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Abstract. Paper II of this series studied the calibration
process in mostly qualitative terms. In developing the un-
derlying mathematics this paper completes that analysis
and extends it in several directions.

It exploits the analogy between scalar and matrix al-
gebras to reformulate the self-calibration method in terms
of 2×2 Jones and coherency matrices. The basic condition
that the solutions must satisfy in either case is developed
and its consequences are investigated. The fourfold nature
of the matrices and the non-commutativity of their mul-
tiplication are shown to lead to a number of new effects.

In the same way that scalar selfcal leaves the brightness
scale undefined, matrix selfcal gives rise to a more compli-
cated indeterminacy. The calibration is far from complete:
self-alignment describes more properly what is actually
achieved. The true brightness is misrepresented in the im-
age obtained by an unknown brightness-scale factor (as in
scalar selfcal) and an undefined poldistortion of the Stokes
brightness. The latter is the product of a polrotation of the
polvector (Q,U, V ) and a polconversion between unpolar-
ized and polarized brightness. The relation of these con-
cepts to conventional “quasi-scalar” calibration methods
is demonstrated.

Like scalar selfcal, matrix self-alignment is shown to
suppress spatial scattering of brightness in the image,
which is a condition for attaining high dynamic range.
Poldistortion of the brightness is an in-place transforma-
tion, but must be controlled in order to obtain polarimetric
fidelity.

The theory is applied to reinterpret the quasi-scalar
methods of polarimetry including those of Paper II, and
to prove two major new assertions: (a.) An instrument cal-
ibrated on an unpolarized calibrator measures the degree
of polarization correctly regardless of poldistortion; (b.)
Under the usual a priori assumptions, a heterogeneous in-
strument (i.e. one with unequal feeds) can be completely
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calibrated without requiring a phase-difference measure-
ment.
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1. Introduction

The invention of self-calibration marks a watershed in the
history of radio astronomy. It turned Very Long Baseline
Interferometry (VLBI) from a primitive tool to probe
source structure into a full-fledged imaging technique. By
adopting the selfcal technique, imaging arrays such as
the Westerbork Synthesis Radio Telescope (WSRT) and
the Very Large Array (VLA) suddenly acquired dynamic
ranges exceeding those of their original designs by sev-
eral orders of magnitude. Such performance has been the
standard for newer instruments ever since.

Notwithstanding this huge success, there is good rea-
son for dissatisfaction. Indeed, the selfcal algorithm is a
scalar one and therefore fundamentally incompatible with
the vector nature of the electromagnetic radiation field.
Observers have nonetheless found their way through the
polarization landscape, following a narrow path marked
by four guide-posts:

– Weakly polarized sources;
– The availability of calibrator sources that are

unpolarized;
– Mechanically pointed antennas with custom-designed

feeds providing for low instrumental polarization;
– The use of arrays that are homogeneous, i.e. have

nominally identical feeds in all antennas.
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Under these conditions, a first-order linearized approxima-
tion to the interferometer equation converts it to a set of
linear equations in which the scalar selfcal algorithm can
be applied, as outlined in Sect. 7 below. I shall call this
the quasi-scalar approach. As soon as any of the guide-
posts is taken away, the traveler is in trouble, — and this
is actually happening:

– As observers push toward higher frequencies and reso-
lutions, they begin to encounter more strongly polar-
ized sources. . .

– . . . and unpolarized ones become rare;
– In ad-hoc VLBI arrays such as the European VLBI

Network (EVN), funding limitations dictate the use of
makeshift circular feeds of inadequate quality in many
stations;

– For a new generation of radio telescopes, unorthodox
designs are being considered in which cost is an over-
riding driver. Polarization purity as well as homogene-
ity will very probably have to be traded in for financial
economy.

The time has come to leave the quasi-scalar trail and
find a less restrictive way of navigating in polarization
land. A suitable type of vehicle has been proposed in
Paper I of this series (Hamaker et al. 1996). Its principle
is to abandon the notion of scalar electromagnetic signals
and visibilities in favour of signal 2-vectors and coherency
4-vectors, and to represent their transformations by multi-
plications with matrices. This results in a simple, modular
and complete description of the system without the need
for simplifying assumptions.

In matters of calibration, Paper I looks backward,
showing how the traditional methods can be described
and justified in terms of the matrix/vector formalism.
Paper II (Sault et al. 1996) takes a first step forward by
showing how our treatment can be used to view an in-
terferometer array as a single imaging instrument, and
discussing the fundamental limitations to which such an
array and its calibration are necessarily subject. Here,
I zoom in on that part of the calibration process that
Paper II takes for granted: My purpose is to develop a
comprehensive matrix-based theory of self-calibration and
find out how similar and/or different matrix selfcal is from
the scalar selfcal that we know.

For this particular purpose I find that a representa-
tion of coherency and brightness in the form of matri-
ces is more convenient than the vector representation of
the preceding papers. However, such matrices are diffi-
cult to visualise. A third equivalent representation, that of
Stokes parameters, is much more enlightening and there-
fore widely used. Outside its physical context, the Stokes
representation is valid for any 2 × 2 matrix; this leads
to the mathematical concept of quaternions: “hypercom-
plex” numbers composed of a scalar and a three-vector.
Quaternions have multiplication rules of their own which
can be used in analysing matrix products in more detail.

This proves to be a powerful tool for studying the effects
represented by the matrix equations.

In its essence, the quaternion concept entails little
more than a simple extension of undergraduate-level lin-
ear algebra, but it is new to radio astronomy and may take
some effort to digest. Therefore, although derivations and
proofs are an essential part of this paper, I have relegated
them to appendices. The main text concentrates on the
results and their interpretation. For some of the mathe-
matical effects and properties that the analysis uncovers,
I have chosen to introduce suitable polarimetry-specific
terminology.

The layout of the paper is briefly as follows:
Section 2 establishes the basic mathematical compo-

nents: coherency, Jones and brightness matrices and the
Stokes brightness vector/quaternion.

Sections 3 to 5 develop the matrix form of self-
calibration by exploiting the close analogies between
scalar and matrix algebras. It turns out that the matrix
form provides a “calibration” that is seriously incom-
plete: self-alignment describes more accurately what the
algorithm actually achieves. An arbitrary poldistortion
is left undefined; it is an in-place transformation of the
brightness, composed of a polrotation of the polvector
(whose components are the Stokes Q, U and V bright-
nesses), and a polconversion between the polvector and
total intensity I.

Section 6 considers the elimination of poldistortion
through the use of unpolarized calibrators, supplemented
with prior knowledge about the feed and/or additional
observations. It confirms, reinterprets amd extends the re-
sults of Paper II.

Section 7 discusses quasi-scalar calibration methods in
the perspective of the matrix approach. It is shown that
most of the concepts revealed by the latter also appear in
one form or another in the quasi-scalar context. Recent at-
tempts at calibrating without recourse to an unpolarized
calibrator are also discussed and evaluated.

A new option that the matrix formalism offers is the
use of heterogeneous arrays, i.e. arrays combining anten-
nas with non-identical feeds. It is explored in Sect. 8. In
such arrays, feed errors and receiver phases are coupled in
such a way that constraining the former in the usual way
also fixes the latter; no additional phase measurement is
needed to complete the calibration.

Section 9 discusses the general problem of calibrat-
ing an observation of a completely unknown source. In
this case, one depends entirely on a priori knowledge of
the instrument and/or ground-based measurements. My
analysis is at present inconclusive and the problem needs
further study.

Section 10 makes a comparison between quasi-scalar
and matrix approaches, summarises the results of the lat-
ter and speculates on its practical application.

The Appendix provides a brief summary of the math-
ematical background as well as proofs of the assertions in
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Table 1. Analogies between scalars and 2 × 2 matrices, their algebraic properties and their application in interferometry.
Particulars are to be found in the sections listed

Scalar form Matrix form Section(s)

Arbitrary scalar a Arbitrary 2× 2 matrix A

Unity = 1 Identity 2× 2 matrix = I

Phase factor exp iα Unitary 2× 2 matrix X Appendix B.1
Unimodular unitary 2× 2 matrix Y

Positive real number |a| Positive hermitian 2× 2 matrix G
Unimodular pos.-herm. 2× 2 matrix H Appendix B.4

Polar representation a = a exp iα Polar representation A = a exp iαHY 5.1, Appendix B.6

Complex conjugation a∗ Hermitian transposition A† ≡ A∗T

d(ψ) = |aeiψ − 1|2 minimal for ψ = − arg a Minimum-variance theorem Appendix C.5

Multiplication c = ab = ba Multiplication C = AB 6= BA

Field or voltage transfer e′
j

= gjej
gj = (complex) gain

Field or voltage vector transfer e′
j

= Jjej

Jj = (complex) Jones matrix
2.3

Visibility ejk =< eje
∗
k > Coherency Ejk =< eje

†
k
> 2.2

Visibility transfer e′
jk

= gjejkg
∗
k

Coherency transfer E′
jk

= J jEjkJ
†
k

2.3

the body of the paper. It also contains a few small digres-
sions related to polarimetry that would not fit elsewhere.

1.1. Terminology and notation

Since I will be discussing scalar selfcal and its full-
polarization analogue side by side, it is necessary to put
a precise terminology in place.

The analogue of the scalar visibility is the coherency.
It consists of four components and can be represented in
various coordinate systems in the form of either a vec-
tor or a matrix. Each of these forms contains four scalar
elements that I shall occasionally refer to as visibilities.

I shall use “matrix” as an antonym of “scalar”, — as
in “matrix selfcal”. This is not strictly correct, because
alternative formulations of my methods are possible that
rely on other representations, e.g. using vector or tensor
forms. But within the context of this paper it is the most
convenient word to describe the antithesis.

The device that converts the electromagnetic field vec-
tor into a pair of voltages is called a feed ; it consists
of two receptors that are usually (but not necessarily,
cf. Appendix B.3) sensitive to nominally opposite polar-
izations. In a homogeneous array all feeds are nominally
identical; in a heterogeneous array they differ.

