
International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

89

Dispatcher Based Dynamic Load Balancing on Web Server System

Harikesh Singh, Dr. Shishir Kumar

Department of Computer Science & Engineering, Jaypee University of Engineering &

Technology, Guna (MP), India

harikeshsingh@yahoo.co.in, shishir_ks@yahoo.com

Abstract

Use of Internet and frequent accesses of large amount of multimedia data are fast

increasing the traffic of network. Performance evaluation and high availability of server are

important factor to resolve this problem using various cluster based systems. There are

several low-cost servers using the load sharing cluster system which are connected to high

speed network, and apply load balancing technique between servers. It offers high computing

power and high availability. The overall increase in traffic on the World Wide Web is

augmenting user-perceived response times from popular Web sites, especially in conjunction

with special events. A distributed website server can provide scalability and flexibility to

manage with growing client demands. To improve the response time of the web server, the

evident approach is to have multiple servers. Efficiency of a replicated web server system will

depend on the way of distributed incoming requests among these replicas. A distributed Web-

server architectures schedule client requests among the multiple server nodes in a user-

transparent way that affects the scalability and availability. The aim of this paper is the

development of a load balancing techniques on distributed Web-server systems.

Keywords: distributed system, cluster system, load balancing, distributed Web server

system, dispatcher.

1. Introduction

In a distributed system, many clients act as clients to computers known as servers. To

implement a system in a distributed approach, firstly ensure that processing power is as close

to the users as possible and the second is to ensure a high degree of robustness, for example

via the use of data replication; and the third is to enable hardware to be easily added as the

resource demands of the applications running on the distributed system start increasing. Many

problems have been facing the designer of a distributed system including predicting the

performance of a particular design, keeping all the clocks in the system synchronized, and

ensuring that if a hardware element of the system malfunctions, users are at best, only

affected in a minimal way.

Internet usage has meant that many distributed systems are open to the world that has

been given rise to a major problem: ensuring that such systems are secure. The best-known

distributed system is the moderately simple World Wide Web which consists of a very large

number of clients running browsers and a large number of Web Servers. An important core of

the title lies in Web Server. A Web Server is the computer program that is responsible for

accepting HTTP requests from the Clients and serving them HTTP responses along with

optional data contents which usually are web pages such as HTML docs and linked objects

etc. A Web Server is the one which hosts or contains all the important resources in the

internet and deals with the requests from others (clients) for those resources and provides

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

90

them those resources with various conditions. A Web Server has both hardware and software

requirements.

A Hardware requirements includes a high configured hardware are needed with the high

processor speed and high connectivity. In software requirements, there is a need of special

software known as Web Server software. There is much Web Server software available today

for e.g. Apache Tomcat Server, Microsoft Internet Information Service (Microsoft IIS), Sun

java Web Server etc. Any single computer system having all the Internet services for a small

group of company would include the HTTP server (Web pages and files), FTP server (file

downloads), NNTP server (newsgroups) and SMTP server (mail service) also known as a

Web server system. Each of these services has integrated in a separate computer or in

multiple computers in ISPs or large companies. A data centre for a large public Web site

could contain hundreds and thousands of Web servers.

Web Servers System is a group of Web Servers running a web application

simultaneously, and at the same time appearing to the user world as if it is a single server. It is

one of the biggest applications of the Distributed System. In the today’s popular world of

Web where users are increasing at the lightening fast rate, Web servers system is very useful

to provide higher availability, easier manageability, and greater scalability. Load Balancing

comprises of two words load and balance. Load is something that requires effort and balance

is to compare and equate. Thus Load Balancing is simply an activity or process which is used

to distribute the load which is constantly applied to single point to the different points. This

technique is useful in many fields like in mobile communication, LAN Servers, WAN

Servers, and Web Servers etc. It is required in websites, Inter Relay Chat, high bandwidth

FTP servers, NNTP and DNS servers In computer networks, it is a technique to spread work

between two or more computers, links, CPU’s, hard drives or other resources in order to get

optimal resources utilization, maximizing throughput, and minimizing response time.

Load Balancing can be achieved either by static approach or by dynamic approach. Static

approach is the one in which load is known in advance and is constant while dynamic

approach is the one in which load is not known in advance and may vary from time to time.

Moreover in dynamic approach the load is distributed at runtime depending on different

criteria while in static approach load is distributed equally. Drawback of dynamic load

balancing is that it is costlier than static one. Due this factor both static and dynamic

approaches have their own areas of implementations.

