage of μ and σ as
well as the processing of SUM-like queries can be readily
integrated with the query processing in OLAP systems.
In particular, the values of μ and σ can be stored along
with the pre-materialized aggregates of a cuboid. Then,
the aggregation of μ and σ in Steps 8-9 of Algorithm
B can be computed while processing the OLAP query
by retrieving and aggregating μ and σ along with other
pre-materialized values. With this method, the inference
control component is no longer transparent to the OLAP
system. Nevertheless, the overhead of inference control
can also be significantly reduced.

5.5 Processing of Non-Skeleton Queries
For the ease of understanding, our previous exam-
ples and discussions have been focused on skeleton
queries. Although skeleton queries are the main focus
of an OLAP system, a user may also issue non-skeleton
queries, such as range queries, each of which covers
more than one value (but fewer than all values) of an
attribute. Since the cells covered by a non-skeleton query
can always be separated into multiple non-overlapping
skeleton queries, an easy method to process a non-
skeleton query with distributive aggregate function (e.g.,
MIN, MAX, and SUM) is to transform the non-skeleton
query into a sequence of skeleton ones, and to answer
the non-skeleton query iff all (transformed) skeleton ones
can be answered. Since the answer to the non-skeleton
query can always be derived from the set of answers
to the skeleton queries, the safety of private information
is guaranteed. Nonetheless, this method may yield low

query availability, as the query availability level of the
non-skeleton query will also be computed as the sum of
that of the skeleton queries.

Fortunately, with our approach, a non-skeleton query
can be processed in the same way as one skeleton query.
The reason can be explained as follows. We consider
Algorithm A as an example. Recall from the proof of
Theorem 6.1 that SUM auditing in Algorithm A is based
on the fact that if t0 sensitive cells in a skeleton query q
cannot be included in the maximum self-supportive sub-
set of q, then the answered queries must cover enough
pre-known cells to separate a t0 × (μ − 1) subcube from
all other sensitive cells in both dimensions. A critical
observation here is that due to Definition 6, if Ω is a
self-supportive subset of a skeleton query q, then Ω is
also a self-supportive subset of a non-skeleton query q′

which satisfies q ⊆ q′. Thus, for any given query q′, if
t0 sensitive cells in q′ cannot be included in the max-
imum self-supportive subset of q′, then the answered
queries must cover enough pre-known cells to separate
a t0 × (μ − 1) subcube from all other sensitive cells in
both dimensions.

Since the computation of lmax(q′|Qk) depends solely
on the number of sensitive cells in the maximum self-
supportive subset of q′, and does not depend on whether
q′ is a skeleton query, we can follow the exact same
steps in Algorithm A to compute the level of privacy dis-
closure for a non-skeleton query. In analogy, Algorithm
B can also be readily applied to process non-skeleton
queries for n-dimensional data cubes with arbitrary un-
derlying distribution: The only note of caution is that in
Steps 6-7 of Algorithm B, Θi may be a union of multiple
(n − h − 1)-dimensional cuboids if q is a non-skeleton
query, and Γi should consist of all cuboids in ΘS

k which
belong to any of the cuboids in Θi.

6 THEORETICAL ANALYSIS

In this section, we first prove that both Algorithm A and
B achieve Objective O1 of the inference control problem
by rejecting all unsafe queries. Then, we analyze the
achievability for Objective O2 in terms of the query avail-
ability level la(Ck) for the two algorithms respectively.
Due to space limitations, please refer to [41] for the
proofs of all theorems in this section.

6.1 Proof of Security

Theorem 6.1. When Algorithm A is used for the simple 2-
dimensional case, for all cells x and all users Ck , there is

lp(x; Qk) < l(x). (21)

For the n-dimensional case, we have the following
theorem illustrating the security of Algorithm B:

Theorem 6.2. When Algorithm B is used, ∀x and Ck,

lp(x; Qk) < l(x). (22)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: The George Washington University. Downloaded on February 23,2010 at 08:21:26 EST from IEEE Xplore. Restrictions apply.

12

As we can see, since Theorems 6.1 and 6.2 show that
our algorithms maintain lp(x; Qk) < l(x) for all sensitive
cells x �∈ Gk, and Section 5.3 shows that our algo-
rithms disclose no private information through query
rejections, both of Algorithms A and B can prevent the
data owner’s privacy requirements from being violated
by the users, thus achieving Objective O1 of the problem
statement.

6.2 Query Availability Analysis
In this section, we analyze the performance of Algo-
rithms A and B on Objective O2 in terms of the query
availability level. Since our algorithms deal with MIN-
like and SUM-like functions separately, we consider the
following three cases respectively: 1) all queries are MIN-
like, 2) all queries are SUM-like, and 3) a combination
of MIN-like and SUM-like queries. For the sake of
simplicity, we first present the results for Algorithm A
on the simple 2-d case with a d × d data cube, and
then generalize the results to Algorithm B with arbitrary
distribution of x and arbitrary privacy requirements l(x).