The imaging process that I consider consists of the ob-
servations proper followed by a process of self-calibration.
In the latter, models of the instrumental errors and the

source brightness distribution are developed jointly in an
iterative procedure. It is assumed to have converged when
the models together correctly represent the observed co-
herencies within the noise. The image is the pictorial rep-
resentation of the source model; the two words are almost
synonymous. The model itself may take various forms; its
essential property is that it can be used to “predict” model
coherency values that can be compared to those actually
observed in order to estimate instrumental errors.

It is important to correctly understand the word
“intensity” used as an adjective, as in “intensity cali-
bration”. I use it to say that the calibrator source is
characterised by its intensity alone, i.e. it is unpolarized.
It does not imply the exclusive calibration of receiver
parameters that one might associate with intensity,
e.g. voltage gains.

Vectors are denoted by bold lowercase symbols; bold
uppercase represents matrices. Constant scalars and vec-
tors are shown in roman, variables in italic font. A unit
vector in the direction x will be denoted by 1x. The
“dagger” superscript † stands for hermitian transposition
or conjugation, i.e. transposition plus complex conjuga-
tion.

Primes are generally used to distinguish observed or
fitted values from true ones; occasionally they will also be
used to distinguish input and output of a transformation
or values of one variable under different conditions.

I follow the subscript notation of Paper II: quantities
in the signal domain carry a single antenna subscript j
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or k; those in the coherency domain get an interferometer
subscript jk. An additional subscript t will be used to indi-
cate successive integration intervals or “time slices”. The
array consists of N antennas and an observation comprises
M integration intervals.

2. Coherency-matrix formulation of interferometry

2.1. The scalar/matrix analogy

The algebraic properties of scalars and matrices are very
similar. Every elementary property of scalars has an imme-
diate matrix counterpart, with one very important excep-
tion, viz. that matrix multiplication is non-commutative.

The analogy extends further. There is, for example,
a matrix counterpart of the polar representation a =
|a| exp iα of complex numbers. An overview is given in
Table 1.

2.2. The coherency matrix

As in the previous papers of this series, I represent the
electric field in cartesian coordinates by a vector

e =
(
ex
ey

)
.

The equivalent of the scalar visibility is the coherency
tensor. In mathematical terms, it is a complex-valued 2-
dimensional tensor of rank 2 (Landau & Lifshitz 1995). In
Paper I, we represented it in the form of the coherency
vector and the Stokes vector. Here I shall use yet another
representation, the coherency matrix. It is composed of the
same four elements as the coherency vector, but arranged
in the form of a 2× 2 matrix

Ejk =< ej e
†
k
>=

(
< ejxe

∗
kx
> < ejxe

∗
ky
>

< ejye
∗
kx
> < ejye

∗
ky
>

)
. (1)

All of these forms are entirely equivalent representations
of one and the same underlying tensor. Both the form
(vector, matrix or other) and the coordinate system (e.g.
cartesian or circular, cf. Paper I) of the representation are
a matter of convenience. I will use geometric xy coordi-
nates throughout.

2.3. The interferometer equation

I recall from Paper I that the elements in the signal path in
one antenna transform the electric field or voltage vector:

wj = J jej

where J j is a Jones matrix. It is then readily seen that an
interferometer with Jones matrices J j and Jk transforms
the coherency matrix according to

W jk = J jEjkJ
†
k
. (2)

Perhaps superfluously, I reiterate that this is no more
than another representation of the basic underlying trans-
formation of the coherency tensor by an interferometer.
The advantage over the coherency-vector representation of
Paper I is that both coherencies and antenna/receiver sys-
tems are now represented by 2 × 2 matrices and we need
only one type of multiplication operator. This leads to a
complete formal analogy between scalar and matrix self-
cal, which will allow us to extrapolate our knowledge of
the former in trying to understand the latter.

Coherency and Jones matrices having the same form,
it should be clear from the context which is which, just as
in the scalar domain. In addition, note that Jones matrices
carry the single index of an antenna whereas the coherency
matrices have a double, interferometer index. This differ-
ence will remain also when we later add another index t
for sampling time.

I note in passing that in the particular case of a single
dish, j = k and Eq. (2) reduces to

W = JEJ† (3)

which is known as a congruence transformation. We will
see in Sect. 4 that this same transformation describes a
“self-aligned” synthesis array.

2.4. Matrix and Stokes brightnesses

In its original form, the van Cittert-Zernike theo-
rem (Paper I Appendix C; Thompson et al. 1986;
Perley et al. 1994; Born & Wolf 1964) establishes a spa-
tial Fourier-transform relation between a scalar visibility
function e(r) of baseline r and a scalar brightness
function B(l) of sky position l.

In an observation, we measure the visibility at discrete
times t; our observables are the samples

ejkt = e(rjkt).

In self-calibration theory, the sampling times are assumed
to coincide for all interferometers. Also discretising the
brightness, we approximate the Fourier integral by a sum

e(rjkt) =
∑

w(rjkt, l)B(l). (4)

The theorem can be readily generalised to show that
each element of the coherency matrix is the Fourier trans-
form of the corresponding element of a brightness matrix.
In the same approximation

Ejkt =
∑
l

w(l, rjkt) B (l)

j, k = 1, . . . , N, t = 1, . . . ,M.
(5)

The four elements of the brightness matrix corre-
spond to those of the coherency matrix. A more enlight-
ening representation is provided by the Stokes brightness
(I,Q,U, V ). It is another function of l, defined by the
transformation

B =
(
I +Q U − iV
U + iV I −Q

)
= I I +QQ + U U + V V (6)
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where

I =
(

1 0
0 1

)
, Q =

(
1 0
0 −1

)
U =

(
0 1
1 0

)
, V =

(
0 −i
i 0

)
.

(7)

The matrix constants I, Q, U and V are known in physics
as the Pauli (spin) matrices.

The Stokes parameter I is the total brightness or
intensity. For (Q,U, V ) a proper name is the “polarized-
brightness vector”; more conveniently, I shall call it
the polvector. The dichotomy between I and the other
Stokes parameters can be understood as a consequence
of the Pauli matrix I being the identity matrix. The
domain of the polvector is closely related to that of
the Poincaré sphere (Born & Wolf 1964; Cornbleet 1976;
Simmons & Guttman 1970). It is convenient to introduce
a shorthand for Eq. (6):

B(l) = [ I(l) + p(l) ] (8)
where p ≡ (Q,U, V ) is the polvector.

2.5. Quaternions

The transformation Eq. (6) or Eq. (8) does not depend
on B being a brightness matrix. It can be applied to an
arbitrary 2× 2 matrix A:

A = [ a+ a ]. (9)
The entity in square brackets is known as a quaternion.
Quaternions were invented and named by Hamilton in
the middle of the nineteenth century in a mathemati-
cal quest for generalisations of the concept of complex
numbers. Physicists of the time ignored them in favour
of the vector algebra that was developed at the same
time (Hestenes 1986). In the analysis to be presented
here they prove to be extremely useful, because they
can be added and multiplied in exactly the same way
that matrices can: in mathematical terms the “quaternion
group is isomorphous with the group of 2 × 2 matrices”.
(Korn & Korn 1961).

In the same way that the Stokes vector is preferable
because of its physical content, the quaternion form of
equations such as the interferometer equation Eq. (2) can
be analysed in a more meaningful way than the corre-
sponding matrix equations. The analysis is an essential
part of this paper, but I have chosen to present it in an
appendix. In the main text, I concentrate on the results
and their physical interpretation.

The notation for quaternions is not standardised. The
form Eq. (9) is an ad-hoc choice of my own.

3. Scalar self-calibration

The instability of our instruments limits the possibility
of external calibration against cosmic or man-made

standards. The high dynamic ranges that are now
the norm depend entirely on self -calibration or selfcal
(Thompson et al. 1986; Perley et al. 1994).

So far, selfcal has been known only in scalar form.
Although it is almost universally appplied, we have no
complete and compelling theory to describe it. In practice
it shows a strong propensity to converge to a unique solu-
tion, — provided it is given enough data. Yet we have no
formal proof of this uniqueness.

My aim now is to study matrix selfcal by approaching
it as a generalisation of the scalar variant. In doing so, the
best one may expect is to reach an analogously incomplete
understanding. As we shall see, this is enough for making
interesting inferences.

I begin by reviewing scalar selfcal. I ignore the effect of
noise, except to note that it introduces an element of un-
certainty into the entire process that may in unfavourable
cases subvert the apparent uniqueness of our solution. As
a rule this does not appear to happen in practice.

3.1. Scalar self-calibration

Scalar selfcal works on the basis of two assumptions:
– All instrumental effects are antenna-based, i.e. the cor-

relator is error-free. Thus our observed visibility is
given by
v(rjkt) = gjt e(rjkt) gkt

∗.

– The sky is “relatively empty”: The source brightness is
nonzero only in a minor fraction of the observed field,
the source’s support. In practice, it turns out that the
support need not be known a priori, but can be found
and successively refined by inspection of provisional
“dirty” images.

Given a set of observations, selfcal seeks to find antenna
gains g′

jt
and visibilities e′(rjkt) that are consistent with

them:
v(rjkt) = g′jt e

′(rjkt) g
′
kt
∗. (10)

Obviously, one solution consists in the true gains and vis-
ibilities. In addition, Eq. (10) is satisfied by the combina-
tion
g′
jt

= gjt x
−1
jt , e′(rjkt) = xjt e(rjkt) xkt∗,

j, k = 1, . . . , N
(11)

for any conceivable set of multipliers xjt. For each of these,
the visibilities e′(rjkt) in turn correspond to a source
model B′ according to Eq. (4):

xjt e(rjkt) x
∗
kt =

∑
l

w(l, rjkt) B
′ (l). (12)

If the source support is limited as assumed, the sum con-
tains only a limited number L of terms for which B′(l) can
differ from zero. For a properly conditioned observation,
the number of visibility samples (of order MN(N − 1)/2)
is much greater than that of unknowns: MN values of the
xjt plus L values of B′(l).
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The system is now overdetermined, but we have al-
ready seen that it admits at least one solution. It is not
unique, however. Indeed, if all the x′

jt
equal one value x,

Eq. (12) can be rewritten as

x e(rjkt) x
∗ =

∑
l

w(l, rjkt) x B(l) x∗

which defines a brightness solution

B′(l) = x B(l) x∗. (13)

Obviously, B′ is confined to the support of B. Actually it
is an exact but scaled replica.