2. Related Works

2.1 Client-based Approach

Document requests to popular Web sites can be routed from the client side in any

replicated web server architecture even when the nodes are loosely (or not) coordinated.

Routing to the Web cluster can be provided by Web clients or by client-side proxy servers.

These approaches are not universally applicable [1]. The way of accessing the Netscape

Communication site through the Netscape Navigator browser is the first example of a client

based solution [8].

2.2 Web Clients

Web clients, if they are aware of the Web-server system’s replicated servers, can actively

route requests. After receiving a request, the Web client selects a node of the cluster and, after

resolving the address mapping, submits the request to the selected node, which is then

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

91

responsible for responding to the client. The same client can send another request and reach

another server. Netscape Communications’ approach is one example of Web-client

scheduling. The load-balancing mechanism for the Netscape Web-server system’s multiple

nodes is as follows.

When a user accesses the Netscape home page (http://www.netscape.com), Navigator

selects a random number i between 1 and the number of servers and directs the user request to

the node wwwi.netscape.com. This approach, which has very limited practical applicability

and is not scalable, might offer utility to corporate intranets. A Second example of Web-client

scheduling is via smart clients. Unlike the traditional approach that does not involve the Web

client, this solution migrate server functionality to the client through a Java applet. The

increased network traffic due to the continued message exchanges among each applet and

server node to monitor node states and network delays, however, is a major drawback.

Moreover, although this solution provides scalability and availability, it lacks client-side

portability [1].

2.3 Client-side Proxies

From the Web cluster point of view, proxy servers are similar to clients. The proxy server

is an important Internet entity that can route client requests to Web-server nodes. Like all

Web-client approaches, this one has limited applicability. We do not further investigate proxy

servers because any load balancing mechanism they carry out requires Internet component

modification. Typically, the same institution or company that manages the distributed Web-

server system does not control the modification.

2.4 DNS-based Approach

Distributed Web-server architectures that use request routing mechanisms on the cluster

side are free of the problems of client-based approaches. Architecture transparency is

typically obtained through a single virtual interface to the outside world, at least at the URL

level. (Other approaches provide a single virtual interface even at the IP level, as we will

explain). The cluster DNS—the authoritative DNS server for the distributed Web system’s

nodes—translates the symbolic site name (URL) to the IP address of one server [13].

This process allows the cluster DNS to implement many policies to select the appropriate

server and spread client requests. The DNS, however, has a limited control on the request

reaching the Web cluster. Between the client and the cluster DNS, many intermediate name

servers can cache the logical-name-to-IP address mapping to reduce network traffic.

Moreover, every Web client browser typically caches some address resolution. Besides

providing a node’s IP address, the DNS also specifies a validity period (Time-To-Live, or

TTL) for caching the result of the logical name resolution. When the TTL expires, the

address-mapping request is forwarded to the cluster DNS for assignment to a Web-server

node; otherwise, an intermediate name server handles the request—Figure 1 shows both

resolutions. If an intermediate name server holds a valid mapping for the cluster URL, it

resolves the address-mapping request without forwarding it to another name server.

Otherwise, the address request reaches the cluster DNS, which selects the IP, address of a

Web server and the TTL. The URL-to-IP-address mapping and the TTL value are forwarded

to all intermediate name servers along the path and to the client. Several factors limit the DNS

control on address caching. First, the TTL period does not work on the browser caching.

Moreover, the DNS might be unable to reduce the TTL to values close to zero because of non

cooperative intermediate name servers that ignore very small TTL periods. On the other hand,

the limited control on client requests prevents the DNS from becoming a potential bottleneck.

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

92

We distinguish the DNS-based architectures by the scheduling algorithm that the cluster DNS

uses to balance the Web-server nodes’ load. With constant TTL algorithms, the DNS selects

servers on the basis of system state information and assigns the same TTL value to all

address-mapping requests. Alternatively, adaptive TTL algorithms adapt the TTL values on

the basis of dynamic information from servers and/or clients [1][2][3].

Figure 1: Web Clients Based Approach

2.5 Constant TTL Algorithms

These algorithms are classified by the system state information that the DNS uses to

select a web server node -none, client load or client location, server load, or a combination

[1].

2.6 System-stateless Algorithms

The Round Robin DNS (RRDNS) approach, first implemented by the National Centre for

Supercomputing Applications (NCSA) to handle increased traffic at its site, is for a

distributed homogeneous Web-server architecture.4 NCSA developed a Web cluster

comprising the following entities: a group of loosely coupled Web-server nodes to respond to

HTTP requests; a distributed file system that manages the entire WWW document tree; and

one primary DNS for the entire Web-server system. With an overloaded or nonoperational

server, no mechanism can stop the clients from continuing to try to access the Web site by its

cached address. The RR-DNS policy’s poor performance needs research into alternative DNS

routing schemes that require additional system information.

