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ABSTRACT

We present a fully decentralized algorithm that is inspired

by sparse Bayesian learning (SBL) and can be used for non-

parametric sparse estimation of unknown spatial functions –

spatial fields – with wireless sensor networks (WSNs). It is

assumed that a spatial field is represented as a linear combina-

tion of weighted fixed basis functions. By exploiting the simi-

larity between the topology of a WSN and the proposed prob-

abilistic graphical model for distributed SBL, a combination

of variational inference and loopy belief propagation (LBP)

is used to obtain the weights and the sparse subset of relevant

basis functions. The algorithm requires only transmission be-

tween neighboring sensors and no multi-hop communication

is needed. Furthermore, it does not rely on a fixed network

structure and no information about the total number of sensors

in the network is necessary. Due to consensus in the weight

parameters between neighboring sensors, it is demonstrated

that also the sparsity patterns of relevant basis functions gen-

erally agree. The effectiveness of the proposed algorithm is

demonstrated with synthetic data.

Index Terms— Distributed, variational, sparse Bayesian,

message passing, consensus

1. INTRODUCTION

In recent years, the advances in electronics and digital com-

munications have made wireless sensor networks (WSN) a

very promising tool for efficiently solving large-scale deci-

sion and information-processing tasks [1, 2]. Due to energy

constraints and often limited communication capabilities, the

operation of WSNs rely on distributed processing, when the

aim of the whole network is achieved through the synergy of

individual sensors, able to sense, compute, and communicate

data.

When the models of the observed phenomenon are known

or can be assumed as known, the WSN processing tasks often

reduce to the problem of decentralized estimation or detection

(see e.g. [3] and references therein). However, when little or
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no a priori information about the measured process is avail-

able, or when the observed data is sparse, it is often more

efficient to construct the model from the data itself [4]. In this

paper we are interested in the latter scenario.

Consider a WSN in the form of an undirected connected

graph G = (V , E) which consists of vertices (or sensors) V
and edges (or links) E defined as a set of unordered pairs

{k, l} ⊂ V representing the communication links. Note that

by defining an undirected graph, we implicitly assume that

sensors can communicate in both directions along a commu-

nication link. We define the neighborhood of a sensor k as

N(k) = {l | {k, l} ∈ E} and the total number of sensors in

the network asK = |V|.
In our work, we assume that each sensor k observes a

noisy measurement tk of the field function f(x) at the sen-

sor’s position xk, where xk ∈ R
d are the coordinates of the

sensor with respect to an arbitrary d-dimensional coordinate

system (e.g., d = 2 for a planar deployment). The additive

noise is assumed to be zero-mean Gaussian with known vari-

ance σ2 and we model the unknown underlying field function

as

f(x) =

M
∑

m=1

wmψm(x), (1)

i.e., a superposition ofM weighted fixed basis functions ψm.

It is typically desired that (1) is as compact as possible, thus

we would like to find the sparsest representation with the

smallest possible number of basis functions. The research of

sparse signal representation has been very intensive in recent

years (see e.g. [5, 6, 7]). One of the approaches for finding

sparse models, which lays down the foundation for this work,

is based on sparse Bayesian learning (SBL), exemplified by

relevance vector machines (RVMs) [8, 7, 9, 10].

SBL is built on a probabilistic model that achieves poste-

rior distributions highly peaked at zero for irrelevant weights.

This is achieved by introducing a parametric prior p(wm|αm)
which is chosen to be a symmetric probability density func-

tion (pdf) with the parameterαm that is inversely proportional

to the pdf width. Observe, that a large value of αm will re-

sult in the prior for wm being highly peaked at zero; as a

result, such priors will favor solutions with a few nonzero co-

efficients. SBL then estimates both, the model parameters as

well as the prior parameters αm for all basis functions using
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Fig. 1. A factor graph representing the sparse field estima-

tion model. Unshaded nodes refer to hidden random variables

whereas shaded nodes are observed. The factor functions are

shown as black filled squares.

an approach known as the evidence procedure [9]; alterna-

tively, approximative variational techniques can also be used

[10].