Theorem 6.3. (MIN-Like Queries, Algorithm A) For
Algorithm A, when all m received queries are MIN-like, the
expected number of queries answered by the data warehouse
server is at least

mM ≈ min
(

l · 2d

d
, m

)
. (23)

Due to the theorem, if all queries are MIN-like, the
number of answered queries is determined by the size
d of the data cube and the owner-specified threshold l.
The larger l or d is, the more queries will be answered.
In particular, with a relatively large d (e.g., d = 10), all 2d
MIN-like skeleton queries (i.e., on each row/column) can
be answered even when l is small (e.g., lp = min(2d, m)
when l ≥ 0.196). This indicates an extremely high level
of query availability Algorithm A provides to MIN-like
queries.

For analysis on SUM-like queries, we introduce a new
parameter μ0, which is the minimum number of sensitive
cells in each row/column of the data cube. Recall that
Gk is the set of cells pre-known by user Ck. We have
the following theorem regarding the query achievability
level of Algorithm A for SUM-like queries.

Theorem 6.4. (SUM-Like Queries, Algorithm A). For
Algorithm A, when all m received queries are SUM-like
skeleton queries, the expected number of queries answered by
the data warehouse server is at least

mS ≈ min
(

ln(4) · l · d2 − d − |Gk|
d

,
(μ0 − 1) · d2

|Gk| , m

)
.

when d is sufficiently large.

As we can see from the theorem, when all queries are
SUM-like, the query availability level is determined by
not only the data cube size d and the owner-specified
threshold l, but also the minimum number of sensitive

cells per row/column μ0 and the total number of pre-
known cells |Gk|. Similar to MIN-like queries, a larger
l or d can increase the number of answered queries.
Besides, the larger μ0 or the smaller |Gk| is, the more
queries will be answered. Theorem 6.4 also indicates
that Algorithm A is likely to achieve a reasonable query
availability level for SUM-like queries in practice. Note
that μ0 · d ≥ |Gk|. Thus, the second input to the min
function is likely to be close to d. As a result, when l is
small and m is large, the value of mS is determined by
the first input, ln(4) · l · (d−|Gk|/d− 1). One can see that
even when 25% of all cells are known by a user through
external knowledge, and l is as low as 0.5, Algorithm A
still guarantees that at least ln(4) ·0.5 ·0.75 ·d/(2d) = 26%
of all possible skeleton queries over the data cube.

We now consider mixed MIN-like and SUM-like
queries. In this case, it is possible that after one query
(e.g., SUM-like) is rejected, many other queries (e.g.,
MIN-like) can still be answered. Indeed, it is possible for
all MIN-like queries to be answered after a substantial
amount of SUM-like queries have been rejected due
to the differences between the values of lmax(q|Qk) for
MIN-like and SUM-like functions. Therefore, instead of
analyzing the total number of queries answered by the
data warehouse server, we derive a lower bound on
the expected number of answered queries when the first
query rejection occurs. Suppose that β is the ratio between
the number of received MIN-like and SUM-like queries.

β =
|{MIN-like queries}|
|{SUM-like queries}| . (24)

Theorem 6.5. (Mixed Queries, Algorithm A). For Algo-
rithm A, when the received m queries are mixed MIN-like
and SUM-like skeleton queries with ratio of β, the expected
number of queries answered by the data warehouse server
before the first query rejection occurs is at least

mMS ≈ min
(

l(β + 1)2d(d2 − |Gk| − d)
βd3 − βd|Gk| − βd + d2d−1 log(e)

,

(1 + β)mS, m) (25)
≈ min((1 + β)mS, m) (26)

when d is sufficiently large.

As we can see, when d is sufficiently large, the number
of answered queries is predominantly determined by
the SUM-like queries, rather than the MIN-like ones.
This conforms to the intuition that answers to MIN-like
queries lead to rather small increases in lp.

We now extend the results to the n-dimensional cases
addressed by Algorithm B. In particular, we consider a
d × · · · × d data cube. Let μh be the minimum number
of sensitive cells covered by an h-dimensional skeleton
query on the data cube. Let fS(c) be the maximum value
of fmax(q, c) − fmin(q, c − 1) for all SUM-like queries q.
We have the following theorem.

Theorem 6.6. (Algorithm B). For Algorithm B, when the
received m queries are h-dimensional MIN-like, SUM-like

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: The George Washington University. Downloaded on February 23,2010 at 08:21:26 EST from IEEE Xplore. Restrictions apply.

13

skeleton, and mixed skeleton queries, the corresponding lower
bounds on the expected number of queries answered by the
data warehouse server are

mM(h) ≈ min

(
minx l(x) · 2(dh)

dh
, m

)
. (27)

mS(h) ≈ min

⎛
⎝minx l(x) · dn−h−1

fS

(
dh − |Gk|

dn−h

) , m,

(μh(hd − h − 1) − (hd − h − d))d2n−2h−1

|Gk|
)

. (28)

mMS(h) ≈ min((1 + β)mS, m). (29)

when d is sufficiently large.

As we can see, Theorems 6.3, 6.4, and 6.5 are special
cases of Theorem 6.6 for the simple two-dimensional
case. In the n-dimensional case addressed by Algorithm
B, the number of answered MIN-like queries increases
almost exponentially with the data cube size d or the
query dimensionality h (until all MIN-like queries can be
answered). For SUM-like queries, however, the smaller
h is, the more queries can be answered. Nonetheless,
if we consider the percentage of h-dimensional queries
answered by the data warehouse server, then the per-
centage may be increasing with h because generally
speaking, fS(dh−|Gk|/dn−h) is monotonically decreasing
with h. For mixed queries, as in the simple case, the
number of answered queries is mostly determined by
the SUM-like queries, rather than the MIN-like ones.