Other solutions are unlikely to exist. If we should allow
the xjt to take independent values, this results in scatter-
ing of brightness away from the source to other parts of
the image. It is reasonable to conjecture that it is impos-
sible for any “wild” combination of xjt values to produce
a false brightness image that nonetheless vanishes every-
where outside the source support. Practical experience of
two decades supports this conjecture, — but I repeat that
a formal proof is lacking and the solution may not always
be robust against the effect of noise.

The above argument pinpoints the support limitation
as the agent that makes selfcal work. This idea does not
seem to have been systematically exploited before, but
Leppänen et al. (1995) advance it in discussing the con-
struction of the polarized part for a source model whose
total intensity is already available (cf. Sect. 7.2).

3.2. Calibration versus alignment

Equation (14) does not represent a complete calibration:
out of the infinite number of solutions that mutually differ
by their positive scale factors xx∗, the selfcal procedure ar-
bitrarily selects one. This non-uniqueness is fundamental.
On the basis of selfcal alone, we have no way of know-
ing what value x has. We must fix the brightness scale
afterwards by other means.

What selfcal does achieve is to reduce all the errors
xjt in the individual visibility measurements to a single
value x: it lines up the measurements, forcing them all
to conform to one common scale factor. As a result, ex-
tremely high dynamic ranges can be attained even though
the absolute brightness scale is unknown.

Strictly, the calibration is incomplete and we ought to
replace “self-calibration” by the more precise term “self-
alignment”. The distinction is a bit academic here, but
will become crucially important when we explore matrix
selfcal.

It is not immediately clear from the present dis-
cussion that the absolute sky position is also lost in
self-calibration. To establish this, one must consider the
properties of the Fourier-transform relation Eq. (12). The
effect is not directly relevant here, but it should not be
forgotten.

4. Matrix self-alignment

4.1. Self-alignment

The argument of the preceding section carries over in its
entirety to the matrix domain. We may follow through
the same steps, simply replacing all scalar gains by Jones
matrices and visibilities by coherency matrices. We must
now solve the matrix equivalent of Eq. (10):

V (rjkt) = J ′jt E
′(rjkt) J

′
kt
†.

The solution is the analogue of Eq. (13)

B′(l) = XB(l)X†. (14)

This equation is known as a congruence transformation.
I shall follow mathematicians in referring to Eq. (14) as
“the congruence transformation X”, i.e. using the name
of X as a synonym for the transformation that it effects:
The source model B′ is related to the true source B by
an unknown congruence transformation X.

Like Eq. (13) for scalar selfcal and with the same pro-
viso, this is a basic relation that any matrix self-alignment
solution must satisfy. And as for the scalar case, the ap-
pearance of this indeterminacy is fundamental and un-
avoidable. I call it the poldistortion.

Although this result is formally the same as for scalar
selfcal, it is worth some extra thought. We see that all
the, probably time-varying, errors in the observation have
given way to a single poldistortion representing a set of
unknown errors that is constant over the observation. A
similar effect occurs, e.g., in quasi-scalar interferometry,
where scalar selfcal on the “parallel” channels takes away
the temporal gain/phase variations and leaves a single,
constant XY or LR phase difference in their place. In
matrix self-alignment, the time-varying errors to be con-
verted into unknown constants include not only phases
and gains, but also any other variations, e.g. in feed pa-
rameters (mainly the “leakage” or “D” terms in the quasi-
scalar jargon), in parallactic angle (if one were not to
correct for it beforehand) and in ionospheric Faraday rota-
tion. Moreover, all this is true not only for a single obser-
vation contiguous in time, but also for a set of observations
spaced over a time interval in which the source does not
change.

A schematic of the combined self-alignment and
poldistortion elimination procedure is shown in Fig. 1.
As in scalar selfcal, we may first correct for the er-
rors that we know of. Note that our argument does
not require this; however, the actual selfcal algorithm
(Thompson et al. 1986; Perley et al. 1994) starts with
an image, to be made from the raw observations, that
must be good enough to extract a reasonable initial
source model from it. If such a model can be obtained
otherwise, e.g. from prior knowledge about the source,
the initial corrections may just as well be omitted: they
will automatically be subsumed in the corrections to be
derived in self-alignment.
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Whether or not we apply the prior corrections is likely
to affect the poldistortion in the final solution, but not
our ignorance about its value. No matter how we arrive
at a self-aligned image, we must assume that it contains
an unknown poldistortion and undertake to eliminate it.
This problem will be discussed below.

As an aside, I observe that Fourier transforming
Eq. (3) for a single dish, one obtains an equation of the
same form as Eq. (14): the self-aligned array is equivalent
to a single dish with unkown Jones matrix. This result
was derived in Paper II by a more qualitative argument.

4.2. Scattering dynamic range and polarimetric fidelity

The solutions Eqs. (13) and (14) of the selfcal/self-
alignment problem represent in-place transformations of
the brightness: a simple uniform scaling in the scalar case,
a uniform poldistortion in the matrix case. Their common
characteristic is that they do not scatter radiation out
of any point of the source into any other position in the
image. In the scalar case, the scaling being the same
for the entire image means that our image is a faithful
(although scaled) replica of the source: dynamic range is
conserved, - and it is this feature that makes selfcal such
an important and valuable tool.

In the matrix case, image fidelity and dynamic range
are no longer synonymous. Self-alignment suppresses spa-
tial scattering in the image; the residual scattering defines
to what extent weak structures remain recognisable in the
presence of strong features elsewhere in the source. The
concept of dynamic range is appropriate to describe this
effect, but its proper quantitative definition is not as ob-
vious as in the scalar case.

On top of any residual effect of scattering comes the
poldistortion that is independent of it. Even if we were to
produce a truly scatter-free image it would still misrep-
resent the source in an unknown way: as a complement
to dynamic range we must consider the question of the
polarimetric fidelity of the image.

We have no need for a formal definition of either dy-
namic range or polarimetric fidelity. What matters is that
we are dealing with two quite different and mutually in-
dependent types of error in a self-aligned image.

4.3. Example: Faraday rotation

The concepts developed above and the benefits of the ma-
trix approach can be neatly illustrated on the example of
ionospheric Faraday rotation. This rotation changes the
observed position angle of linear polarization. Over a syn-
thesis observation, it varies and this results in scattering
of linearly polarized brightness in the final image.

Corrections for the effect are based on external
data: Ionosphere models and ground- and satellite-
based measurements (Thompson et al. 1986). Often the
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Fig. 1. Flow diagram of the self-alignment and poldistortion
calibration procedure. The crux of the matter resides in the
self-alignment: it effects a split between the true coherencies
and the time-variable part of the observing errors. The price
to be paid is the insertion of an unknown constant error arte-
fact, the poldistortion, in the estimated coherencies and its
inverse in the estimated Jones matrices. To eliminate it, we
must compare these estimates with a priori instrumental and
astronomical information

results leave much to be desired. In some cases, the
external correction can be improved upon by noting
the apparent rotation of linear polarization during the
observation (A.G. de Bruyn, private communication).
One might call this Faraday self-aligment. In a similar
vein, Sakurai & Spangler (1994) used a linearly polar-
ized source to monitor temporal fine structure in the
Faraday rotation. Obviously, one can only measure and
eliminate variations in the rotation; to find the true
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position angle of linear polarization one must determine
its zero point by other means.

In the matrix approach, this adjustment of Faraday
rotation is no longer a distinct operation: it is subsumed
in the overall self-alignment process. A scatter-free im-
age results directly. The absolute rotation and position
angle of linear polarization remain undetermined: this is
now recognised as part of the poldistortion that is the un-
avoidable by-product of self-alignment. Obtaining a good
dynamic range and correct rendition of the polarization
appear as two distinct problems that must be indepen-
dently addressed.

5. The poldistortion

5.1. Polrotation and polconversion

An arbitrary square matrix X can be subjected to a polar
decomposition (Appendix B.6)

X = xHY = xY H ′

where

– x is a complex constant;
– Y is a unimodular unitary matrix (i.e. Y Y † = I and

detY = 1);
– H is a unimodular positive hermitian matrix (i.e.
H = H†, detH = 1 and Tr H > 0); so is H ′.

Applying the polar decomposition to Eq. (14) we get

B′ = xx∗H (Y BY †) H†. (15)

The positive scaling factor is the same as in scalar selfcal
and I shall further ignore it. Apart from it, B′ is derived
from B through a succession of two specific transforma-
tions.

The first is the unitary transformation Y . Its effect is
to leave the intensity unchanged (naturally, since Y IY † =
I) and to rotate the polvector in its three-dimensional
space (Appendix C.1). In quaternion notation

[ I ′ + p′ ] = [ I +Rp]

where R is a rotation operator. I call Y the polrota-
tion (transformation). The rotation and Y can be char-
acterised by a vector in polvector space, the Gibbs vector
(Appendix B.1)

1y sin η,

where y is the direction of the rotation axis and 2η the
rotation angle. In Appendix C.1 I derive the relation be-
tween the Gibbs vector and Y . Obviously, any multiple of
the Gibbs vector is an eigenvector of the transformation:
R1y = 1y.

Like the polrotation, the positive hermitian transfor-
mation H is characterised by a vector

1h sinh γ

that may also be called a Gibbs vector (Appendix C.4).
The transformation exchanges brightness between the in-
tensity and that component of the polvector that is paral-
lel to h; any perpendicular component is an eigenvector.
I call H the polconversion. There is no mutual conver-
sion between polvector components: The transformation
is rotation-free.

We may summarise the above by stating that the self-
aligned source model B′ is related to the true brighnessB
by a transformation that is the product of a polrotation,
a polconversion and a positive scale factor.

The poldistortion X is far more complicated than a
simple scale error. Polrotation and polconversion each con-
tain three unknown parameters (the cartesian components
of their Gibbs vectors) which, together with the scale fac-
tor, make a total of seven. This is the same number that
Paper II arrived at through a more elementary analysis.
H and Y being unimodular

detB ≡ I2 − p2 (16)

is, apart from the scaling of the entire image, an invariant
of the poldistortion transformation.