2.7 Server-state-based Algorithms

Knowledge of server state conditions is essential for a highly available Web-server

system to exclude servers that are unreachable because of faults or congestion. DNS policies,

combined with a simple feedback alarm mechanism from highly utilized servers, effectively

avoid Web-server system overload [19][20]. The DNS, after receiving an address request,

selects the least-loaded server. To inhibit address caching at name servers, the lbm named

algorithm requires that the DNS sets the TTL value to zero.

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

93

2.8 Client-state-based Algorithms

Two kinds of information can come from the client side: the typical load that arrives at

the Web-server system from each connected domain and the client’s geographical location.

The hidden load weight index measures the average number of data requests sent from each

connected domain to a Web site during the TTL caching period following an address-

mapping request. (A normalized hidden load weight represents the domain request rate.)

Proposed DNS scheduling policies, which chiefly use this information to assign requests to

the most appropriate server, try to identify the requesting domain and the hidden load weight

imposed by this domain. One example of this algorithm is the multitier round-robin policy,

which uses different round-robin chains for requests in domains of different hidden load

weights [10][11][12].

The Distributed Director evaluates the approximate client location using the IP address of

the client’s local DNS server. A third alternative is the Internet2 Distributed Storage

Infrastructure system (I2-DSI), which proposes a smart DNS that implements address

resolution criteria on the basis of network proximity information, such as round-trip delays.

These geographic DNS-based algorithms do not work well if URL-to-IP-address mapping is

always cached by the intermediate name servers. To make them work, the cluster DNS sets

the TTL to zero. However, this solution is limited by non cooperative name servers [1][2].

2.9 Server and client-state-based Algorithms

DNS algorithms are most effective when they use both client and server state conditions.

For example, the Distributed Director DNS algorithm uses server availability information

along with client proximity. Similarly, the hidden load weight may be insufficient to predict

the load conditions at each Web server node. An asynchronous alarm feedback from over

utilized servers lets newer DNS policies exclude those servers from request assignments

during overload conditions and instead use the client-state-based algorithms to select an

eligible server from the non overloaded servers. To acquire the system state information

needed by the enhanced DNS scheduling algorithms requires efficient state estimators, and

several dynamic approaches have been suggested.

2.10 Adaptive TTL Algorithms

To balance the load across multiple Web-server nodes, the DNS can exert control through

both the policy for server scheduling and the algorithm for selecting the TTL value. Constant

TTL algorithms cannot adequately address client request skew and probable heterogeneity of

server capacities, so we have devised dynamic (adaptive) TTL scheduling policies. The

algorithms use some server- and client-state-based DNS policy to select the server, and

dynamically adjust the TTL value. Therefore, by properly selecting the TTL value for each

address request, the DNS can control the subsequent requests to reduce the load skews that

primarily cause overloading.

Adaptive TTL algorithms use a two-step decision process. First, the DNS selects the

Web-server node similarly to the hidden load weight algorithms. Second, the DNS chooses

the appropriate value for the TTL period. Adaptive TTL algorithms can easily scale from

LANs to WANs because they require only information that can be dynamically gathered by

the DNS; namely, the request rate associated with each connected domain and the capacity of

each server [4].

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

94

2.11 DNS-based Architecture Comparison

DNS policies based on detailed server state information (for example, present and past

load) do not effectively balance client requests across servers. The policies are ineffective

because with address caching, each address mapping can cause a burst of future requests to

the selected server and quickly obsolete the current load information. The domain request rate

estimates the impact of each address mapping and is more useful to guide routing decisions.

Scheduling algorithms based on the domain request rate and alarms from overloaded servers

can lead to better load balancing than RR-DNS and maintain high Web site availability.

However, they give less satisfactory results when generalized to a heterogeneous Web-server

system through probabilistic routing. To balance requests among distributed Web server

systems, adaptive TTL algorithms are the most robust and effective, despite skewed loads and

non cooperative name servers. The algorithms, however, do not consider the client-to-server

distance in making scheduling decisions. Furthermore, such policies do not consider the client

level address caching, resulting in subsequent requests from the same client (browser) being

sent to the same server as shown in figure 2.