To the best of our knowledge, applications of SBL for

field estimation in distributed WSNs have not yet been ex-

plored in the literature. Thus, our goal in this work is to

fill this gap by proposing a distributed alteration of SBL for

sparse reconstruction of spatial phenomena. Note that even

though the proposed algorithm is descended from standard

SBL, the probabilistic model is different. This algorithm al-

lows each sensor in the network to construct its own sparse

representation of the global field. We demonstrate that by

properly modifying loopy belief propagation, which has been

shown to perform well for distributed inference [11, 12], a

consensus between different sensors on the global sparse field

representation is achieved. Such consensus-based distributed

algorithms require only transmission between neighboring

sensors and no multi-hop communication is needed. Further-

more in [11] it is shown that consensus algorithms are very

robust against sensor and link failure as well as against poor

synchronization.

The rest of the paper is organized as follows. In Section 2

we outline the probabilistic structure of the inference prob-

lem; in Section 3 the distributed learning algorithm based on

variational inference and loopy belief propagation (LBP) is

presented; Section 4 shows the experimental results and fi-

nally we conclude and give an outlook in Section 5.

2. BAYESIAN MODEL DEFINITION

With an independent and identically distributed Gaussian

noise assumption, we can write the distribution of the ob-

servations at each sensor k as p(tk|w) = N (tk|φT
k w, σ2),

which is a likelihood function over w, where we have used

w = [w1, . . . , wM ]T and φk = [ψ1(xk), . . . , ψM (xk)]T .

In SBL, the weights are modeled as random variables with

hierarchical prior p(w|α) = N (w|0, diag(α)−1), where

diag(α) is a diagonal precision matrix with hyperparame-

ters α = [α1, . . . , αM ]T . These hyperparameters are also

defined a priori using a conjugate prior in the form of a

Gamma distribution p(αm) = Ga(αm|a, b) ∝ αa−1
m e−bαm .

With parameterization a = b = 0, an improper Jeffreys

non-informative prior p(αm) ∝ 1/αm is obtained, which re-

sults in SBL with automatic relevance determination (ARD)1.

To solve the SBL problem, one must apply statistical infer-

ence techniques to obtain the posterior p(w,α|t), where

t = [t1, . . . , tK ]T . Unfortunately, obtaining the posterior in

closed form is intractable and approximations have to be used

[9, 10]. If the posterior over the hyperparameters α has most

of the probability mass concentrated at large values of α,

the corresponding posterior over the weights will be strongly

peaked at zero. This fact makes the corresponding basis func-

tions irrelevant in model (1), as they are weighted by values

very close to zero. Thus, a sparse representation is achieved

by pruning them from the model. In the following, we define

our proposed distributed SBL model based on a factor graph

representation, where each sensor k is considered to have its

own weight and hyperparameter vector.

Consider a probabilistic model given by the factor graph

presented in Figure 1. A factor graph is an undirected bipar-

tite graph consisting of nodes (circles), representing random

variables and factors (black boxes), representing functions of

the variables they are connected to. Inference on a factor

graph can be done efficiently using the sum-product algorithm

which can be seen as a generalization of belief propagation

[13]. The graph consists of three layers, the upper hyper-

layer including all vectors {α1, . . . ,αK}, the middle weight-

layer with vectors {w1, . . . ,wK} and the lower observation-

layer {t1, . . . , tK}, where wk = [wk,1, . . . , wk,M ]T , αk =
[αk,1, . . . , αk,M ]T and tk are the locally accessible variables

at sensor k. As depicted in Figure 1, the sensors only share

information on the weight-layer via the factors fkl. These

are defined according to the link structure of the WSN, i.e.,

{fkl|{k, l} ∈ E}.

It should be emphasized that the factor graph presented in

Figure 1 is different from a centralized SBL graphical model.

Specifically, there are several local SBL models with individ-

ual observation tk. These SBL models are connected to each

other according to the actual topology2 G of the WSN.