5.2. Controlling the poldistortion

With self-alignment only the first half of the calibration
job is done. To eliminate the poldistortion, we must bring
other information to bear on our problem. It may take
the form of either prior knowledge or additional mea-
surements; both may be used either to constrain the
self-alignment algorithm so as to (partly) suppress the
poldistortion, or to remove the poldistortion X after-
wards.

For example, if we have reason to believe that our
source field is unpolarized, we can impose this condition
on our image and source model, as in Sect. 6.1 below.
Alternatively, we may allow self-alignment to produce a
polarized image and determine and remove the polcon-
version afterwards, on the basis that in the proper image
certain sources must be unpolarized.

Apart from the image B′, self-alignment also yields
estimates J ′

j
= J jX

−1 of the antenna Jones matrices.
Comparing these with what we know about the true val-
ues gives us another handle on X.

6. Polrotation and intensity self-alignment

In this section I briefly review Paper II from our newly ac-
quired viewpoint, providing proofs for its assertions and
extending them. A further extension, to the case of het-
erogenous arrays, will follow later (Sect. 8). Here I will
show how the use of an intensity calibrator suppresses pol-
conversion and how the remaining polrotation can then be
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determined. The more difficult problem of eliminating pol-
distortion without recourse to an intensity calibrator will
be taken up in Sects. 7.2 and 9.

6.1. Intensity self-alignment

The usual first step is to observe an unpolarized source
and self-align it. Because the source has intensity only, I
call this intensity self-alignment.

The brightness matrixB reduces to a positive multiple
of the identity matrix I, the scale factor being the inten-
sity. Imposing the same form on our solution, we find that

B′(l)I = X B(l)I X†. (17)

A solution B′ can only exist if X is a multiple cY of a
matrix Y for which

Y Y † = I,

i.e. Y is unitary. c is the scale factor discussed before and
we may ignore it.

What we see, then, is that the poldistortion is re-
duced to a polrotation, Y . Our knowledge that the source
is unpolarized has completely suppressed the polconver-
sion factor H of Eq. (15). One of the central results of
Paper II is that the remaining error (which we have now
recognised as a polrotation) is characterised by three un-
known real parameters. I have already confirmed this
assertion in Sect. 5.1.

The arbitrary rotation that Y represents can be fac-
tored into the product of three mutually orthogonal ro-
tations (Korn & Korn 1961). Choosing for these the base
rotations of Appendix C.2 we have:

Y = Y q(φ)Y u(ε)Y v(θ) (18)

=
(

exp iφ 0
0 exp−iφ

)(
cos ε i sin ε
i sin ε cos ε

)(
cos θ sin θ
− sin θ cos θ

)
.

This is Eq. (27) of Paper II, revised to represent our new
insight into what it actually means: The order of the fac-
tors reflects the physics of the instrument as discussed in
Paper I and the variables have been renamed accordingly.
The last term, which represents the first element in the
signal path, corresponds to an unknown geometric rota-
tion θ of the zero point from which the orientation of the
feeds is measured; likewise, the middle term represents
an unknown zero-point shift ε of the ellipticity scale. The
leading term is the unknown phase difference 2φ between
the two subsets (X and Y or L andR) of receiver channels.
(For circular feeds, the equation takes a different form, see
Appendix C.3).

I add a new proposition. Rotating the polvector does
not change its length: this means that an intensity-aligned
instrument correctly measures the degree of polarization,
even though the orientation of the polvector cannot be
determined. This provides a simple and powerful way to
detect strongly polarized sources in generally weakly po-
larized fields, e.g. in surveys.

6.2. Constraining the polrotation

To eliminate the polrotation Y , Paper II proposes to ob-
serve calibrators whose polarization is known. It states
that two such observations are necessary. We can now sup-
ply the proof that was missing.

Let the Stokes brightness of the first source be
B = [ I + p ].
We require the observed brightness B′ to be the same.
This limits the possible range of polrotations Y to those
that conserve p, i.e. those unitary transformations that
have p as their rotation axis; but it leaves the rotation
angle free. To constrain it as well, we do indeed need a
second polarized source whose polvector is not collinear
with p.

6.3. Imposing the nominal feed characteristics

For well designed and constructed feeds, the orientations
and ellipticities are quite accurately known. We may com-
pare this prior knowledge with the polrotated Jones matri-
ces J jX−1 to estimateX . It is reasonable to propose that
the feed errors are randomly distributed with a zero aver-
age. In this way the zero-point offsets, Y u(ε) and Y v(θ)
in Eq. (18), can be eliminated. This method is discussed
in Paper II and I shall return to it and to the elimination
of the Y q(φ) term in Sect. 8.2.

6.4. Calibrating polarized source fields

Elimination of poldistortion in an unpolarized field is in
itself not particularly useful but, provided the instrument
is stable enough, we may transfer the result to an ob-
servation of an unknown field. In this case, instrumental
stability limits the accuracy of the final calibration, no
matter what the theoretical potential is of the calibration
methods employed.

A better option is to sidestep the problem of drifts by
using supposedly unpolarized reference sources in the ob-
served field itself. The reference can be a strong foregound
source (component). At the opposite end, most fields con-
tain many cosmic background sources whose polarization,
if present at all, must be zero on the average. By analysing
the source model in either case, one should be able to es-
timate the polconversion and correct for it.

7. Quasi-scalar methods

It is interesting to see how the concepts revealed by the
above analysis appear in the usual quasi-scalar methods of
polarization calibration. Unlike in the rest of this paper,
Stokes parameters in this section represent visibilities.

It is assumed that the feed errors and degree of po-
larization are both small; authors typically state a few
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percent as the upper limit. It is further required that all
antennas have the same type of feed. In the interferometer
equation Eq. (2), second-order products of order 10−3 are
dropped and errors at a few times this level are accepted.

The linearised equations can be found in Paper II
(and in almost every paper on polarimetric calibration,
e.g. Thompson et al. (1986), Perley et al. (1994) and the
papers quoted in Sect. 7.2). I show them here in an elemen-
tary form for feeds with left (L) and right (R) circularly-
polarized receptors:

I ′
jkt

+ V ′
jkt

= gR
jt
gR∗
kt

(Ijkt + Vjkt)

I ′
jkt

− V ′
jkt

= gL
jt
gL∗
kt

(Ijkt − Vjkt)
Q′
jkt

+ iU ′
jkt

= gR
jt
gL∗
kt

(Qjkt + iUjkt +DjkI)

Q′
jkt
− iU ′

jkt
= gL

jt
gR∗
kt

(Qjkt − iUjkt +DkjI).

(19)

(For linearly polarized feeds, Q, U and V must be cycli-
cally interchanged in these equations and in the following
discussion, cf. Papers I and II.)

7.1. Intensity calibration

The starting point is again an intensity calibration. The
procedure is discussed at length in Paper II. The case
where such calibrators are not available has been taken
up only recently (cf. Sect. 7.2). In Paper II a point source
is assumed, but this is not necessary.

Usually V ′ is assumed to be zero. Scalar selfcal is ap-
plied to the first two lines of Eq. (19) to obtain a good I ′

image and complex R and L antenna-channel gains, each
with an unknown phase.

In the second pair of equations, the difference between
these phases enters through the g and g∗ factors; its effect
is a polrotation in the Q,U plane of polvector space. The
trailing terms in the equations describe the leakage from
I to Q and U : a polconversion. As a consequence of the
linearisation, polrotation and polconversion appear in a
sum rather than a product.

For an unpolarized source, the leakage terms can be
measured per interferometer because Q and U are zero.
The Q,U -plane polrotation can only be eliminated by a
measurement of some sort. Several approaches, each with
their own uncertainties, are discussed in Paper II.

As with the matrix technique, unpolarized foreground
or background sources can be used as in-field calibrators.
An example is the observation by Wardle et al. (1998) of
weak circular polarization in a quasar whose strong core
is assumed to be unpolarized.

7.2. Calibration without an intensity calibrator

A quite serious problem arises if there are no unpolar-
ized sources that can serve as a reference. This situation
is actually occuring in VLBI: observed fields are so small

that they donot contain any background sources to speak
of, and sources strong enough to serve as calibrators (ei-
ther in the target field or elsewhere) tend to be relatively
strongly polarized at VLBI resolutions, particularly at
the higher frequencies. For these reasons, VLBI observers
(Cotton 1993; Roberts et al. 1994; Leppänen et al. 1995)
have pioneered quasi-scalar polarization calibration with-
out the use of an intensity calibrator.

The basic idea in all these papers is to exploit the effect
of parallactic-angle variations in alt-az antennas to distin-
guish the leakage terms in Eq. (19) from the true source
visibilities. In discussing this method, I assume that the
parallactic-angle rotation is corrected for beforehand: thus
Eq. (19) refers to the visibities in sky coordinates and the
leakage terms include the inverse of the rotation.

Cotton (1983) mentions the method without giving
details.

Roberts et al. (1994) consider two types of calibrator:
either an unpolarized one that may be resolved (i.e. my
case of an intensity calibrator) or an unresolved one that
may be polarized. In the latter case, the trueQ and U visi-
bilities in Eq. (19) are constants. The paper illustrates the
difference between them and the rotating leakage terms
graphically for a couple of interferometers. The leakage
terms and the visibilities are well separable by a model fit,
provided the parallactic angles cover a sufficiently broad
range.

Leppänen et al. (1995) use the empty-sky principle of
Sects. 3.1 and 4 to separate true linear source polarization
from leakage effects: the true polarized source brightness
is necessarily confined1 to the support of the total inten-
sity, and this provides a strong constraint that the rotated
leakage terms have difficulty satisfying. A polarized-source
model obeying the constraint is used to estimate the leak-
age terms and the procedure can be iterated.

The authors introduce the concept of a “leakage beam”
to characterise the transfer of brightness from total to po-
larized brightness. Its value at the origin represents the
polconversion, its sidelobes a polconverted spatial scatter-
ing: due to the fragmented character of the quasi-scalar
method, polconversion and scattering are not neatly sep-
arated and the latter is not completely suppressed. In a
simulation Leppänen et al. (1995) find the leakage beam
to peak at a few .1% close to the origin, in accord with
the accuracy expected under quasi-scalar assumptions.