7 SIMULATION RESULTS

In this section, we present simulation results on the
performance of Algorithms A and B, respectively, and
compare the performance of our approach with previous
ones proposed for inference control in OLAP. As shown
in [40], the previous approaches in [36], [37] achieve their
best performance in 2-dimensional data cubes. Thus,
we compare the performance of our approach with the
previous ones in the 2-dimensional case addressed by
Algorithm A.

In particular, for Algorithm A, we conduct the simu-
lation on a 1, 000 × 1, 000 data cube, each cell of which
is chosen uniformly at random from {0, 1}. We consider
various numbers of pre-known cells ranging from 0% to
100% of all cells, and assume that the pre-known cells
are randomly distributed in the data cube.

We compare the performance of Algorithm A with two
previous approaches for inference control in OLAP: the
SUM-only approach in [36], [37] and the (MIN, MAX,
SUM)-approach in [40]. Since both previous approaches
can only eliminate exact disclosure, we set the owner-
specified threshold in Algorithm A to be l = 1. Note
that the original algorithms presented in [36], [37] set
an upper-bound threshold on the number of pre-known
cells, and answers (all, otherwise nothing) queries if
and only if the number of pre-known cells in the data

cube is lower than the threshold. In order to make a
fair comparison, we make the previous approaches more
flexible by allowing the data warehouse server to answer
all queries until the number of pre-known cells covered
by the answered queries exceeds the threshold. This is
due to the fact that a pre-known cell not covered by any
of the answered queries cannot increase the amount of
private information disclosed by answered queries.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Percentage of Known Cells (%)

Q
ue

ry
 A

va
ila

bi
lit

y
Le

ve
l (

%
)

Algorithm A
SUM−Only Approach

Fig. 1. Comparison with Previous Approaches in [36], [37]

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Percentage of Known Cells (%)

Q
ue

ry
 A

va
ila

bi
lit

y
Le

ve
l (

%
)

Algorithm A
MMS Approach

Fig. 2. Comparison with Previous Approach in [40]

Figure 1 shows the comparison results between
our proposed approach and the approaches in [36],
[37]. Since the previous approaches only support SUM
queries, we issue all 2, 000 1-dimensional SUM skeleton
queries of the data cube (i.e., SUM of each row and
column) in random order. In the simulation, we investi-
gate the relationship between the query availability level
and the percentage of pre-known cells, which ranges
from 0% to 100%. As we can see from the figure, while
all approaches answer more queries when fewer cells
are pre-known by the users, Algorithm A achieves a
significantly higher level of query availability than the
previous approaches.

Figure 2 shows the comparison results between our
proposed approach and the approach in [40] (denoted by
MMS approach). Since the previous approach supports
MIN, MAX, and SUM queries, we issue all 6, 000 1-
dimensional SUM, MIN, and MAX skeleton queries of
the data cube in random order. Again, we investigate
the relationship between the query availability level and
the percentage of pre-known cells which ranges from
0% to 100%. As we can see from the results, while
both approaches can answer almost all queries when
the percentage of pre-known cells is low, Algorithm A
achieves a significantly higher level of query availability

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: The George Washington University. Downloaded on February 23,2010 at 08:21:26 EST from IEEE Xplore. Restrictions apply.

14

when more cells in the data cube are pre-known by the
users. For example, when 30% of the cells are pre-known,
our proposed approach can answer 100% of all queries,
while the previous approach in [40] can answer only
27.73% of them. Note that Algorithm A can answer a
substantial amount of MIN and MAX queries even if
nearly all cells in the data cube are pre-known. This is
because that even if a user knows all cells except one
sensitive cell that are included in a MIN/MAX query, it
may still not be able to derive any private information
about the sensitive cell from the query answer. For
example, as long as one pre-known cell included in a
MAX query has value of 1, the user can derive from
its pre-knowledge that the query answer is always 1,
and thus cannot infer any additional private information
after receiving the query answer.

As we can see from the performance comparison, our
proposed approach not only offers better privacy protec-
tion by controlling both partial and exact disclosure of
private data, but also provides higher query availability
than the previous approaches given the same level of
privacy protection.