We define the factors at each sensor k as3

fkα(wk,αk) = |Ak|
a− 1

2 exp

{

−
1

2
wT

k Akwk − b·tr(Ak)

}

(2)

1Note that even though the prior is improper in this case, the posterior is

a proper distribution.
2It is assumed that the physical and logical topologies coinside.
3Note that fkα(wk , αk) ∝ p(wk|αk)p(αk), the SBL joint prior.



and

fkt(wk, t̃k) = exp

{

−
1

2σ2

(

t̃k − φT
k wk

)2
}

, (3)

whereAk = diag(αk). To share information between neigh-

bors, we define the coupling factors (also called compatibility

functions [12]) as

fkl(wk,wl) = exp

{

−
β

2
||wk − wl||

2
2

}

(4)

between the nodes wk and wl for {k, l} ∈ E , where β is the

coupling parameter. Large β values result in a strong con-

sensus between the weight distributions of connected nodes,

whereas small values make the coupling loose.

3. VARIATIONAL APPROXIMATION AND

MESSAGE PASSING

Consider the global vectors w̄ = [wT
1 , . . . ,w

T
K ]T and ᾱ =

[αT
1 , . . . ,α

T
K ]T which collect the corresponding local vectors

from the network. Inference on the graph presented in Fig-

ure 1 corresponds to the computation of the posterior distri-

bution pw̄ᾱ|t = p(w̄, ᾱ|t) of the hidden variables (unshaded
nodes) given the observed variables (shaded nodes). Since

the posterior can not be obtained in closed form, we define

an approximate posterior distribution qw̄ᾱ as a function of all

hidden variables. By applying a structured mean field approx-

imation, we assume the factorization

qw̄ᾱ = q(w̄)
K
∏

k=1

q(αk) (5)

of the proxy distribution, where we generally – unlike in the

posterior – omit to write the condition on the observations t

in the q(·) distributions for convenience. Variational inference
now iteratively optimizes each factor in (5) by minimizing the

Kullback-Leibler divergenceKL(qw̄ᾱ||pw̄ᾱ|t) which can not
be performed directly because of the intractable posterior. In-

stead, we equivalently maximize the variational lower bound

[14] on the log-evidence ln p(t):

ln p(t) ≥ L(qw̄ᾱ) =

∫

qw̄ᾱ ln
pw̄ᾱt

qw̄ᾱ

dw̄dᾱ, (6)

which is a functional of the proxy posterior qw̄ᾱ and the joint

distribution pw̄ᾱt = p(w̄, ᾱ, t). Since the joint distribution

pw̄ᾱt is tractable instead of the posterior pw̄ᾱ|t, we can now

solve the optimization problem. We define the distributions

of the proxy factors given in (5) as

q(αk) =
M
∏

m=1

Ga(αk,m|âk,m, b̂k,m) (7)

and

q(w̄) = N (w̄|µ̂, Λ̂−1), (8)

where Λ̂ is a precision matrix. We also should find it useful

later, to define the marginal proxy weight posterior distribu-

tions at a single sensor k as

q(wk) =

∫

q(w̄) dw̄∼k = N (wk|µ̂k, Λ̂
−1
k ), (9)

where w̄∼k means a vector of all weights w̄ without the ele-

ments of wk.

By applying variational calculus, we obtain the logarithm

of the optimal update [14] of factor q(αk) with

ln q∗(αk) = E∼q(αk){ln pw̄ᾱt} + const., (10)

where E∼q(αk){·} denotes the expectation with respect to

all other factors in Equation (5) instead of q(αk) and the

term ’const.’ includes the terms independent of αk, thus

that q∗(αk) is a valid normalized distribution. Knowing that

the joint distribution represented by a factor graph is the

normalized product of all the factors in the graph, we can

write

pw̄ᾱt =
1

Z





∏

{i,j}∈E

fij





K
∏

u=1

fuαfut, (11)

where Z is a normalization factor. By inserting (11) into (10),

we obtain

ln q∗(αk) = Eq(wk){ln fkα(wk,αk)} + const., (12)

