
Automated Testing of Cloud-Based Elastic Systems
with AUToCLES

Alessio Gambi∗†
∗University of Lugano, Lugano, Switzerland

alessio.gambi@usi.ch

Waldemar Hummer† and Schahram Dustdar†
† Vienna University of Technology, Vienna, Austria

{lastname}@dsg.tuwien.ac.at

Abstract—Cloud-based elastic computing systems dynamically
change their resources allocation to provide consistent quality of
service and minimal usage of resources in the face of workload
fluctuations. As elastic systems are increasingly adopted to
implement business critical functions in a cost-efficient way, their
reliability is becoming a key concern for developers. Without
proper testing, cloud-based systems might fail to provide the
required functionalities with the expected service level and costs.
Using system testing techniques, developers can expose problems
that escaped the previous quality assurance activities and have a
last chance to fix bugs before releasing the system in production.

System testing of cloud-based systems accounts for a series of
complex and time demanding activities, from the deployment and
configuration of the elastic system, to the execution of synthetic
clients, and the collection and persistence of execution data.
Furthermore, clouds enable parallel executions of the same elastic
system that can reduce the overall test execution time. However,
manually managing the concurrent testing of multiple system
instances might quickly overwhelm developers’ capabilities, and
automatic support for test generation, system test execution, and
management of execution data is needed.

In this demo we showcase AUToCLES, our tool for automatic
testing of cloud-based elastic systems. Given specifications of the
test suite and the system under test, AUToCLES implements
testing as a service (TaaS): It automatically instantiates the SUT,
configures the testing scaffoldings, and automatically executes
test suites. If required, AUToCLES can generate new test inputs.
Designers can inspect executions both during and after the tests.

I. INTRODUCTION AND MOTIVATION

The advent of Cloud computing in recent years has deeply
changed the way developers think about software application
design. Advanced resource allocation and virtualization tech-
niques allow to dynamically acquire resources for computing
on demand. One of the often cited key principles for Cloud
applications is elasticity [1], [5], which covers two main
aspects: 1) scalability, i.e., robust and timely adaptation to
cope with workload fluctuations, and 2) (cost-)efficiency, i.e.,
acquiring only the necessary resources and releasing unutilized
resources in an optimized way.

As elasticity is becoming an integral part for applications
deployed in the Cloud, systematic testing of elasticity becomes
a priority. We collectively denote an elastic application plus
the environment it operates in as an elastic system (ES). An
ES is defined at any point in time by its current elasticity
state. For instance, the elasticity state can define the cur-
rent number of utilized computing machines. Note that the
elasticity state in principle can also include more specialized

and fine-grained metrics. Take as an example an application
that reacts to load fluctuations by actively increasing and
decreasing quality of service (QoS) while maintaining the
same amount of resources. In this case, the QoS is considered
the crucial elasticity property of the system. However, in
this work we focus mainly on resource-related elasticity. The
elastic behavior causes the ES to switch between elasticity
states (denoted elastic transition) under certain conditions. A
series of such transitions (e.g., a scale-out followed by a scale-
in) has been termed elastic transition sequence [8] (ETS).

We identify two core motivations for testing elastic Cloud
applications. First, it needs to be ensured that, given dif-
ferent patterns of stimuli (inputs), the elasticity behavior of
the system corresponds to the expected ETS. The notion of
expected ETS can take various forms – some systems may
have very detailed specifications (e.g., state transition graph
with exact triggering constraints, timing, etc), whereas other
systems define elasticity more vaguely (e.g., no more than 10
machines should be used, and the ES should eventually scale
back to 1 machine if the load is close to zero). Second, if we
take into account that an elastic transition causes a number of
non-trivial re-configurations in the system, the correct end-to-
end functionality of these ETSs should be thoroughly tested.

Despite its high importance, system testing of cloud-based
systems is highly complex and currently lacks appropriate
tool support. We identify a number of challenges, including
a series of complex and time demanding activities, from
deployment and configuration of the ES, to execution of
synthetic workloads, to collection and persistence of execution
data. Clouds enable parallel executions of the ES, effectively
reducing the overall test execution time. However, manually
managing the concurrent testing of multiple system instances
is tedious and error-prone, hence automatic support for test
generation, execution, and management of test data is needed.