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Answered Queries

lp

Fig. 3. Change of lp With the Number of Answered
Queries in Algorithm A

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

l

Q
ue

ry
 A

va
ila

bi
lit

y
Le

ve
l (

%
)

All SUM Queries
50% SUM, 50% MIN
All MIN Queries

Fig. 4. Query Availability Level of Algorithm A for MIN-like
and SUM-like Queries

To evaluate the performance of our approach with
different user-specified thresholds l ∈ [0, 1], in Figure 3,
we demonstrate the change of lp with the number of
issued query answers (i.e., |Qk|) in the execution of Algo-
rithm A. In particular, based on the above 2-dimensional
settings, we set the percentage of pre-known cells to be
50%, and issue in random order 2, 000 1-dimensional
skeleton queries which include 50% MIN-like and 50%

SUM-like queries. Note that Figure 3 also demonstrates
how the degree of uncertainty on a sensitive cell (i.e.,
1 − lp) decreases as aggregate values become available

As we can see, the value of lp increases fairly slowly
(almost linearly) when |Qk| is low, but grows much
faster when more than 1, 900 query answers have been
issued. This conforms to the intuition that the more
query answers a (malicious) user has received, the more
private information it can infer from a new query an-
swer. Another observation we can make from Figure 3
is that the query availability level of our approach is not
very sensitive to the user-specified threshold l when l
is large. For example, our approach can answer 1, 999
queries when l = 0.95. When l is reduced to 0.85 and
0.75, our approach can still answer 1, 993 and 1, 902
queries, respectively.

We also evaluate the performance of Algorithm A
in terms of the query availability level when 1) all
queries are SUM-like. 2) half of the queries are SUM-
like, while the other half are MIN-like, and 3) all queries
are MIN-like. We conduct the simulation on the above 2-
dimensional settings when the own-specified threshold
l varies from 0 to 1, and set 25% of the cells (randomly
chosen) to be pre-known. In the simulation, we issue
2, 000 1-dimensional skeleton queries in random order.
In the case where there are half SUM-like and half MIN-
like queries, the aggregation function of each query is
chosen uniformly at random from SUM and MIN.

The results are shown in Figure 4. As we can see,
Algorithm A can answer more MIN-like operations than
SUM-like ones, especially when l is small. For example,
when l = 0.4, Algorithm A can answer 100% of all MIN-
like queries, 79.2% of queries that are half MIN-like and
half SUM-like, and 26.5% of all SUM-like queries. This
is consistent with our theoretical results in Section 6.
Figure 4 also shows that the higher owner-specified
threshold l is, the more queries can be answered by
Algorithm A. In particular, when l = 1 (i.e., only exact
disclosure is of concern), Algorithm A can answer almost
all queries regardless of their aggregation functions.

We now evaluate the performance of Algorithm B
in the n-dimensional case with arbitrary distribution
of cells. In particular, we consider a 4-dimensional
100 × 100 × 100 × 100 data cube, each cell of which is
randomly generated from a normal distribution with
mean of 0 and variance of 1. We assume that each
cell is described with 2-bits accuracy (i.e., 2 bits to the
right of the decimal point). As such, the entropy of
each cell is H(x) = 2 + log(

√
2πe) ≈ 4.0 bits. We set

minx l(x) = 0.8, and conduct the experiment when the
percentage of pre-known cells varies from 1% to 90%.
In the experiment, we issue MIN and SUM queries
randomly chosen from all 4 × 106 1-d, 60, 000 2-d, and
400 3-d subcubes corresponding to skeleton queries on
the data cube.

We find that with Algorithm B, the query availability
level for MIN-like queries is always 100%. The query
availability level for SUM queries is shown in Figure 5.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: The George Washington University. Downloaded on February 23,2010 at 08:21:26 EST from IEEE Xplore. Restrictions apply.

15

9080 706050403020100
0

10

20

30

40

50

60

70

80

90

100

Percentage of Pre�Known Cells (%)

Q
ue

ry
 A

va
ila

bi
lit

y
Le

ve
l (

%
)

1-Dimensional Queries
2-Dimensional Queries
3-Dimensional Queries

Fig. 5. Performance of Algorithm B on Answering SUM
queries in n-Dimensional Cases

As we can see from the figure, Algorithm B can an-
swer most of the queries when the percentage of pre-
known cells is low. For example, when 10% cells are pre-
known by the users, our approach can answer 100% 2-
dimensional and 3-dimensional queries, as well as 71.9%
1-dimensional queries. Note that Algorithm B answers a
higher percentage of high-dimensional queries, partially
due to the higher number of possible low-dimensional
queries compared with the higher-dimensional ones.

8 EXTENSIONS AND DISCUSSIONS

In this section, we present the extension of our paper to:
1) defend against malicious users that collaborate with
each other, and 2) process a batch of queries submitted
simultaneously.

8.1 Defense Against Colluding Users
A traditional challenge for inference control (e.g., in
statistical databases) is the defense against colluding
users. Since the answer/reject decision for a query is
made based on a user’s query history Qk and pre-
known cells Gk, privacy breaches may occur when
multiple users collude with each other to share their
received query answers and pre-known cells, in order
infer additional private data from the shared informa-
tion. A possible way to defend against colluding users
is to conservatively assume that every user learns all
other users’ query histories (

⋃
k Qk) and pre-known cells

(
⋃

k Gk), and to ensure lp(x;
⋃

k Qk|
⋃

k Gk) < l(x) for
all cells x . Nonetheless, this strategy will significantly
reduce the number of answered queries. For example,
consider the case where the first query q issued by a
user has disclosure level lmax(q) = l(x) − ε, where l(x)
is the owner-specified threshold on privacy disclosure,
and ε > 0 is arbitrarily close to 0. This query will be
answered because it does not violate l(x). Nonetheless,
no future query issued by any user can be answered
because lmax(q) takes almost all the amount of disclosure
tolerable by the data owners.