where all other factors (including the normalization) were ab-

sorbed into the ‘const.‘ term and only the factor fkα as a

function of αk remains in the expectation. We should also

notice that the expectation in (12) now is only with respect

to q(wk), since we can integrate out all other terms. This is

also because wk is the only variable in the Markov blanket

(cf. [14]) of αk as can be seen in Figure 1. Inserting (2) into

(12) and solving for q∗(αk) results in a product of Gamma

distributions equal as defined in (7). Thus our optimal update

distribution q(αk) = q∗(αk) can be achieved with (7) and

form = 1, . . . ,M we get

âk,m = a+ 1/2 (13)

and

b̂k,m = b+ (µ̂2
k,m + Σ̂k,mm)/2, (14)

where µ̂k,m is the m-th element of µ̂k and Σ̂k,mm is the m-

th main diagonal element of the marginal covariance matrix

Σ̂k = Λ̂
−1
k . Updating the factors q(αk) means computing

(13) and (14) for all sensors k and basis functions m which

can be done locally at sensor k if it can access the parameters

of the proxy weight marginal q(wk).
By again using variational calculus [14], the logarithm of

the optimal global weight proxy is defined as

ln q∗(w̄) = E∼q(w̄){ln pw̄ᾱt} + const., (15)
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Fig. 2. Representation of the messages needed to be passed

through the WSN to obtain the marginal weight proxy distri-

butions.

and becomes

ln q∗(w̄) =
K
∑

k=1

(

Eq(αk)

{

ln fkα(wk,αk)
}

+ln fkt(wk, t̃k)
)

+
∑

{i,j}∈E

ln fij(wi,wj) + const.

(16)

by inserting (11) for the joint distribution. From (2), it is easy

to see that

Eq(αk)

{

ln fkα(wk,αk)
}

= ln fkα(wk, α̂k) + const. (17)

if we absorb all parts which are not a function of w̄ into

the ’const.’ term and define α̂k = Eq(αk){αk}, where the

elements of α̂k can be obtained from (13) and (14) using

the general known expectation result of a Gamma distribu-

tion, i.e., α̂k,m = âk,m/b̂k,m. This is an interesting result,

because it makes the factor fkα(wk, α̂k) proportional to a

GaussianN (wk|0, Â
−1
k ) with known precision matrix Âk =

diag(α̂k) and allows us to interpret q∗(w̄) as being propor-

tional to the joint distribution (11) with observed αk values

set to αk = α̂k. Because all factors are now Gaussians,

q∗(w̄) must also be a Gaussian, and with definition (8) we

see that q(w̄) = q∗(w̄), the optimal approximation can be

achieved. Instead of computing the Gauss parameters µ̂ and

Λ̂ of (8), we are only interested in the marginal parameters µ̂k

and Λ̂k for two reasons. First, the local hyperparameter ex-

pectation updates α̂k just depend on the marginal parameters

through (14). And secondly, the marginals can be computed

distributively using Gaussian believe propagation described

in the following with the sum-product algorithm.

Consider the factor graph presented in Figure 2, where the

graph of Figure 1 is modified in such a way, that like for the

observations tk, also all αk are observed and have values α̂k.

We now can start to pass messages starting at the leaves of

the graph. Applying the sum-product algorithm, we send the

first messages mαk→fkα
from the nodes αk, ∀k to the fac-

tors fkα(wk,αk) which are, since the nodes are observed,

Dirac delta functions δ(αk − α̂k). The following messages

mfkα→wk
are given by the integrals over αk of the incom-

ingmessages times the factors, which gives4 fkα(wk, α̂k)/Z .
Likewise, we obtainmt̃k→fkt

= δ(t̃k − tk) andmfkt→wk
=

fkt(wk, tk)/Z , where t̃k denotes all possible outcomes for

the observations. For the messages between the sensors, we

make use of the knowledge that all involved distributions are

Gaussian and thus define the incoming messages at node wk,

stemming from an arbitrary neighbor u, as general Gaussians
over wk with

mfuk→wk
=

1

Z
exp

{

−
1

2
(wk − µuk)T

Λuk (wk − µuk)

}

.