A. Motivation for Testing-as-a-Service

We tackle the aforementioned challenges from the perspec-
tive of Testing-as-a-Service (TaaS) [3] for elastic Cloud appli-
cations. In our view, generic TaaS provides major benefits.

First, even though elastic systems come in diverse flavors,
the system-level testing concepts are largely generic and can
be designed and optimized on an abstract level. For exam-
ple, elasticity can be exercised by generating time-varying
workload distributions which can be easily captured using

978-1-4799-0215-6/13/$31.00 c© 2013 IEEE ASE 2013, Palo Alto, USA
Tool Demonstrations

714

Status of Experiments

Cloud Experiment
Manager
(JOpera)

Web
Interface

(JSF)

MemCached
DaaS

Simulated Clients
(JMeter)

Load Balancer

App Server

App Server

App Server

DB Server

Elastic
Controller

Elastic system

Monitoring Add/Remove VM

monitoring
datamonitoring data

monitoring
data

clients
data

monitoring
data

control data

experiment data

Tester

Execute requests
Test Spec

Elastic System
Manifest

Schedule Experiments

Deploy and Configure

Deploy and Configure

experiments results

7

1

2 3

4

8

5

6

Fig. 1. Overview of AUToCLES

abstracted traces of requests. Traces are then a natural means to
support repeatability of tests, enabling fair comparison across
implementations. TaaS providers may also elaborate knowl-
edge about tests to create specific test suites for particular ESs.

Second, managing the execution of a multitude of concur-
rent tests allows the testing platform to apply optimizations
with respect to resource utilization and potential consolidation.
For example, instead of continuously creating and terminating
virtual machines (VMs), the platform can reuse VMs in
different runs of the same test suite. Similarly, the platform
can share the resources for running synthetic clients.

Third, multiple testers share the Cloud, and hence elastic
applications run on the same physical infrastructure. This
enables testers to publish test specification and results from
past executions to promote fair comparisons among alternative
ES implementations. Furthermore, testers and designers may
acquire knowledge about the behavior of the cloud under dif-
ferent conditions, thus enabling improvement of their design.

B. Approach Outline

As a first step towards effective and efficient testing of
cloud-based elastic systems, we propose AUToCLES (AUto-
mated Testing Of Cloud-based ELastic Systems), a novel tool
that implements TaaS for elastic cloud-based applications in
the form of black-box system testing.

AUToCLES implements all the core functionalities that are
required to automatically manage the whole life cycle of test
execution in the cloud, and supports both single-tenant and
multi-tenant scenarios by managing independently tests that
belong to different users. The tool can run user provided test
suites, but it can also be used to create new test suites and
evolve them. Thanks to an extensible software architecture and
the use of standard technologies, AUToCLES enables an easy
integration with existing applications and user-defined testing
policies. Furthermore, it adopts a REST-driven architecture
that enables scalability, and to some extent elasticity, to
achieve cost-effectiveness of the test execution service [9].

AUToCLES captures the repetitive nature of test executions
(and their management) in the form of processes that are

generally easier to understand, inspect and manage than the
commonly adopted set of custom, hand crafted, and distributed
batch scripts. At runtime, it augments the elastic systems
under test with additional components and virtual machines
that provide test scaffoldings and drivers, and deploys the
required set of VMs in a specific order. After this, AUToCLES
configures the drivers and starts the execution of the test. If
the elastic system under test provides a specific monitoring
end-point, our tool is able to show to the user the live-
evolution of the run, and after the run ends, collect any
data provided by the elastic system. Data collected from test
drivers, i.e., load generators, are automatically collected with
no required modification of the elastic system. The acquired
testing resources (VMs) are automatically managed and timely
released to minimize resource utilization. All collected data are
persisted to a data service and can be graphically inspected by
the user, with live updates during test execution.