In order to defend against colluding users while
maintaining a reasonable level of query availability, we
propose two methods, to be applied when the defender
knows and does not know a (small) maximum possible

number of colluding users, respectively. The first method
applies when the defender knows there are up to h col-
luding users. The basic idea is to maintain global upper
bounds for μk, σk, and |Qk

S|, and enforce an upper-bound
limit of l(x)/h for all users. Consider Algorithm A as an
example (Algorithm B can be revised in analogy). We
replace μk, σk, and |Qk

S| in Algorithm A by μ = mink μk,
the minimum number of sensitive cells covered by a
SUM-like query issued by any user, σ = h ·maxk σk, the
maximum number of pre-known cells covered by SUM-
like queries issued by h users, and |QS| = h · maxk |QS

k|,
the maximum number of SUM-like queries issued by h
users, respectively. Then, we ensure that the cumulative
sum lp in Algorithm A is smaller than l/h. One can see
that no h colluding users can violate the owner-specified
threshold l. Meanwhile, the time and space complexity
of Algorithm A remains O(1), because the values of
mink μk, maxk σk, and maxk |QS

k| can be updated after
each query is answered. Figure 6 shows the change
of lp with the number of answered queries per user
when h ranges from 1 to 7, using the same experimental
settings as Figure 4 (i.e., each user knows 50% of all
cells as pre-knowledge; the query workload consists of
2, 000 1-dimensional skeleton queries which include 50%
MIN-like and 50% SUM-like queries). One can see that
although the number of queries answerable to each user
becomes much smaller (which is expected because the
users may share their query answers), the total number
of queries answered to all users remains fairly high (e.g.,
1, 575 queries when lp = 1 and h = 3).

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Answered Queries Per User

l p

h = 1
h = 3
h = 5
h = 7

Fig. 6. Defense Against Colluding Users when h is Known

If the maximum number of colluding users is un-
known to the defender, or if the value of h is too large
for the above method to answer a reasonable number
of queries, then we propose a second method, which
is essentially a static version of our inference control
approach. The basic idea of the static approach is to
determine a safe set of queries Q0 offline before any query
is actually received, such that no privacy requirement
is violated even if a user receives the answers to all
queries in Q0 and has

⋃
k Gk as pre-knowledge (i.e.,

lp(x; Q0|
⋃

k Gk) < l(x) for all cells x). Note that if a
query set is safe, then each of its subsets is also safe.
At runtime, when the data warehouse server receives a
query, it answers the query if and only if the query is in
the predetermined safe set.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: The George Washington University. Downloaded on February 23,2010 at 08:21:26 EST from IEEE Xplore. Restrictions apply.

16

Depending on the requirements of OLAP applica-
tions (e.g., whether MIN-like and SUM-like queries are
equally important), there are many possible ways to
construct the safe set Q0. Generally speaking, the safe
set should include as many queries as possible. In order
to do so, we must exclude certain “privacy-divulging”
queries (e.g., a query which consists of mostly pre-
known cells) which lead to a substantial increase in
the estimated privacy disclosure level lmax(Qk). For ex-
ample, in the simple 2-dimensional case addressed by
Algorithm A, by excluding queries with the number
of pre-known cells greater than min(d1/2, d2/2), we can
include all other queries in the safe set when l = 1 (this
follows from Step 3 in the proof of Theorem 6.1).

The insight behind the construction of safe set is that a
few privacy-divulging queries (e.g., the above-discussed
query with lmax(q) = l(x)−ε) cause the most increases on
lmax(Qk). While dealing with individual users (i.e., with-
out collusion), it may not be effective to preemptively
reject such queries due to the following three reasons:
1) The users may only issue a small number of queries,
so that the privacy disclosure level will not exceed the
threshold anyway, 2) The privacy-divulging queries may
be important for the user’s legitimate intent, and 3)
Algorithms A and B are fully simulatable by users. Thus,
if the privacy-divulging query is not important to the
user, it may not send it to the data warehouse server
due to the predicated decisions of inference control.

Nonetheless, when we aim to defend against colluding
users, answering one of such privacy-divulging queries
will increase the disclosure level for all users, therefore
significantly reducing the total number of answered
queries. Since a user has no control on the queries issued
by the other users, we need the static approach to serve
as a global control on the amount of private informa-
tion disclosed by each query. In particular, the static
approach preemptively rejects privacy-divulging queries
by excluding them from the pre-determined safe set.
This allows the data warehouse server to answer a large
portion of queries even with rigid privacy requirements
and a high percentage of known cells (by all users).

8.2 Answering a Batch of Queries

In the previous part of the paper, we assume that each
user submits one query at a time to the data ware-
house server. Thus, the data warehouse server must
decide whether to answer the query or to reject it
before receiving the next query. We now consider the
extension of our results to cases where a user can submit
multiple queries simultaneously to the data warehouse
server. Apparently, our algorithms can be used in these
cases without any change if the data warehouse server
processes the submitted queries in a serialized manner.
Nonetheless, we shall show that it is also possible to
further optimize the performance of our approach in
these cases because the data warehouse server learns
more information about the upcoming queries.