Figure 2: DNS-based Approach to Load Balancing

Problems exist even at the network-level of address caching because most intermediate

name servers are configured such that they reject very low TTL values [1][2][12].

2.12 Dispatcher-based Approach

To centralize request scheduling and completely control client-request routing, a network

component of the Web-server system acts as a dispatcher. Request routing among servers is

transparent—unlike DNS-based architectures, which deal with addresses at the URL level,

the dispatcher has a single, virtual IP address (IP-SVA). The dispatcher uniquely identifies

each server in the system through a private address that can be at different protocol levels,

depending on the architecture. We differentiate dispatcher-based architectures by routing

mechanism—packet rewriting (single-rewriting or double-rewriting), packet forwarding, or

HTTP redirection. Dispatcher-based architectures typically use simple algorithms to select the

Web server (for example, round-robin, server load) to manage incoming requests, as simple

algorithms help minimize request processing [1][2][4][6].

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

95

2.13 Packet single-rewriting

In some architecture the dispatcher reroutes client to-server packets by rewriting their IP

address, such as in the basic TCP router mechanism. The Web server cluster consists of a

group of nodes and a TCP router that acts as an IP address dispatcher. Figure 3 outlines the

mechanism, in which address i becomes the private IP address of the i-th Web server node.

All HTTP client requests reach the TCP router because the IP-SVA is the only public address.

The dispatcher selects a server for each HTTP request through a round-robin algorithm and

achieves routing by rewriting each incoming packet’s destination IP address. The dispatcher

replaces its IPSVA with the selected server’s IP address. Because a request consists of several

IP packets, the TCP router tracks the source IP address for every established TCP connection

in an address table. The TCP router can thereby always route packets regarding the same

connection to the same Web server node.

Figure 3: Packet single-rewriting by the Dispatcher

Furthermore, the Web server must replace its IP address with the dispatcher’s IP-SVA

before sending the response packets to the client. Therefore, the client is not aware that its

requests are handled by a hidden Web server. This approach provides high system availability

because, when a front-end node fails, its address can be removed from the router’s table to

prevent further request routing. Moreover, the TCP router architecture can be combined with

a DNS-based solution to scale from a LAN- to a WAN-distributed Web system.

2.14 Packet double-rewriting

This mechanism also relies on a centralized dispatcher to schedule and control client

requests but differs from packet single-rewriting in the source address modification of the

server-to-client packets. Instead, the dispatcher modifies all IP addresses, including those in

the response packets. Packet double-rewriting underlies the Internet Engineering Task Force’s

Network Address Translator, shown in Figure 4. The dispatcher receives a client request,

selects the Web-server node and modifies each incoming packet’s IP header, and also

modifies the outgoing packets that compose the requested Web document. Two solutions

using this approach (with a server fault-detection mechanism) are the Magicrouter and Cisco

Systems’ LocalDirector [14].

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

96

Figure 4: Packet double-rewriting by the Dispatcher

2.15 Packet Forwarding

Several other approaches may use the dispatcher to forward client packets to the servers

as an alternative of rewriting their IP addresses.

2.16 Network Dispatcher

IBM’s Network Dispatcher extends the basic TCP router mechanism. The Network

Dispatcher works with both LANs. The LAN Network Dispatcher assumes that the dispatcher

and the server nodes are on the same local network. All share an IP-SVA address; however,

the client packets reach the dispatcher because the Web nodes have disabled the Address

Resolution Protocol (ARP) mechanism. The dispatcher can forward these packets to the

selected server using its physical (MAC) address on the LAN without IP header modification.

Unlike the basic TCP router mechanism, neither the LAN Network Dispatcher nor its Web

servers need modify the response packets’ IP header. With this mechanism, similar to that

shown in Figure 2, address i is the private hardware MAC address of the i-th Web-server

node. This solution is both client- and server-transparent because it does not require packet

rewriting. The dispatcher’s scheduling policy can be dynamically based on server load and

availability [1][2][21].

2.17 ONE-IP Address

Another forwarding approach uses the ifconfig alias option to configure a Web server

system with multiple machines. This solution publicizes the Web-server system’s IP-SVA as

the same secondary IP address of all nodes and can be implemented with two techniques.

Routing-based dispatching requires that all packets directed to the ONE-IP address are first

rerouted by the sub network router to the IP address dispatcher of the distributed Web-server

system. The dispatcher selects the destination server based on a hash function that maps the

client IP address into a server’s primary IP address, then reroutes the packet to the selected

server. This approach provides a static assignment; however, it guarantees that all packets

belonging to the same TCP connection are directed to the same server. Broadcast-based

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

97

dispatching requires that the sub network router broadcast the packets having ONE-IP as a

destination address to every server in the Web system [9].