Unlike Roberts et al. (1994), these authors make no
assumptions on the source. In the more comprehensive
perspective of matrix theory I doubt that the information
they do use is sufficient to suppress polconversion and ob-
tain a unique solution, — although it may be that the
quasi-scalar assumptions constrain it well enough for as-
trophysically acceptable image fidelity.

1 In Paper I we discussed situations in interferometry where
this is not the case. These are unlikely to occur in VLBI.
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8. Heterogeneous arrays

Homogenoeus arrays, i.e. having all identical feeds, have
been a natural first choice for obvious engineering rea-
sons and are also required by the quasi-scalar approach.
Having removed the latter restriction, we can now take a
fresh look.

8.1. Coupling of receiver phases and feed errors

Consider the case of an intensity calibrator and perfect
feeds represented by known unitary Jones matrices F j .
(This assumption is justified in Appendix B.3. The ar-
gument becomes slightly more complicated for imperfect
feeds, but leads to the same conclusion.) After inten-
sity self-alignment and imposition of our prior knowledge
about the feeds, the only error remaining is the receiver
phase-difference term of Eq. (18), so the interferometer
equation becomes

Y q(φj)F j F
†
k
Y q(−φk) = F j F

†
k

in which both Y q terms are diagonal matrices. This equa-
tion must hold for all interferometers, which is possible in
only two ways2:

– For a homogeneous array, F j = F k = F and FF † = I.
This is the conventional case discussed in Paper II and
Sect. 6.3. The one thing that our derivation adds is
that it pertains generally to homogeneous arrays with
any feed type;

– For a heterogeneous array with φj = φk = 0.

The latter solution is new: in a heterogeneous array with
perfectly known feeds, this knowledge alone suffices to cal-
ibrate all receiver phases without an additional measure-
ment. In reality we may at best assume our feed descrip-
tions to be correct on the average, just as for the homoge-
neous array. The solutions that we find for the individual
feed characteristics as well as for the receiver phases will
then be imperfect, and perhaps more sensitive to errors
in our a priori assumptions and to system noise than in
the homogeneous case; this is a matter that needs further
study.

The possibility of a priori phase alignment is surprising
at first sight. Yet there are several good intuitive reasons
to accept it:

Most fundamentally, the nominal receptor characteris-
tics in the heterogeneous case are arbitrarily distributed.
There is no natural way to split them into two disjoint
groups between which an asymmetry such as the phase
difference might arise. The only way out is for the differ-
ence not to exist.

2 There are combinations F j and F †
k

whose product equals
Y q(ξ), producing another type of solution for a single interfer-
ometer. Such solutions are not possible, however, for a triangle
of interferometers as required for self-alignment.

Another viewpoint is that the homogeneous case is, in
physical terms, a degenerate one. The degeneracy results
in a decoupling of the feed and phase characteristics which
are normally coupled. Mathematically, this decoupling is
represented by the product F jF

†
k

reducing to the value I.
A third viewpoint is that a set of identical feeds defines

a preferred direction in polvector space, viz. that of the
polvectors to which the two receptors are matched (e.g.
the V axis for circular feeds). This results in an asymme-
try in the characteristics of the instrument that is directly
related to the phase-difference problem. “Randomised”
feed characteristics destroy this preferential direction: the
phase difference evaporates and all polarizations can be
measured equally well, — or equally poorly.

An array having altaz mounts is heterogeneous in a
sense, since in the course of an observation its feed ori-
entations relative to the source assume a range of values.
Yet at any instant it is homogeneous and consequently
its long-term heterogeneity does not help in removing the
phase error and associated polrotation. As we have seen, it
may help in controlling the polconversion (Sect. 7.2) when
we have no intensity calibrators.

The only historical example of a truly heterogeneous
array is that of the Westerbork Synthesis Radio Telescope
(WSRT) in its “crossed-dipole” configuration. Weiler
(1973) analysed this system to show that, in the quasi-
scalar approximation, it can be fully calibrated through
observations of only one intensity calibrator. His system
is too different from modern ones to relate his analysis
directly to ours. Yet his work pointed to the potential
of heterogeneous arrays as long as a quarter century ago
and provided a major motivation for carrying the present
investigation to completion.

8.2. Minimising the feed errors

The method of Sect. 6.3 for dealing with imperfect feeds is
to assume that they are correct on the average. For a het-
erogeneous array, we may use the equivalent requirement
that the sum of the receptor errors squared be minimised.

Following Paper I, we model the antenna Jones matrix
in terms of the nominal feed F j (C in Paper I), a feed er-
rorDj and the receiver-gainGj (a diagonal matrix). After
intensity self-alignment we then have

J ′j = GjDj F j Y (20)

and hence we consider values D′
j
, G′

j
and Y ′ that satisfy

this equation, or

D′j = G′j
−1 J ′j Y

′−1F−1
j . (21)

For an ideal system, the Dj equal I, so we define our best
guess at the polrotation Y ′ as the one that minimises the
sum of variances (Appendix A.5)∑
j

Var (D′j − I) =
∑
j

Var (G′j
−1 J ′j Y

′−1F−1
j − I),
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given the self-aligned Jones matrices J ′
j

and the nominal
feed matrices F j , and under the condition that the gains
G′
j

are diagonal and Y ′ is unitary.
It may not be obvious that this condition leads to

a unique solution. Simulations (Appendix D) using the
MATLAB (1997) programming environment show that
this is indeed the case. Moreover, the system of equations
becomes singular for a homogeneous array; something of
this sort was to be expected because of the degeneracy
discussed in Sect. 8.1.

9. The general polconversion problem

As long as we can rely on an intensity calibration of some
sort to suppress polconversion, both the quasi-scalar and
matrix methods provide for elimination of the polrota-
tion. The most difficult problem arises when no intensity
calibrators are available. The preceding sections provide
several leads on how this problem might be approached. I
now consider it further.

9.1. Use of a priori receiver characteristics

In the absence of poldistortion, prior knowledge about the
instrument can be used to optimise the polrotation. An ob-
vious question now is whether that method can take care
of polconversion as well. I have not succeeded in making a
proper analysis. It is informative, however, to look again at
the heterogeneous array, in which we have seen that prior
knowledge about the feeds alone suffices to eliminate all
polrotation, after intensity self-alignment had suppressed
polconversion.

In an attempt to eliminate the entire poldistortion
without recourse to an intensity calibrator, I modified the
least-squares minimisation method of Sect. 8.2 by remov-
ing the restriction thatX be unitary. It appears that there
is still a unique solution, but it is not the correct one: The
algorithm transforms part of the polconversion factor H
in the poldistortionX through the feeds into spurious am-
plitude gains in the receiver. It has the freedom to do so
because the amplitude-gain matrices are also positive her-
mitian. To suppress this effect, we need additional prior
knowledge, e.g. about those gains.

This example suffices to demonstrate that, if we want
to control polconversion by applying prior instrumental
knowledge, we need more of such knowledge than to con-
trol polrotation. Undoubtedly, observers will find ways
to reproduce with full-fledged matrix self-alignment the
polarimetric fidelity now obtainable with the linearised
approximation. Whether matrix theory will alow us to
progress any further remains to be seen.

9.2. Maximum entropy

A different approach might be to apply some statistical
optimisation criterion representing prior assumptions on
the source. It has been suggested that the maximum-
entropy (ME) method can also be applied in polarimetric
imaging (Ponsonby 1973; Narayan & Nityananda 1986;
Sault et al. 1999). The quantity proposed for maximisa-
tion is the integral over the image of the product of the
eigenvalues of the brightness matrix.

This product equals the value of the determinant
(Eq. (16)), detB = I2 − p2. Physically this makes some
sense: indeed, maximising it is similar to maximising the
unpolarized (and therefore most “disorderly”) brightness
I − |p|.

However, we have seen that detB is invariant un-
der poldistortion. So the ME algorithm must be indif-
ferent to it: out of many possible solutions it will arbi-
trarily select one, with an unknown poldistortion, — just
as self-alignment does. For the polrotation this is obvious,
because the ME criterion provides no clue as to the ori-
entation of the polvector. What my analysis shows is that
it does not provide a handle on the polconversion either.

10. Conclusion

10.1. Comparison of the quasi-scalar and matrix
approaches

Sooner or later, the matrix formulation is bound to su-
persede the scalar one as the basis for radio interfer-
ometry and aperture synthesis: As I have argued in the
Introduction, quasi-scalar theory and its first-order ac-
counting for polarization effects are approaching the limits
of their applicability. To proceed beyond these limits, one
must embrace the matrix paradigm.

In Table 2 I compare the quasi-scalar and matrix
methods as they stand. Due to the difference between the
two approaches, the comparison is not always straightfor-
ward, but the table does bring out the important differ-
ences. In the longer term, the disadvantages of the matrix
method may disappear as the practical knowledge and the
ingenuity of observers are brought to bear upon it.

The linearising assumptions limit the validity of the
quasi-scalar approach. It is not clear to me whether, within
these limits, linearisation helps to constrain the poldis-
tortion. Clearly, if the degree of polarization is assumed
to be small in the source and found to be small in the
image, polconversion must be small as well, but I have
not succeeded in casting this argument in a convincing
mathematical form.

10.2. Results and prospects

Use of a 2 × 2 matrix to represent the coherency results
in an analysis whose form is an exact replica of the scalar
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Table 2. Comparison of the properties of quasi-scalar intensity selfcal versus matrix self-alignment, both with inclusion of the
subsequent poldistortion elimination step

Quasi-scalar Matrix

Small-error/weak-polarization approximation. Exact representation.

Homogeneous arrays required. Arbitrary arrays allowed.

Fragmented stepwise self-alignment, treating successive
error types in mutually isolated procedures.
Coupling may be introduced through iteration.

Self-alignment includes all errors in one procedure.

Lack of overall perspective obscures view of what actually
happens. Scattering and poldistortion intertwined.

Holistic perspective, individual effects clearly separated and
identifiable: Alignment, dynamic range, scattering,
poldistortion, polconversion, polrotation.

Faraday rotation to be externally calibrated prior to
calibrating polrotation.

Faraday-rotation variations absorbed in self-alignment.
One overall rotation to be calibrated externally.