(18)

The marginal distribution over wk can be computed as the

normalized product of all incoming messages

q̃(wk) =
1

Z
mfkα→wk

mfkt→wk

∏

u∈N(k)

mfuk→wk
, (19)

where we have used the symbol q̃ instead of q to highlight the
difference to the real marginal weight proxy q(wk) which can
only be obtained after several message iterations if the net-

work forms a loopy graph as will be discussed in Section 3.1.

We define q̃(wk) to be a Gaussian q̃(wk) = N (wk|µk,Λ
−1
k )

with parameters

Λk = Âk + σ−2φkφT
k +

∑

u∈N(k)

Λuk (20)

and

µk = Λ
−1
k

(

σ−2φktk +
∑

u∈N(k)

Λukµuk

)

. (21)

To compute the messages to a neighboring sensor, we need all

local and incoming messages from the other neighbors as de-

picted in Figure 2. A message sent from wk to a neighboring

factor fkl can be defined as

mwk→fkl
=

1

Z
mfkt→wk

mfkα→wk

∏

u∈N(k)\l

mfuk→wk
,

(22)

the product of the local messages and messages from all

neighbors other than l. The neighbor l then obtains its incom-

ing message from k with

mfkl→wl
=

1

Z

∫

fkl(wk,wl) mwk→fkl
dwk, (23)

which is again of the form (18) and has precision matrix and

4Note that throughout this paper we assume all messages to be normal-

ized, which is no restriction and allows us to directly interpret the messages

as Gaussians.



mean vector given by

Λkl =

(

(

Âk + σ−2φkφT
k +

∑

u∈N(k)\l

Λuk

)−1

+ β−1
I

)−1

(24)

and

µkl = (Λ−1
kl − β−1

I)
(

σ−2φktk +
∑

u∈N(k)\l

Λukµuk

)

(25)

respectively. For more information on factor graphs and the

sum-product algorithm, the reader is referred to [15].

3.1. Loopy Belief Propagation and its convergence

For nearly all realistic scenarios, the graph G of a WSN is

a loopy one, i.e., messages can pass along paths for multiple

times. Since the graph structureG can be found on the weight-

layer of the factor graph depicted in Figure 2, we perform

message passing on such a loopy graph when determining the

marginal weight proxys q(wk). Messages have to be passed

through the network several times until convergence. For this

work, we assume a synchronized scheduling for convenience,

even though as [11] suggests, LBP on an asynchronous and

even dynamically changing graph generally gives good re-

sults. From (20) and (21) we can define the marginal param-

eters at sensor k with update index n as

Λ
(n)
k = Âk + σ−2φkφT

k +
∑

u∈N(k)

Λ
(n−1)
uk (26)

and

µ
(n)
k =

(

Λ
(n)
k

)−1(

σ−2φktk +
∑

u∈N(k)

Λ
(n−1)
uk µ

(n−1)
uk

)

.

(27)

The messages from node k to node l at update n can be de-

fined as

Λ
(n)
kl =

(

(

Λ
(n)
k − Λ

(n−1)
lk

)−1

+ β−1
I

)−1

(28)

and

µ
(n)
kl =

(

Λ
(n)
k − Λ

(n−1)
lk

)−1(

Λ
(n)
k µ

(n)
k − Λ

(n−1)
lk µ

(n−1)
lk

)

,

(29)

which is more efficient compared to (24) and (25) because

we made use of the intermediate results (26) and (27), since

we have to compute these messages for all neighbors. Note

that the communication between the neighbors can be imple-

mented even more efficiently using local broadcasts [16], but

is not considered in this paper.