Recall that our inference control approach derives an
upper-bound estimate of privacy disclosure lmax(q|Qq)
for each received query q, and uses the estimate to
update the system disclosure level lmax(Qk). As we men-
tioned in Section 8.1, a few privacy-divulging queries
cause the most increases on lmax(Qk). Thus, when the
data warehouse server receives a batch of queries that
cannot all be answered due to privacy requirements,
the data warehouse server may identify and reject the
privacy-divulging queries in order to answer more of
the other queries in the batch. For example, the data
warehouse server may choose to reject queries with
the highest lmax(q|Qq). For SUM-like queries, the data
warehouse server may also choose to reject queries with
a high number of pre-known cells rk(q) in order to
maintain a low value of μ, thereby reducing the value
of lmax(q|Qq) for future queries. Note that the value of
lmax(Qk) computed by our approach also depends on the
order of queries in Qk. Thus, the data warehouse server
may also adjust the query order in the received batch
in order to further increase the number of answered
queries. we shall investigate the optimal ordering of
received queries in our future work.

9 RELATED WORK

As we mentioned in Section 1, there are two kinds of ap-
proaches that have been proposed for privacy protection
in OLAP, namely inference control and input/output
perturbation. In this section, we review related work in
these two categories.

Many inference control algorithms have been pro-
posed in the literature for not only OLAP [26], [34], [35],
[37] but also statistical databases [1], [9], [10], [11], [16],
[22] and the general query auditing problem [13], [23],
[24], [29], [30]. Both online and offline versions of the
problem have been investigated. While the online ver-
sion determines the safety of a received query based on
the query history [9], [13], [30], the offline version aims
to determine whether or not a given sequence of queries
q1, . . . , qm is safe [9], and if not, how to find the maxi-
mum safe subset of queries [11]. The ideal objective of in-
ference control is to eliminate the inference of individual
data points from query answers while minimizing the
number of rejected queries. Nonetheless, a special case
of the optimal inference control problem (with mixed
SUM and MAX queries) in statistical databases have
been proven to be NP-hard [11]. The optimal boolean
query auditing problem has also been proven to be co-
NP-complete [24]. As such, the majority of existing work
on inference control makes a tradeoff between efficiency
and query availability. Due to efficiency concerns, many
existing inference control algorithms for OLAP make
query answer/reject decisions based on the cardinality
of the data cube (i.e., the number of pre-known and
sensitive cells) [36], [37], [40]. Most only address the
exact disclosure of sensitive cells [26], [34], [35], [37] and
only support SUM queries [26], [35], [36], [37].

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: The George Washington University. Downloaded on February 23,2010 at 08:21:26 EST from IEEE Xplore. Restrictions apply.

17

Input/output perturbation approaches aim to protect
privacy by adding random noise to either the input data
to the data warehouse [4], [32] or the (output) query
answers [16]. There are variations of this approach which
add noise to the input data with linear or nonlinear
transformations [6], cluster the input data points into a
number of mutually exclusive groups and replace the
individual values with group-wise average values (i.e.,
microaggregation) [15], or generalize query answers into
interval values [18]. Perturbation-based approaches have
also been studied in a broader scope, especially for
privacy-preserving data mining (e.g., [3]). For privacy-
preserving OLAP, when the input data are perturbed,
algorithms have been proposed to reconstruct the (orig-
inal) outputs of aggregate functions from the subcubes
of perturbed data [4], [32]. Although input/output per-
turbation allows the data warehouse server to answer
all received queries, a tradeoff has to be made between
the accuracy of query answers and the protection (i.e.,
defense against partial disclosure) of private informa-
tion. Again, most existing approaches only support lim-
ited aggregated functions, such as COUNT-only [4] and
SUM-only [32].

In another related direction, the privacy models of
inference control and query auditing have been studied.
The simulatable auditing model was proposed [23] to
capture the leakage of private information through query
denials. A probabilistic measure was also introduced
[23] to capture the partial disclosure of private data. As
we have shown in Section 5.3, our proposed approach
follows the simulatable auditing model while addressing
the partial disclosure of private information.

10 FINAL REMARKS

In this paper, we address the protection of private
data in OLAP systems. Most existing inference control
approaches only address exact disclosure, and elimi-
nate from consideration an important class of privacy
breaches where partial information about a private data
point is disclosed. We propose an information-theoretic
inference control approach that protects private infor-
mation against both exact and partial disclosure. In
particular, our approach guarantees that the level of
privacy disclosure cannot exceed thresholds specified
by data owners. Compared with previous approaches,
our approach provides more effective privacy protection
while maintaining a higher level of query availability.
We conclude with future directions.

• General Query Auditing Problems: In this paper, we
are focusing on the processing of multi-dimensional
OLAP queries. A future direction is to extend
the information-theoretic framework to more gen-
eral query auditing problem which allows arbi-
trary queries on the private data. It would also
be interesting to investigate ways to improve the
query availability level when the private data are
frequently updated.

• Real-world Privacy Measure: The privacy versus
data utility tradeoff in privacy-preserving data pro-
cessing requires accurate measurement of privacy
protection. Our privacy measure in the paper en-
ables the information-theoretic formulation but can-
not capture certain extreme-case privacy breaches,
which we have to address by integrating our ap-
proach with the input/output perturbation method.
A comprehensive study on real-world privacy mea-
surement would be a significant step toward im-
proving the performance of privacy-preserving data
processing techniques.