Due to intermixing of various effects dynamic range cannot
be clearly assessed.

Dynamic range strictly defined in self-alignment, should be
comparable to that in scalar selfcal on unpolarized sources.

Second-order effects produce nasty artefacts:
(Q,U) ⇒ I “inverse leakage” shows up as interferometer-
based errors in the I, V selfcal (Massi et al. 1996).

All higher-order effects are properly accounted for.

Intensity selfcal measures leakage terms absolutely
per interferometer.

Leakage terms absorbed in antenna Jones matrices derived
in self-alignent.

Intensity calibration suppresses polconversion through
determination of leakage terms.

Intensity self-alignment suppresses polconversion directly.

Two axes of polrotation suppressed through
determination of leakage terms.

Two axes of polrotation suppressed through least-squares fit
of feed errors.

Homogeneous array: Phase difference representing third axis of polrotation must be measured

Heterogeneous array: Intractable Heterogeneous array: Phase difference does not exist as an
independent term. It is coupled to the feed parameters
and the feed-error fit takes care of it.

one. Since the algebra of matrices follows almost the same
rules as that of scalars, many expressions of scalar inter-
ferometry remain valid when we reinterpret the variables
as matrices. In this respect, the matrix representation of
coherency turns out to be preferable over the vector form
of Paper I. The close analogy allows us to retain most
of our familiar ways of thinking and continue to reap the
fruits of half a century of theoretical and instrumental
developments.

There is one important exception to the conformity:
matrix multiplication is non-commutative. This means
that factors in a multiple product cannot be arbitrarily
merged; for example, the factors Y and Y † in Eq. (17)
donot cancel, even though their product equals I. Non-
commutativity together with the fourfold content of Jones
and coherency matrices gives rise to important effects that
have no scalar counterpart.

The crux of these is that the matrix analogue of self-
calibration fails to actually calibrate but only aligns an

observation. The indeterminacy that remains is the ma-
trix analogue of the unknown scale factor in scalar selfcal.
It entails, in addition to a similar scale factor, an unknown
transformation of the brightness distribution: the poldis-
tortion.

Further analysis showed that the latter is the product
of a. a polrotation of the Stokes polvector (Q,U, V ) in its
three-dimensional vector space; and b. a polconversion be-
tween this polvector and Stokes I, the total brightness.
Both of these are in-place transformations: Like scalar
selfcal for a scalar (i.e. unpolarized) source, matrix self-
alignment should be highly effective in suppressing spatial
scattering of the matrix brightness and thereby produce
images with a high dynamic range.

Methods for eliminating the poldistortion follow the
pattern established in quasi-scalar polarimetry:

Intensity self-alignment on unpolarized reference
sources suppresses the polconversion. This has an in-
teresting consequence that had not been recognised
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before. Indeed, the remaining polrotation leaves both the
total intensity and the length of the polvector invariant:
although not fully calibrated, an intensity-aligned array
measures the degree of polarization correctly. As in the
quasi-scalar method, prior knowledge of the average
feed characteristics can be applied to suppress two
cartesian components of the polrotation. In conventional
homogeneous arrays, a (phase) measurement is necessary
to eliminate the remaining one.

Situations in which no unpolarized reference sources
can be used are problematic in either context. In the quasi-
scalar context, the variation of parallactic angle in an alt-
az-mounted antenna has been advanced as a means to
separate poldistortion from true source structure; it seems
to provide for at least a partial solution. One may hope
that it can be put to good use in matrix form as well, but
this remains to be shown.

In addition to shedding a different light on polarimet-
ric calibration, the matrix formalism allows us to consider
heterogeneous arrays. I see several possible applications:

– Full freedom in the choice of feeds may become im-
portant for a new generation of arrays composed of
stationary dipole elements;

– In a heterogeneous array, the functional form of the
parallactic-angle effect may be different for every an-
tenna. This may enhance its usefulness in separating
source structure and polconversion;

– Most VLBI observations are made with ad-hoc com-
binations of antennas that were independently built.
Their polarimetric quality should greatly benefit from
the replacement of makeshift leaky ad-hoc feeds with
the properly designed native feeds of the participating
telescopes.

An interesting property of a heterogeneous array is that
receiver phase is coupled to the feed parameters in such
a way that aligning the latter to their nominal average
has the effect of aligning the phases at the same time. No
additional phase measurement is needed.

To become a practical reality, matrix-based interferom-
etry demands an entirely new set of matrix-based com-
puter programs. These must incorporate procedures for
matrix self-alignment and the treatment of polconver-
sion and polrotation, along with collateral ones e.g. for
the extraction of polarized source models. Having en-
dorsed Paper I as the basis of its data and processing
model, AIPS++ (1998) is the obvious environment in
which such software can be developed. A project is under-
way at NFRA using a special observation made with the
Westerbork Telescope in a heterogeneous configuration.

Handicapped by a scalar foundation that is fundamen-
tally incorrect, radio astronomy has been remarkably suc-
cessful in producing meaningful results. Now at last, we
can transplant our accumulated understanding and expe-
rience into a conceptual environment that does full justice
to the basic vector nature of electromagnetic radiation,

without sacrificing what we have learnt in the scalar do-
main. What remains to be seen is not if, but only when
the transition will actually happen.
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11. Appendix: Mathematical theory

A. Quaternion algebra

Quaternions are not part of the standard mathematical
toolkit of physicists and engineers. They do find appli-
cations in the practical calculation of rotations, e.g. in
computer animation, but the relevant texts concentrate
on that particular application (e.g. Kuipers 1998; see also
many entries on the World-Wide Web). In scientific text-
books (e.g. Cornbleet 1976; Korn & Korn 1961) one may
find brief references to them but hardly anything more.
Hestenes (1986) mentions them as a variant of the con-
cepts of bivectors and spinors that have a more central
place in his text, and most of the concepts that we need
are to be found there in one form or another; however, his
work is not very accessible as a quick reference. For lack of
better, I give here a brief summary of quaternion theory
in the form in which I use it.

In the algebraic view, the vector part of a quaternion
is a generalisation of the imaginary part of a complex
number; correspondingly, the scalar and vector compo-
nents are real and the square of a unit vector equals −1.
Hestenes’ version of quaternions emphasises the geometri-
cal viewpoint that also underlies my work; it is then more
appropriate for a unit vector squared to equal +1, which
is achieved by inserting factors i =

√
−1 in the Pauli-

matrix definitions. Another departure from the algebraic
approach is that we explicitly allow the coefficients to be
complex. The reader consulting literature on quaternions
should be aware of these possible differences.

Another connection that looks interesting is that with
the theory of special relativity, in which four-vectors ap-
pear with three spatial and one temporal component.
The discussion of the Lorentz transformation by Feynman
et al. (1975) shows a close formal analogy with my poldis-
tortions (which was recently also noted by Britton 2000),
but I have found no useful inspiration in it.

I derive here the algebraic rules that quaternions must
follow to make them behave in the same way as the equiv-
alent matrices.

Once we have these rules in place we may proclaim, in
mathematical language, that the multiplicative quaternion
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Table 3. Algebraic entities and their notation as used in this paper

Entity Vector 2× 2 Matrix Stokes vector Quaternion

Coherency ejk = ej ⊗ e∗k Ejk = eje
†
k

sjk=

 1 0 0 1
1 0 0 −1
0 1 1 0
0 −i i 0

ejk

General element

 a11

a12

a21

a22

 A =

(
a11 a12

a21 a22

)
=

(
a+ a1 a2 − ia3

a2 + ia3 a− a1

)


a
- -
a1

a2

a3

 =

(
a
- -
a

)
[a+ a],

a ≡
(
a1 a2 a3

)
Scalar part intensity a [a+ 0] ≡ [a] ≡ a

Vector part polvector a [0 + a] ≡ [a] 6≡ a
Base for vector part Q,U,V, Eq. (7) 1q,1u,1v, Eq. (28) [1q], [1u], [1v]

Alternate base V,Q,U, Eq. (30) 1v,1q,1u [1v], [1q], [1u]

Unit element I [1] = 1

Conjugation A
†

(
a∗
- -
a
∗

)
[a∗ + a∗]

Multiplication AB Eq. (25)

Unimodular unitary
matrix

Y cos η + i1y sin η

Unimodular positive
hermitian matrix

H cosh γ + 1h sinh γ

group and the multiplicative group of 2 × 2 matrices are
isomorphous (Korn & Korn 1961). In simpler terms, we
may consider “2 × 2 matrix” and “quaternion” as names
for the same object in two different languages, or even as
synonyms. Such phrases as “the scalar and vector parts of
a matrix” will then make sense.

In Table 3 I present a dictionary for translating from
matrix to quaternion language.

A.1. Addition

I start from the matrix/quaternion equivalence of
Sect. 2.5:

A = [ a+ a ] ≡ [ a0 + (a1, a2, a3) ].

The use of the “+” sign is justified by the expansion that
the right-hand side actually represents:

A = a0 I + a1 Q + a2 U + a3 V. (22)

The addition rules for quaternions are the obvious ones as
can be shown in the same way.

A.2. Transposition and conjugation

The definition of the vector part of a quaternion does not
specify whether it is a row or column vector and the same
is true for the dot and cross products that we will need
later.

Since the Pauli matrices are hermitian, it follows that

A† = [ a∗ + a∗ ]. (23)

A.3. Multiplication

The following identities follow directly from the definitions
Eq. (7) of the Pauli matrices:

Q† = Q , U† = U , V† = V
Q Q = UU = VV = I
Q U = −UQ = iV
UV = −VU = iQ
V Q = −QV = iU.

(24)

Now consider the product

AB = [ a+ a ] [ b+ b ].
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Writing out the expansions Eq. (22) for A and B and
multiplying term by term using Eq. (24), one finds the
multiplication rule

[ a+ a ] [ b+ b ] = [ (ab+ a·b) + (ab+ ba+ ia× b) ]. (25)

An important corrolary is that [ 1x ]2 = [ 1 ] for any unit
vector 1x.

Like the multiplication of the equivalent matrices,
quaternion multiplication is generally non-commutative.
An exception occurs when a and b are collinear so that
a×b = 0. In that case I also call the matrices/quaternions
[ a+ a ] and [ b+ b ] collinear.