To work correctly the tool assumes that (i) elastic applica-
tions under test are specified formally by means of a service
manifest, similar to [7], which contains the definition of the
various application components, their configuration and their
interdependencies; (ii) elastic applications are complete and
self-managing, that is, they have all the logic to automatically
scale up and down by adding and removing virtual machines
at runtime; (iii) the test drivers, i.e., the synthetic clients to
generate the load, are available and specified according to well
known (de facto) standards (see details in Section II).

II. OVERVIEW OF THE TOOL

A. Architecture

Figure 1 illustrates the main components of AUToCLES
and their relationships along with the elastic systems that we
consider in the demo. In our concrete case, the ES under test is
a three-tier application controlled by an elastic controller that
decides on the runtime allocation of resources. The controller
should ensure that the system remains elastic, and the purpose
of AUToCLES is to assess whether this is done in a reliable
manner.

715

The figure highlights the main steps of the basic scenario
that the tool implements, and that we explain in the following1:
1 The user (tester) uses the Web user interface (UI) to provide

a test specification and the elastic system manifest (ESM).
The ESM defines the ES in terms of its components and in-
put/output parameters, that is, all information required to auto-
matically and correctly instantiate the ES. Moreover, the ESM
lists several KPI (key performance indicator) parameters that
are monitored during the execution, along with performance
objectives (e.g., feasible value ranges) that should be satisfied
at runtime. 2 The experiment execution is orchestrated by
the light-weight process engine JOpera [16] that configures
the test clients, and stores all collected experiment data to a
MemCached2 data store. 5 The test clients are executed using
Apache JMeter3, a de-facto standard technology for defining
and running load test suites. 6 KPI values are continuously
monitored and can be accessed through the Web interface at
runtime. When the experiments end, all the components persist
the monitoring data to the MemCached. 7 Along the whole
execution, JOpera reports back the status of the experiments
that is displayed in the Web UI along with 8 the execution
data retrieved from the data store. In this way, testers can
access and analyze them when convenient.

B. Notes on the Implementation

The general principles behind the implementation are scal-
ability, extensibility and the use of existing standards. Hence,
AUToCLES uses several well known technologies (as outlined
in Section II-A) to implement a set of core components
that can be easily replicated and deployed over a set of
distributed nodes. Internally, the tool is organized according to
the REST software architectural style, enabling standard HTTP
communications between the components and the cloud, in
fact reducing the integration and maintenance efforts. Figure 2
illustrates an excerpt of the Web user interface.

Fig. 2. Excerpt of the AUToCLES User Interface

1A video of AUToCLES is available at http://dsg.tuwien.ac.at/autocles
2http://memcached.org/
3http://jmeter.apache.org/

Managing a set of distributed components instead of a
single centralized software may limit the adoption of our
tool, therefore we encapsulated all AUToCLES’s software
components into a single virtual machine that can be run on
OpenStack4 and Amazon EC25. The virtual machine must be
run with a specific set of parameters, mainly related to the
specific security settings of the cloud. Once the VM is running,
no further installation steps are required to start using the tool.

III. RELATIONS WITH OTHER TOOLS

Several tools deal with automated testing of distributed sys-
tems, testing automation in clouds, guided generation of tests
for exposing problems, benchmarking, and finding optimal
system configurations, or combinations of the previous. We
are focused on testing elasticity of cloud-based systems, which
mainly deals with system testing, therefore, here we generally
do not consider tools for automated software testing in the
cloud, like, e.g., Cloud9 [4], that exploit the extensive resource
availability of clouds to parallelize/distribute software tests.
Since AUToCLES depends on reliable provisioning of test
machines, existing work on automated testing of infrastructure
deployment and configuration [13] complements our approach.
Moreover, a number of testing approaches for domain-specific
cloud applications are related to our work, for instance testing
of elastic platforms for event stream processing [12], [14].