• Integration of Data Collection, Inference Control,
and Information Sharing: Existing research on
privacy-preserving data processing has addressed
three system settings separately: 1) data collection
from distributed sources for data mining (e.g., [3]),
2) inference control on data warehouse (e.g., this
paper), and 3) data sharing across private databases
(e.g., [2]). Many systems need a seamless integration
of all three scenarios, yet there is limited research
that has addressed this need. We proposed an in-
tegrated architecture for the three scenarios [39].
As we demonstrate in the technical report [41],
our inference control approach can be effectively
integrated with input/output perturbation, which is
also a popular choice for data collection. More exten-
sive research is needed to pave the way for effective
and efficient integration of the three scenarios.

ACKNOWLEDGMENT

The authors would like to thank the anonymous review-
ers for their insightful comments. This work was sup-
ported in part by the National Science Foundation un-
der grants 0324988, 0329181, 0721571, 0808419, 0845644,
0852673, 0852674, and 0915834. Any opinion, findings,
conclusion, and/or recommendation in this material,
either expressed or implied, are those of the authors
and do not necessarily reflect the views of the sponsor
listed above. The authors would like to thank Ms. Larisa
Archer for her editorial help with the paper.

REFERENCES

[1] N. R. Adam and J. C. Worthmann, “Security-control methods
for statistical databases: a comparative study,” ACM Computing
Surveys, vol. 21, no. 4, pp. 515–556, 1989.

[2] R. Agrawal, A. Evfimievski, and R. Srikant, “Information sharing
across private databases,” in Proceedings of the 22nd ACM SIGMOD
International Conference on Management of Data, 2003, pp. 86–97.

[3] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in
Proceedings of the 19th ACM SIGMOD International Conference on
Management of Data, 2000, pp. 439–450.

[4] R. Agrawal, R. Srikant, and D. Thomas, “Privacy preserving
OLAP,” in Proceedings of the 25th ACM SIGMOD International
Conference on Management of Data, 2005, pp. 251–262.

[5] L. L. Beck, “A security machanism for statistical database,” ACM
Transactions on Database Systems, vol. 5, no. 3, pp. 316–3338, 1980.

[6] R. Brand, “Microdata protection through noise addition,” vol.
2316, pp. 97–116, 2002.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: The George Washington University. Downloaded on February 23,2010 at 08:21:26 EST from IEEE Xplore. Restrictions apply.

18

[7] L. Brankovic, P. Norak, M. Miller, and G. Wrightson, “Usability
of compromise-free statistical databases,” in Proceedings of the
9th International Conference on Scientific and Statistical Database
Management, 1997, p. 144154.

[8] B. Chen, K. LeFevre, and R. Ramakrishnan, “Privacy skyline:
Privacy with multidimensional adversarial knowledge,” in Pro-
ceedings of the 33rd International Conference on Very Large Data Bases,
2007, pp. 770–781.

[9] F. Chin, “Security problems on inference control for sum, max,
and min queries,” Journal of the ACM, vol. 33, no. 3, pp. 451–464,
1986.

[10] F. Chin and G. Ozsoyoglu, “Auditing for secure statistical
databases,” in Proceedings of the ACM ’81 Conference, 1981, pp.
53–59.

[11] ——, “Auditing and inference control in statistical databases,”
IEEE Transactions on Software Engineering, vol. SE-8, no. 6, pp. 574–
582, 1982.

[12] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Wiley-Interscience, 1991.

[13] D. Dobkin, A. K. Jones, and R. J. Lipton, “Secure databases:
protection against user influence,” ACM Transactions on Database
Systems, vol. 4, no. 1, pp. 97–106, 1979.

[14] J. Domingo-Ferrer, Inference Control in Statistical Databases. New
York: Springer, 2002.

[15] J. Domingo-Ferrer and J. M. Mateo-Sanz, “Practical data-oriented
microaggregation for statistical disclosure control,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 14, no. 1, pp. 189–201,
2002.

[16] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating
noise to sensitivity in private data analysis,” in Proceedings of the
3rd Theory of Cryptography Conference, 2006, pp. 265–284.

[17] A. Evfimievski, J. Gehrke, and R. Srikant, “Limiting privacy
breaches in privacy preserving data mining,” in Proceedings of the
22nd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, 2003, pp. 211–222.

[18] R. Gopal, R. Garfinkel, and P. Goes, “Confidentiality via camou-
flage: the CVC approach to disclosure limitation when answering
queries to databases,” Operations Research, vol. 50, pp. 501–516,
2002.

[19] P. P. Griffiths and B. W. Wade, “An authorization mechanism
for a relational database system,” ACM Transactions on Database
Systems, vol. 1, no. 3, pp. 242–255, 1976.

[20] J. Han and M. Kamber, Data Mining Concepts and Techniques,
2nd ed. Morgan Kaufmann, 2006.

[21] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian,
“Flexible support for multiple access control policies,” ACM
Transactions on Database Systems, vol. 26, no. 2, pp. 214–260, 2001.