Convergence of LBP is not guaranteed in general. But

there has been some research on the convergence of Gaus-

sian LBP (e.g. [17]) defined for nodes with scalar Gaus-

sian random variables. Even though, we did not encounter

convergence problems during our simulations for the multi-

variate Gaussian LBP case used in our work, at the moment

we have not proven its convergence. Also the relation be-

tween convergence-time and the coupling parameter β, like
analyzed for the scalar case in [12], is part of future research.

After convergence5 for n → ∞, we can finally define the

marginal weight proxy parameters from (26) and (27) as

Σ̂k = Λ̂
−1
k =

(

Λ
(∞)
k

)−1
(30)

and

µ̂k = µ
(∞)
k , (31)

where Σ̂k is the covariance matrix used in (14).

3.2. Sparse communication and data processing

Since the energy consumption of each individual sensor

grows with the computational and transmission complex-

ity, we need to incorporate sparsity by pruning irrelevant

model components. That is, we need to reduce the number

of basis functions at each sensor’s model (which is based on

(1)) and hence also the size of the matrices and vectors in

(26)-(31).

During the alternating updates of the factors in (5), some

hyperparmeters α̂k,m related to irrelevant basis functions di-

verge. Practically, we look for divergence by checking if a

hyperparameter exceeds a large predefined threshold γth (e.g.

1010). If so, we assume it to be infinite. By inspecting Equa-

tion (24) for sensor k, it is easy to show that the inner in-

verse equation has only zeros in the m-th row and column if

α̂k,m = ∞. When we also consider the addition of the β−1
I

term, after computing the outer inverse, we obtain a matrix

Λkl with the m-th row and column equal to zero, except the

m-th main diagonal element which is β. This can be eas-

ily shown by using matrix permutation and blockwise inver-

sion rules. Since β is a design parameter in our model and

is known by all sensors, there is no need for transmitting it

to the neighbors. Thus, we can delete the m-th row and col-

umn of Λkl and transmit the resulting sparse message Λ̆kl.

The receiving sensor l, which is getting the message Λ̆kl, can

reinsert β in the diagonal and thus reproduce Λkl if it knows

the correct positions where elements have been pruned. The

only information we need to transmit additionally from a sen-

sor k to l is a binary mask of sizeM indicating the used basis

functions. Similarly, it can be shown that the mean message

µkl defined in (25) obtains zero elements at all positions m
if α̂k,m diverges. After pruning the zero elements from the

vector, we send the sparse mean message µ̆kl, which can also

be reproduced at sensor l to give µkl by reinserting zeros ac-

cording to the binary mask.

It is important to mention that also all local computations

can be done efficiently by taking sparsity patterns into ac-

count, i.e. to consider only the matrix and vector elements

5Practically, good results are obtained after a couple of iterations depend-

ing on the network size and connectivity.



corresponding to finite α̂k,m values similar to the previous

discussion. For each α̂k,m = ∞, the marginal covariancema-

trix (30) at sensor k gets zeros in them-th rows and columns.

Likewise the mean vector (30) gets zero entries at all positions

m. Thus, the corresponding elements, including the hyperpa-

rameter, can be pruned from the local model.

3.3. Summary of the algorithm

The algorithm basically consists of alternating updates per-

formed on the hyper- and weight-layer as summarized in Al-

gorithm 1. We first start at the hyper-layer by locally initial-

Algorithm 1 Sparse Consensus-based Distributed Field Est.

Initialize α̂k (e.g. α̂k,m = 10−3, ∀m), ∀k.

% Variational update loop

while (Not converged) do

Initialize: Λ
(0)
uk = 0 and µ

(0)
uk = 0, ∀(u, k) ∈ E .

% Message passing update loop

while (LBP not converged) do

Send sparse messages (28) and (29) according to Sec-

tion 3.2 through the network.

end while

Compute the sparse marginals (30) and (31), ∀k, as ex-
plained in Section 3.2.