Also note that the product of two real quaternions is
not real unless they commute. The corresponding matrix
property is that the product of two hermitian matrices is
generally non-hermitian.

A.4. Scalars as quaternions

The scalar quaternion [ a ] represents the 2× 2 matrix aI,
and since I I = I, both the addition and the multiplica-
tion rule for scalar quaternions are the same as those for
scalars. We may consider scalars as a subset of the quater-
nions:

aI ≡ [ a ] ≡ a.

A.5. Determinant, trace and variance

Every familiar property of a 2×2 matrix has a quaternion
counterpart. Thus a quaternion has a determinant

det[ a+ a ] = a2 − a2 (26)

and detAB = detAdetB. A unimodular ma-
trix/quaternion is one whose determinant equals 1.

The trace is

Tr [ a+ a ] = 2a

Tr A = Tr AT, Tr (A+A†) = 2Tr Re A, and Tr (AB) =
Tr (BA). The coefficients of the Pauli matrices in Eq. (7)
are given by expressions such as

a0 = 1
2Tr AI; a1 = 1

2Tr AQ; etc.

The trace is invariant under a unitary transformation:

Tr (Y AY †) = Tr A.

I define the variance of a matrix as the sum of the
moduli squared of its elements. It is the square of the
“Frobenius norm” (Lancaster & Tismenetsky 1985) and
given by

Var A = Tr (AA∗) = aa∗ + a · a∗ (27)

Var (A−B) may be used as a measure of “how different”
A and B are. It is readily shown that, like the trace, the
variance is also invariant under unitary transformations.

A.6. Coordinate systems

The vector parts of quaternions form a three-dimensional
quaternion-vector space. It is convenient to choose the co-
ordinates in this space in accordance with our definition
of the Stokes quaternion. When we express the electric
field vectors in geometric xy coordinates, and use the con-
ventional definition of the Stokes vector (cf. Paper I), the
definition Eq. (6) follows. The corresponding base vectors
are the quaternion vectors corresponding to the Pauli ma-
trices Q, U and V:

1q =
(

1, 0, 0
)
, 1u =

(
0, 1, 0

)
, 1v =

(
0, 0, 1

)
. (28)

Analogously to Eq. (24) we have

[1q] [1u] = −[1u] [1q] = i [1v] etc. (29)

If, instead, we use circular rl coordinates to describe
the electric field, this results in a cyclic permutation of
the coordinate axes (Paper I) and instead of Eq. (22) we
have

B = a I + a1 V + a2 Q + a3 U. (30)

This form is convenient for analysing systems with nomi-
nally circular feeds.

B. Special matrices

B.1. Unitary matrices

A 2 × 2 matrix Y is unitary if Y Y † = I. To derive its
quaternion form I cast the most general quaternion [ a+a ]
in the form

Y = eiξ [ y + x+ iy ] , y,x,y real. (31)

I now expand Y Y † in quaternion form and require that
it equal I:

Y Y † = [ y + x+ iy ][ y + x− iy ]
= [ y2 + x2 + y2 + 2(yx+ x× y) ] = [ 1 ].

Since x × y is perpendicular to x, the vector part in the
product can vanish only if x = 0. It follows that

y2 + y2 = 1.

Now, if Y is to be unimodular, ξ must be 0. Hence we
may rewrite Eq. (31) as

Y = [ cos η + i1y sin η ] (32)

Y is completely defined by the three real components of
its Gibbs vector (Korn & Korn 1961) 1y sin η.

Since 12
y = 1, it can be shown from the Taylor-series

expansions of the cosine and sine functions that

cos[ 1y ]η = cos η, sin[ 1y ]η = [ 1y ] sin η

and hence

Y = exp i [ 1yη ].

For small η, we may replace the exponential by its first-
order approximation. The value of η then provides a direct
measure for the deviation of Y from I.
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B.2. Complex linear polarized brightness

In the quasi-linear treatment of polarization, the linearly
polarized visibility and brightness frequently appear in the
form of the complex variableQ+iU , cf. (Eq. 19). This form
is directly related to the quaternion exponential above.

In particular, for a unit vector in the q,u plane of
quaternion-vector space

[ 1q cosφ+ 1u sinφ ] = [ 1q ] [ cosφ− i1v sinφ ]
= [ 1q ] exp−i [ 1v ]φ.

B.3. Unitary Jones matrices and perfect feeds

In Sect. 8 unitary Jones matrices were postulated. Since
Y IY † = I, a feed with such a matrix transfers all
incident radiation to its output: it must be loss-free
and matched at its in- and outputs. Matching implies
that either receptor must absorb all the radiation that
the other one does not: the receptors must be of oppo-
site polarizations (Born & Wolf 1964; Cornbleet 1976;
Thompson et al. 1986).

This is the way feeds for radio telescopes are normally
designed. Note, however, that e.g. a stationary pair of
crossed dipole receptors is not matched to radiation from
an arbitrary direction. Designs for arrays of phased dipoles
will have to take the problems ensuring into account.

B.4. Positive hermitian matrices

H is hermitian or self-adjoint if H = H†; since the Pauli
matrices are hermitian, the quaternion form H = [h+h ]
of a hermitian 2 × 2 matrix is real, cf. Eq. (23). A
2 × 2 matrix is positive if its eigenvalues are both posi-
tive. An equivalent condition is that both its trace and its
determinant are positive.

For the matrix to be positive hermitian and
unimodular

h > 0; h2 − h2 = 1.

We may then write it as

H = coshγ + [ 1h ] sinh γ ≡ exp [ 1h ] γ. (33)

It is completely defined by the three real components of
1h sinh γ which I will also call a Gibbs vector. It is readily
shown from Eq. (33) that

H2 = exp [ 1h ] 2γ. (34)

B.5. Matrix square root

We will need the positive hermitian square root H of the
product MM† for an arbitrary 2× 2 matrix M . Let

M = [m+m ].

Then

A = MM † = [mm∗ +m ·m∗ + 2Remm ]

is readily shown to be positive hermitian. We now seek to
find a positive hermitian matrix H such that HH = A,
that is

h2 + h2 = a; 2hh = a. (35)

Conceptually the simplest way to find the root is through
Eqs. (33) and (34). Computationally it is more efficient to
solve the quadratic equation that Eq. (35) represents. Out
of four possible solutions, the positive definite one is

H =
√

( a+
√
a2 − a2 )/2

+[ 1a ]
√

( a−
√
a2 − a2 )/2.

B.6. Polar decomposition

An arbitrary matrix X can be represented
(Lancaster & Tismenetsky 1985) as the product of a
unitary and a positive hermitian matrix:

X = HY with Y Y † = I and H† = H .

This is the matrix/quaternion analogue of the polar form
of a complex scalar. Defining

x =
√

detX

we may rewrite the decomposition as

X = xHY

where H and Y are now unimodular. To find H we form
the product

(xx∗)−1XX† = HY Y †H† = HH

and find H by taking the positive hermitian square root.

C. Congruence transformations

The congruence transformation is defined in Eqs. (3) and
(14). Substituting the polar decomposition for X we get
Eq. (15):

B′ = xx∗H (Y BY †) H†.

Since H and Y are unimodular, detB′ = (xx∗)2 detB
or, apart from the scale factor

b′2 − b′2 = b2 − b2.

(In the main text of this paper, b and b are written as I
and p, respectively, to emphasize the physical interpreta-
tion of B as a brightness.)

The effect of the component unitary and positive her-
mitian transformations can now be analysed by replacing
B, Y and H with their equivalent quaternions and car-
rying out the multiplications:
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C.1. Unitary transformations

Consider the most general unitary transformation

[ b′ + b′‖ + b′⊥ ]

= eiψ[ cos η+i1y sin η ] [ b+b‖+b⊥ ] e−iψ[ cos η−i1y sin η ]

where b‖ and b⊥ are the components of b that are parallel
and perpendicular to 1y.

The unitary quaternions are collinear with [ b+ b‖ ] so

[ b′ + b′‖ ] = [ b+ b‖ ].

For b⊥ we must carry out the multiplications, and obtain

[ b′⊥ ] = [ b⊥ cos 2η − 1y × b⊥ sin 2η ].

That is, b′⊥ is a copy of b⊥ rotated over an angle 2η.
The two results combined show that a unitary trans-

formation Y leaves the scalar part of its input invariant
and rotates its vector part around the axis 1y over an an-
gle 2η; this is the polrotation effect of Sect. 5.1. The scalar
and vector parts are transformed independently.

The vector 1y sin η that characterises the rotation is
known as the Gibbs vector (Korn & Korn 1961). Vectors
collinear with it are invariant; they are eigenvectors of the
rotation.

From the theory of linear transformations I take the
result that the mathematical expression for a rotation is

b′ = Rb

where the 3 × 3 transformation matrix R is real, orthog-
onal and unitary. Its unitarity guarantees the invariance
of scalar products and in particular of real vector lengths.

The Euclidian rotations of the vector part b
form a subset of the general pseudo-Euclidian ro-
tations represented by the Lorentz transformation
(Feynman et al. 1975), just as the unitary transfor-
mations form a subset of the general congruence
transformations.

C.2. The fundamental unitary matrices

Any rotation in a three-dimensional Euclidian space can
be represented as a succession of three rotations around
mutually perpendicular axes (Korn & Korn 1961).
Choosing for these axes the three base vectors of Eq. (28)
we find the three respective basic unimodular unitary
matrices

• The phase-difference transformation

Y q(φ) =
(

exp iφ 0
0 exp−iφ

)
= exp i [1q]φ. (36)

• The ellipticity transformation

Y u(ε) =
(

cos ε i sin ε
i sin ε cos ε

)
= exp i [1u]ε. (37)

• The (feed or xy frame) rotation transformation

Y v(θ) =
(

cos θ sin θ
− sin θ cos θ

)
= exp i [1v]θ. (38)

C.3. The polrotation in circular coordinates

It is of some interest to consider the form that Eq. (18)
takes in circular coordinates. The feed and receiver terms
Y u and Y q operate on the signal vector formed by the
l and r voltages in the feed-receiver system and need not
change. The geometric rotation term Y v(θ) must be trans-
formed to the circular lr coordinate frame (Paper I) in
which the radiation is measured. From Paper I we take
the result that this transformation transforms Stokes V
into Q, hence 1v into 1q. Thus Y v(θ) assumes the form
Y q(θ), and the equivalent of Eq. (18) becomes

Y = Y q(φ)Y u(ε)Y q(θ). (39)

This is another generic way of factoring an arbitrary ro-
tation (Korn & Korn 1961).