[22] J. B. Kam and J. D. Ullman, “A model of statistical databases and
their security,” ACM Transactions on Database Systems, vol. 2, no. 1,
pp. 1–10, 1977.

[23] K. Kenthapadi, N. Mishra, and K. Nissim, “Simulatable auditing,”
in Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems, 2005, pp. 118–127.

[24] J. Kleinberg, C. Papadimitriou, and P. Raghavan, “Auditing
boolean attributes,” in Proceedings of the 19th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, 2000,
pp. 86–91.

[25] K. Lefevre, D. J. Dewitt, and R. Ramakrishnan, “Incognito: ef-
ficient full-domain k-anonymity,” in Proceedings of the 25th ACM
SIGMOD International Conference on Management of Data, 2005, pp.
49–60.

[26] Y. Li, H. Lu, and R. H. Deng, “Practical inference control for
data cubes (extended abstract),” in Proceedings of the 2006 IEEE
Symposium on Security and Privacy, 2006, pp. 115–120.

[27] D. J. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke, and
J. Halpern, “Worst-case background knowledge for privacy-
preserving data publishing,” in Proceedings of the IEEE 23rd In-
ternational Conference on Data Engineering, 2007, pp. 126–135.

[28] G. Miklau and D. Suciu, “A formal analysis of information dis-
closure in data exchange,” Journal of Computer and System Sciences,
vol. 73, no. 3, pp. 507–534, 2007.

[29] S. U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and R. Mot-
wani, “Towards robustness in query auditing,” in Proceedings of
the 32nd International Conference on Very Large Data Bases, 2006, pp.
151–162.

[30] S. P. Reiss, “Security in databases: A combinatorial study,” Journal
of the ACM, vol. 26, no. 1, pp. 45–57, 1979.

[31] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman,
“Role-based access control models,” IEEE Computer, vol. 29, no. 2,
pp. 38–47, 1996.

[32] Y. Sung, Y. Liu, H. Xiong, and A. Ng, “Privacy preservation for
data cubes,” Knowledge and Information Systems, vol. 9, no. 1, pp.
38–61, 2006.

[33] United States Department of health and human services, Office
for civil rights, “Summary of the HIPAA privacy rule,” 2003.

[34] L. Wang, S. Jajodia, and D. Wijesekera, “Securing OLAP data
cubes against privacy breaches,” in Proceedings of the 25th IEEE
Symposium on Security and Privacy, 2004, pp. 161–175.

[35] L. Wang, Y. Li, D. Wijesekera, and S. Jajodia, “Precisely answering
multi-dimensional range queries without privacy breaches,” in
Proceedings of the 8th European Symposium on Research in Computer
Security, 2003, pp. 100–115.

[36] L. Wang, D. Wijesekera, and S. Jajodia, “Cardinality-based infer-
ence control in sum-only data cubes,” in Proceedings of the 7th
European Symposium on Research in Computer Security, 2002, pp.
55–71.

[37] ——, “Cardinality-based inference control in data cubes,” Journal
of Computer Security, vol. 12, no. 5, pp. 655 – 692, 2004.

[38] ——, “OLAP means on-line anti-privacy,” Center for Secure In-
formation Systems, Tech. Rep. CSIS-TR-03-06, 2003.

[39] N. Zhang and W. Zhao, “Privacy-preserving data mining sys-
tems,” IEEE Computer, vol. 40, no. 4, pp. 52–58, 2007.

[40] N. Zhang, W. Zhao, and J. Chen, “Cardinality-based inference
control in OLAP systems: An information theoretic approach,”
in Proceedings of the 7th ACM International Workshop on Data
Warehousing and OLAP, 2004, pp. 59–64.

[41] N. Zhang and W. Zhao, “An information-theoretic approach
for privacy protection in OLAP systems,” TR-GWU-CS-09-003,
Department of Computer Science, George Washington University,
Tech. Rep., 2009.

Dr. Nan Zhang is an Assistant Professor of
Computer Science at the George Washington
University. He received the B.S. degree from
Peking University in 2001 and the Ph.D. degree
from Texas A&M University in 2006, both in
computer science. His current research interests
include security and privacy issues in databases
and computer networks, in particular privacy and
anonymity in data collection, publishing, sharing,
and wireless network security and privacy.

Dr. Wei Zhao is currently the Rector of the Uni-
versity of Macau. Before joining the University of
Macau, he served as the Dean of the School
of Science at Rensselaer Polytechnic Institute.
Between 2005 and 2006, he served as the di-
rector for the Division of Computer and Network
Systems in the US National Science Foundation
when he was on leave from Texas A&M Uni-
versity, where he served as Senior Associate
Vice President for Research and Professor of
Computer Science. Dr. Zhao completed his un-

dergraduate program in physics at Shaanxi Normal University, Xian,
China, in 1977. He received the MS and PhD degrees in Computer and
Information Sciences at the University of Massachusetts at Amherst in
1983 and 1986, respectively. Since then, he has served as a faculty
member at Amherst College, the University of Adelaide, and Texas A&M
University. As an elected IEEE fellow, Wei Zhao has made significant
contributions in distributed computing, real-time systems, computer
networks, and cyber space security.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: The George Washington University. Downloaded on February 23,2010 at 08:21:26 EST from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