From (13) and (14) at each sensor k update the hyperpa-

rameter expectations α̂k,m = âk,m/b̂k,m, ∀m.

end while

Compute the final sparse marginals (30) and (31), ∀k.

izing the hyperparameter expectations α̂k at each sensor k.
Afterwards, we perform message passing on the weight-layer

according to (28) and (29), where the initial incoming mes-

sages are defined as Λ
(0)
uk = 0 and µ

(0)
uk = 0. After conver-

gence, we obtain Σ̂k and µ̂k according to (30) and (31). The

only communication necessary in the WSN is to obtain these

two parameters at each sensor. They are then used locally for

the hyper-layer update, i.e., updating α̂k at each sensor k us-

ing (13) and (14). In the following updates we iterate between

hyper- and weight-layer and perform sparse computation and

communication according to Section 3.2 if hyperparameters

diverge. After convergence of the variational proxy updates,

we finally obtain a sparse marginal distribution q(wk) at each
sensor k. With the mean vector µ̂k each sensor can recon-

struct the field function as a superposition of weighted basis

functions as in (1), but containing only the relevant compo-

nents. Note that it is also possible to estimate the variance of

the field function as in [9], but is not of importance here.
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Fig. 3. True underlying field function f(x) defined by (32).

Squares represent sensor positions and dots the local measure-

ments.

4. SIMULATION

For the simulations we used a constant bias ψ1(x) = 1 and

Gaussian kernel basis functions ψm(x) = κ(x,xm−1) for

m = 2, . . . ,K + 1 centered on the sensor positions6, where

κ(x,xm−1) = exp{−θκ||x−xm−1||2} with kernel parame-

ter θκ = 15. We used K = 100 sensors resulting in an initial

model with M = K + 1 = 101 basis functions. We define

the underlying true field function as

f(x) = 0.5 sinc(x1 − 0.5) + 0.5x2 + 0.5, (32)

with dimension d = 2 for x, as plotted in Figure 3. The

sensors are deployed randomly, shown as black squares in

the figure, whereas the local noisy measurements tk, pro-
duced by adding white Gaussian noise of variance σ2 = 10−5

to f(xk), are given as dots. The pruning threshold was set

to γth = 1010 and the coupling parameter in (4) is set to

β = 108. The initial hyperparameter expectations are set as

α̂k,m = 10−3, ∀k,m. We used the ARD case for SBL with

a = b = 0. The network structure can be seen in Fig-

ure 4, where a connectivity of 10% relative to the total num-

ber of possible connections was used. The solid and dashed

lines represent the connections between the sensors. Dur-

ing the variational iterations, some hyperparameters α̂k reach

large values as depicted in Figure 5 for two different sensors.

Sensors that have diverging elements in α̂k, prune the cor-

responding basis functions and send sparse messages to their

neighbors as discussed in Section 3.2. From Figure 5 we can

also see, that sensors with a denser connection to the rest of

the network are getting more support from their neighbors in

6For kernel basis functions, like used in the simulation, it is assumed that

each sensor knows about the position of the others initially to be able to define

the fixed basis function set. This is not necessary for general predefined

fixed basis functions, where sensors need only information about their own

position to compute φk .
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the set of basis functions between different sensors, whereas

dashed lines mean that no consensus was achieved.

evaluating basis functions, which accelerates the pruning pro-

cess. It should be stressed that compared to centralized vari-

ational SBL, the divergence-rate of the hyperparameters for

distributed SBL is empirically much faster. For threshold val-

ues γth in the range used in our simulations the centralized

version has significantly higher simulation times. Specifi-

cally, while the proposed distributed algorithm converges in

about 2h on our used hardware, the centralized version was

aborted after 1 day without converging. Both simulations

where run on a single core, where also the distributed algo-

rithm was simulated centrally. In Figure 4 we also show the

number of basis functions for individual consensus clusters

connected by solid lines. All the sensors in a cluster have

identical binary masks, i.e., they agree on the same sparse set

of basis functions. Dashed lines reveal differences between

basis sets of neighboring nodes. It is clear to see that most

parts of the graph reach perfect consensus in the sparse rep-

resentation. Outer sensors with only a few connections are

more likely to suffer from different estimates and in general

have a slower convergence rate due to the lack of collabora-

tion capabilities.