Wang et al. proposed Weevil [18] a tool for automating
experimentations over distributed testbeds. Weevil does not
specifically target cloud environments, but has a strong fo-
cus on managing the distributed aspects of experimentation,
and has a noticeable expressive power and flexibility. This
increases applicability of the tool, but also forces testers to
undergo a steep learning curve, complex setups and difficult
test maintenance. We gained experience with Weevil in our
previous research [10], [17]. Compared to Weevil, we support
a more focused, yet simpler, approach for test automation.
Furthermore, we specifically target cloud environments. In this
sense, AUToCLES is an easy-to-go solution that fits better with
the spirit of clouds in delivering test execution as a service.

Among the tools that are specifically designed for the
cloud, we identified ECon [2] and Expertus [15]. ECon was
developed by one of the co-authors, shares some software
components with AUToCLES, and can be seen as its prede-
cessor. In contrast to AUToCLES, ECon can manage only one
experiment at the time and has the main goal to implement
adaptive testing, where the next tests are selected combining
the data from past executions. Expertus instead automates the
experiments in the cloud with the goal of finding the best
configuration of the elastic system under test given a target
cloud and a set of scenarios. Expertus adopts a generative
approach to create on the fly the code that manages the
test lifecycle, and to deploy a distributed set of executable
scripts. Compared to it, AUToCLES adopt a less intrusive
approach to implement test execution and is focused more

4http://www.openstack.org/
5http://aws.amazon.com/ec2/

716

on testing a given elastic system than trying to re-optimize
its configuration. Expertus points towards design optimization,
while AUToCLES focuses more on conformance testing.

In the context of clouds, commercial tools are also available.
An outstanding example is Blazemeter6 that offers load testing
as service. Thanks to its capabilities, testers can offload their
infrastructure from the burden of generating high amount of
load to test their systems. AUToCLES shares with Blazemeter
the choice of adopting standard tools and technology for the
implementation; in fact, both leverage the DSL defined in the
context of the Apache JMeter7. Due to this design choice, the
designed test plans can be easily executed by both these tools.

IV. POTENTIAL IMPACTS

The original intent of AUToCLES is to support, by means
of automatization, efficient and effective system testing of
cloud-based elastic systems. This consists of both, consistently
managing execution of multiple instances of the system under
test, and creation of test suites tailored to testing elasticity.

Nevertheless, the tool has great potential also in broader
sense and can provide (or at least, enable the achievement of)
several benefits for various actors in the software engineering
community. We summarize the most important points:

• AUToCLES enables objective and fair comparisons of dif-
ferent implementations of ESs and control logics. The state
of art about the design of ESs, and in general cloud-based,
systems is still flawed by the un-availability of shared
platform where different actors can repeat the very same
experiments to provide a direct comparisons of the results.
AUToCLES can be used to delivery a service to access a
predefined set of resources outside the control of the testers,
and to subject the applications to the very same stress.

• AUToCLES works with multi-tenancy in mind, and might
facilitate collaborative approaches for software engineering.
For example, it enables sharing of data about test suites and
test executions to the different users. These data can be used
by designers and practitioners to support different activities
that range from the analysis of the quality of system design,
to the verification of design-time assumptions about the
environment. Collaboration may also be achieved via crowd-
sourcing by letting external actors define new test cases, or
evaluate the behavior of elastic systems after test execution.

• AUToCLES allows for automated test execution in well-
defined, controlled environments, which makes test suites
repeatable and comparable. We are currently investigating
the tool’s potential for regression testing, and we envision
that it will prove highly useful for this purpose.

• AUToCLES uses standard technologies and its REST style
fosters an easy integration with other tools, for design
space optimization, like the SUMO toolkit [11], or test case
generation, like the EvoSuite tool [6].

6http://blazemeter.com/
7http://jmeter.apache.org/

V. CONCLUSIONS AND FUTURE WORK

We discussed the main challenges of testing Cloud-based
elastic systems, made the case of automated and optimized test
executions, and presented AUToCLES, our tool for automatic
execution of trace-based tests for elastic systems in the Cloud.