When the feed-error term Y u is reduced to unity,
the remaining two Y q terms fuse into one. The usual
practice of merging them regardless of the feed errors
amounts to inverting the order of the factors in Eq. (39);
this is justifiable only in the quasi-scalar approximation
(cf. Sect. 7).

C.4. Positive hermitian transformations

The treatment of the unimodular positive hermitian trans-
formation is analogous to that of the unitary one. Starting
from Eq. (33) for H one finds

b′ = b cosh 2γ + b‖ ·1h sinh 2γ
b′‖ = b 1h sinh 2γ + b‖ cosh 2γ
b′⊥ = b⊥.

(40)

The effect is in a sense complementary to that of the uni-
tary transformation, but there is no analogous geometric
interpretation. The scalar and vector parts are not trans-
formed independently but get mixed: this is the polcon-
version effect of Sect. 5.1.

There is no interaction between vector components
in different directions: The transformation is said to be
rotation-free.

C.5. Minimal-variance theorem

Of all complex numbers z = a eiφ, z = a has the smallest
distance squared |(z − 1)|2 to unity. I shall now prove an
analogous property for 2× 2 matrices:

Theorem: Let H be a given positive hermitian and Y
an arbitrary unitary matrix. Of all products X = Y H ,
X = H minimises the quantity

FH(Y ) = Var (Y H − I).

Using the definition of Var , the commutation and
transposition invariance of Tr and the hermiticity of H ,
convert the equation to
FH(Y ) = Tr (Y H − I)(HY † − I)

= Tr (HH + I− 2ReY H). (41)
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To find the minimum, consider the term
Tr Re Y H = Tr Re exp iψ[ cosη + i1y sin η ] [h+h ]

= h cosψ cos η − 1y · h sinψ sin η. (42)

Differentiation with respect to ψ and η gives the equations

h sinψ cos η + 1y · h cosψ sin η = 0
h cosψ sin η + 1y · h sinψ cos η = 0

whose obvious solutions are cosψ = cos η = 0 and sinψ =
sin η = 0.

Since H is positive hermitian,

h > |h| ≥ 1y · h
so a. there are no other solutions and b. the former one,
which is equivalent to Y = I, maximises Eq. (42) and
hence minises FH(Y ). Moreover this is true for all direc-
tions 1y.

D. Matrix solution techniques

The methods discussed in this paper require nonlinear
minimisation of the variance of a function of several matri-
ces wrt one of them. One way to handle it is by writing out
all equations and their derivatives in terms of the real and
imaginary parts of all matrix elements and then applying
standard nonlinear solution methods (Press et al. 1989).
This is the approach used in AIPS++ (1998); it is cum-
bersome and the resultant code is complex and difficult to
verify (T. Cornwell, private communication).

In the methods to be described below, entire matrices
are the atomic variables. Thus, full advantage is taken of
the conceptual efficiency of matrix algebra, which in turn
reflects in simple solution algorithms that are very easily
coded. The algorithms explicitly exploit the structure of
the equations; for this reason they may well be more effi-
cient than the general-purpose approach. They also lend
themselves to quick experiments in an environment such as
AIPS++ (1998) in which matrix operations can be coded
directly.

D.1. Differentiation

The problem is that of finding the matrix V that min-
imises the variance of some matrix function M of V .
Attacking this problem in the conventional way requires
the definition of the derivative of Var M(V ) with respect
to V . An equivalent approach that requires no new def-
initions is to consider the differentials themselves rather
than their quotient.

For a variation δM , the corresponding variation in
Var M is (cf. Eq. 41)

δVar M = Tr (M δM † + δMM†)
= 2 Tr Re (M δM†). (43)

In the applications of interest, M δM † is a sum of (prod-
ucts of) several other matrices, one of which is δV . In each

of these products, we may cyclically permute the factors
to move δV to the trailing position (cf. Appendix C.5).
Thus we convert each product term in Eq. (43) to the form

Tr Re (Z δV ) = 0. (44)

If V is constrained, e.g. to being diagonal or unitary, cor-
responding constraints are to be imposed upon δV .

If, for any permitted variation δV , the variation i δV
is also allowed, Eq. (44) can be simplified by omitting the
Re operator. If, moreover, δV is completely free, Eq. (44)
implies that Z itself is 0.

D.2. Self-alignment decomposition

I show a simple least-squares self-aligment algorithm as an
example. Given a set of observed coherencies W jk and a
source model E′

jk
, we seek to fit values J ′

j
that minimise

the noise power at the interferometer inputs:

S =
∑
jk

Var (J ′j
−1W jkJ

′
k
−1† −E′jk).

For a change δJ ′j
−1 we have, from Eq. (43)

δS = 2Tr Re
(∑

k (J ′j
−1W ′

jk
J ′k
−1† −Ejk)

J ′k
−1W ′

jk
† δ(J ′j

−1†)
)

= 0.

Since δ(J ′j
−1†) is arbitrary, it follows that

J ′j
−1
∑
k

W ′
jkJ
′
k
−1† J ′k

−1W ′
jk
† =

∑
k

EjkJ
′
k
−1W ′

jk
†.

Given a set of estimates J ′k
−1, this equation provides the

basis for an iterative algorithm by producing a new esti-
mate for J ′j

−1.
Note the similarity of the first three factors on the

lefthand side to
∑
E′
jk

. In the same way as dimension
comparisons in physics, this similarity provides a partial
check on the correctness of an equation.

This method is easily generalised to a more proper
χ2 form for the case where the four polarisation channels
in each interferometer carry the same noise level. This is
probably an adequate assumption in most practical cases.

D.3. Feed-error minimisation

Section 8.2 poses the problem of minimising

S =
∑
j

Var (D′j − I), (45)

where
D′j = G′j

−1 J ′j Y
′−1 F−1

j

G′
j

are unknown diagonal gain matrices and Y ′ is the
unknown unitary polrotation matrix (which is not neces-
sarily unimodular). Taking differentials

δS = 2
∑
j

Tr Re
(

(D′j − I) δD′j
† ).
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G′j
−1 is found given the current value of Y ′ in the way

indicated above. The constraint on δG′j
−1 is that it be

diagonal. The result is

(G′j
−1)ll = (J j J

′
j
†)ll / (J ′j J

′
j
†)ll , l = 1, 2.

To solve for Y ′ given the current values of the G′j
−1,

we begin by applying unitary transformations F−1
j to the

summands in Eq. (45) to obtain (cf. Appendix A.5)

S =
∑
j

Var (F−1
j G′j

−1 J ′j Y
′−1 − I).

We may now minimise S by invoking the minimum-
variance theorem of Appendix C.5, in combination with
the fact that∑
j

Var (ZjY
′−1 − I )

and

Var
(∑

j

(ZjY
′−1 − I )

)
are minimal for the same value of Y ′.

References

AIPS++ 1998, Software under development by a consortium
of observatories, for the processing of (primarily radio) as-
tronomical data. See the website at NRAO: www.nrao.edu

Born M., Wolf E., 1964, Principles of Optics. Pergamon Press
Britton M.C., 2000, ApJ, April 1 (in press)
Cornbleet S., 1976, Microwave Optics. Academic Press
Cotton W.D., 1993, AJ 106, 1241
Feynman R.P., Leighton R.B., Sands M., 1975, The Feynman

Lectures on Physics, Vol. 1. Addison-Wesley
Hamaker J.P., Bregman J.D., Sault R.J., 1996, A&AS 117, 137

(Paper I)
Hestenes D., 1986, New Foundations of Classical Mechanics.

Kluwer Acad. Publ.
Korn G.A., Korn T.M., 1961, Mathematical Handbook for

Scientists and Engineers. McGraw Hill
Kuipers J.B., 1998, Quaternions and Rotation Sequences -

A Primer with Applications to Orbits, Aersospace and
Virtual Reality. Princeton Univ. Press

Lancaster P., Tismenetsky M., 1985, The Theory of Matrices.
Academic Press

Landau L.D., Lifshitz E.M., 1995, The Classical Theory
of Fields (Course of Theoretical Physics Vol. 2).
Butterworth/Heinemann

Leppänen K.J., Zensus J.A., Diamond P.J., 1995, AJ 110, 2479
Massi M., Comoretto G, Rioja M., Tofani G., 1996, A&AS

116, 167
MATLAB, 1997, High-Performance Numeric Computation and

Visualisation Software, version 5. The MathWorks, Inc,
Natick, Mass, U.S.A.; http://www.mathworks.com

Narayan R., Nintyananda R., 1986, ARA&A 24, 124
Perley R.A., Schwab F.R., Bridle A.H., 1994, Synthesis

Imaging in Radio Astronomy, a Collection of Lectures
from the Third NRAO Synthesis Summer School, ASP
Conf. Ser. 6

Press W.H., Flannery B.P., Teukolsky S.A., Vetterling
W.A., 1989, Numerical Recipes – The Art of Scientific
Programming. Cambridge Univ. Press

Ponsonby J.E.B., 1973, MNRAS 163, 269
Roberts D.H., Wardle J.F.C., Brown L.F., 1994, ApJ 427, 718
Sakurai T., Spangler S.R., 1994, Radio Sci. 29, 635
Sault R.J., Hamaker J.P., Bregman J.D., 1996, A&AS 117, 149

(Paper II)
Sault R.J., Bock D.C.-J., Duncan A.R., 1999, A&AS (in press)
Simmons J.W., Guttman M.J., 1970, States, waves and pho-

tons: a modern introduction to light. Addison-Wesley
Thompson A.R., Moran J.M., Swenson G.W. Jr., 1986,

Interferometry and Synthesis in Radio Astronomy. John
Wiley & Sons, New York

Wardle J.F.C., Homan D.C., Ojha R., Roberts D.H., 1998, Nat
395, 457

Weiler K.W., 1973, A&A 26, 404