Another important observation we made when using

Gaussian kernel basis functions, is that kernels with centers

closer to a sensor’s position are more preferred to be kept by

this sensor than kernels which are further away. This can be

seen in Figure 6, where the sparse estimated field of two dif-

ferent sensors is given. The dots show the relevance vectors

[9], which correspond to kernel centers marked by circles. In

Figure 6b, all kernels different to Figure 6a, are in the area of

the sensor itself. This is mostly a desired feature, since for

many applications sensors need more accurate information

from their closer surrounding than from distant parts of the

network.
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Fig. 5. Hyperparameter estimates at (a) the lower left and (b)

the upper right sensor as depicted in Figure 4. Most parame-

ters diverge whereas the others stay close to zero.

Algorithm MSE #Bfs

proposed method -22.08dB 16.16

DRKR -14.07dB 16

Table 1. Comparison of mean squared error (MSE) and

number of basis function (#Bf) performance of the proposed

method with a distributed reduced-order kernel regression al-

gorithm (DRKR).

Finally, in Table 1 we compare the proposed method

with a distributed reduced-order kernel regression algorithm

(DRKR) [18]. This algorithm is not based on consensus and

uses sequential message passing instead, where the last node

in the chain obtains the model weights. The stepsize and

threshold parameters for the DRKR method were optimized

to obtain the smallest mean squared error (MSE). The perfor-

mance results for our proposed method are averaged across

the individual nodes. Both algorithms achieve approximately

the same number of basis functions, where our proposed

method achieves a 8dB better MSE7. This is due to the fact,

that the consensus-based SBL algorithm estimates the rele-

vant basis functions dependent on the sensor measurements t

whereas DRKR uses a kernel coherence criteria which is

independent of the measurements.

7Note that the computational complexity of our proposed consensus-

algorithm is higher compared to DRKR. Instead our algorithm is robust

against network changes and requires communication between neighbors

only.
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Fig. 6. Sparse estimated field function f̂k(x) of (a) the sensor
in the lower left and (b) the upper right corner of the network

as depicted in Figure 4. 16 basis functions are used in (a)

and 20 in (b). The dots represent the relevance vectors (RVs),

whereas the small circles depict the associated relevant ker-

nel centers. Three of the four RV differences are visible and

highlighted by the big circles.

5. CONCLUSIONS AND OUTLOOK

In this work, we have presented a distributed sparse Bayesian

learning (SBL) method for consensus based field estimation.

The method is based on variational inference and loopy belief

propagation (LBP). A field function, spatially sampled by a

wireless sensor network (WSN), is represented as a sum of

weighted fixed basis functions. An overcomplete basis set can

be reduced to a relevant subset by using a Bayesian model

that is inspired by SBL. Our robust sparsification method

works fully distributed with communications only between

neighboring sensors. Each sensor obtains a sparse repre-

sentation of the global field function which is estimated in

consensus with all others without even knowing the network

size. Simulations show that densely connected regions of the

network can achieve faster convergence in terms of sparsity

due to stronger collaboration with neighbors. Furthermore

it was shown that densely connected sensors usually achieve

the same sparse subset of relevant basis functions. Compared

to centralized variational SBL our method empirically con-

verges much faster and the mean squared error performance

was shown to be better than a recently proposed distributed

reduced-order kernel regression method.

The convergence conditions for the used multivariate

Gaussian LBP and its dependence on different message

scheduling approaches should be investigated. A detailed

performance analysis as a function of network size, connec-

tivity and different coupling parameter settings is also part of

future research.

Finally, it should be mentioned that the proposed algo-

rithm has an inherent sparsification mechanism that helps sen-

sor nodes to save energy due to the dramatic computation

and transmission reduction caused by pruning many irrele-

vant vector and matrix elements. But especially in the initial

phase, when the model is large, much resources are needed

before pruning actually starts. Thus, we see adaptive models

as an important research topic for sparse Bayesian distributed

field estimation in the future, i.e., methods for pruning and

adding basis functions as needed that start from small mod-

els.
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