AUToCLES is designed for extensibility, therefore, new
implementations of test case generation and test deployment
can be easily used if the currently provided facilities do
not perfectly fit specific requirements. In a similar fashion,
bindings for using the tool with additional Cloud platforms
can be added as well. Moreover, AUToCLES can be easily
extended to consider federated (or hybrid) cloud settings to
study how elastic systems behave in different environments.

In our ongoing work, we focus on testing and refactoring the
code base to improve the quality of the prototype, and on im-
plementing additional strategies for generating test cases, e.g.,
support for search based and adaptive test-case generation.

ACKNOWLEDGEMENTS

The work was partially supported by the European Com-
munity’s Seventh Framework Programme [FP7/2007-2013],
grant agreement 257483 (Indenica); the Austrian Science Fund
(FWF), grant number P23313-N23 (Audit 4 SOAs); and the
Swiss National Science Foundation (SNSF) under the “Fellow-
ship for Prospective Researchers” contract PBTIP2-142337.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, et al. A view of cloud
computing. Communications of the ACM, 53(4):50–58, 2010.

[2] M. Bisignani. A framework for self-adaptive controllers in the cloud.
Master’s thesis, Faculty of Informatics Univeristy of Lugano, Feb. 2012.

[3] G. Candea, S. Bucur, and C. Zamfir. Automated software testing as a
service. In ACM Symposium on Cloud computing, SoCC’10, 2010.

[4] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea. Cloud9:
a software testing service. SIGOPS Oper. Syst. Rev., 43(4):5–10, 2010.

[5] S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong. Principles of elastic
processes. Internet Computing, IEEE, 15(5):66–71, 2011.

[6] G. Fraser and A. Arcuri. Evosuite: automatic test suite generation for
object-oriented software. In ESEC/FSE ’11, pages 416–419, 2011.

[7] F. Galán, A. Sampaio, L. Rodero-Merino, I. Loy, V. Gil, and L. Vaquero.
Service specification in cloud environments based on extensions to open
standards. In COMSWARE Conference, pages 19:1–19:12, 2009.

[8] A. Gambi, W. Hummer, and S. Dustdar. Testing elastic systems with
surrogate models. In CMSBSE Workshop at ICSE’13, pages 8–11, 2013.

[9] A. Gambi and C. Pautasso. RESTful business process management in
the cloud. In Workshop on Princ. of Eng. Service-Oriented Syst., 2013.

[10] A. Gambi, M. Pezzè, and G. Toffetti. Protecting SLA with surrogate
models. In Workshop on Principles of Eng. Service-Oriented Syst., 2010.

[11] D. Gorissen, K. Crombecq, I. Couckuyt, T. Dhaene, and P. Demeester. A
surrogate modeling and adaptive sampling toolbox for computer based
design. Journal of Machine Learning Research, 11:2051–2055, 2010.

[12] W. Hummer, O. Raz, O. Shehory, P. Leitner, and S. Dustdar. Testing of
data-centric and event-based dynamic service compositions. STVR, 2013.

[13] W. Hummer, F. Rosenberg, F. Oliveira, and T. Eilam. Testing idempo-
tence for infrastructure as code. In Middleware Conference, 2013.

[14] W. Hummer, B. Satzger, and S. Dustdar. Elastic stream processing in
the cloud. Wiley Interdisciplinary Reviews (WIRE), 2013.

[15] D. Jayasinghe, G. Swint, S. Malkowski, J. Li, Q. Wang, J. Park, and
C. Pu. Expertus: A generator approach to automate performance testing
in iaas clouds. In Int. Conf. on Cloud Computing, pages 115–122, 2012.

[16] C. Pautasso and G. Alonso. The JOpera visual composition language.
Journal of Visual Languages & Computing, 16(1):119–152, 2005.

[17] G. Toffetti, A. Gambi, M. Pezzè, and C. Pautasso. Engineering auto-
nomic controllers for virtualized web applications. In ICWE’10, 2010.

[18] Y. Wang, M. J. Rutherford, A. Carzaniga, and A. L. Wolf. Automating
experimentation on distributed testbeds. In ASE, pages 164–173, 2005.

717