2.18 HTTP Redirection

A centralized dispatcher receives all incoming requests and distributes them among the

web server nodes through the HTTP’s redirection mechanism. The dispatcher redirects a

request by specifying the appropriate status code in the response, indicating in its header the

server address where the client can get the desired document. Such redirection is largely

transparent; at most, users might notice an increased response time. Unlike most dispatcher-

based solutions, HTTP redirection does not require IP address modification of packets

reaching or leaving the Web-server system. HTTP redirection can be implemented with two

techniques. Server-state-based dispatching, used by the Distributed Server Groups

architecture, adds new methods to HTTP protocol to administer the Web system and

exchange messages between the dispatcher and the servers. Since the dispatcher must be

aware of the server load, each server periodically reports the number of processes in its run

queue and the number of received requests per second as shown in figure 5 [23].

Figure 5 : HTTP redirection by the server

2.19 Dispatcher-based Architecture Comparison

Packet double-rewriting by the dispatcher presents problems because the dispatcher must

rewrite incoming as well as outgoing packets, and outgoing packets typically outnumber

incoming request packets. Packet single-rewriting, which the TCP router architecture uses,

sustains the same overhead of rewriting in both directions but it reduces dispatcher

bottlenecks because the Web servers rewrite the more numerous servers-to client packets. The

ONE-IP approach, however, can have problems with the static scheduling algorithm, which

does not consider the server state for routing decisions. While routing-based dispatching

requires double rerouting of each packet, broadcast-based dispatching broadcasts all packets

to every server, thus causing even higher server overhead. The LAN Network Dispatcher

architecture avoids most of ONE-IP’s traffic problems, and TCP router and double-rewriting

overheads, but it lacks geographical scalability as it requires the same network segment to

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

98

connect the dispatcher and the Web server nodes. HTTP redirection can be finely applied to

LANs but it duplicates the number of necessary TCP connection [1][2].

2.20 Server-based Approach

A request is served or redirected depending on several factors. Redirection mechanisms

are synchronously or asynchronously activated, and redirected entities can be individual

clients or entire domains. Asynchronous activation occurs when the DNS-selected server

determines that another server would better answer the client request—perhaps one server is

overloaded, or another server is closer to the client domain. Redirecting individual client

connections is crucial to better load balancing at a fine granularity level [15][16][17][18].

Each Web server redirects requests according to server selection that minimizes the client

request’s response time, a value estimated on the basis of server processing capabilities and

Internet bandwidth/delay. These mechanisms imply an overhead of intra cluster

communications, as every server must periodically transmit status information to the cluster

DNS or other servers, but such cost only negligibly affects client-request-generated network

traffic. To users, HTTP redirection’s main drawback is increased response time, since each

redirected request requires a new client-server connection [1][2][22].

2.22 Packet Redirection

Distributed Packet Rewriting (DPR) by the server uses a round-robin DNS mechanism to

schedule the requests among the Web servers. The server reached by a request reroutes the

connection to another server through a packet-rewriting mechanism that, unlike HTTP

redirection, is transparent to the client. Two load-balancing algorithms spread client requests.

The first uses static (stateless) routing, where a hash function applied to both the sender’s IP

address and the port number determines each packet’s destination server. DPR can be applied

to both LAN- and WAN-distributed Web-server systems, but the packet-rewriting and -

redirecting mechanism causes a delay that can be significant in WAN-distributed Web-server

systems [24][25][26][27].

Table 1: Comparative Study of Load Balancing Approaches

Approach
Scheduling Pros Cons

Client-based Client side No server overhead Limited applicability

 Distributed LAN and WAN solution Medium-coarse-grained
balancing

DNS-based Web system side No bottleneck Partial control

 Centralized LAN and WAN solution Coarse-grained balancing

Dispatcher-
based

Web system side Distributed control Latency time
increase(HTTP)

 Centralized Full control LAN solution packet
rewriting overhead

Server-
based

Web system side Distributed control Latency time increase
(HTTP)

 Distributed Fine-grained balancing,
LAN and WAN solution

Packet rewriting overhead
(DPR)

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

99

3. Proposed Architecture

The models and various other aspects specific to architectural design and other

information that we are going to implement for the development of software model

where the incoming load from the client can be distributed efficiently over the web

server system. The HTTP request coming from the client would be distributed by

following the DNS Dispatching method using the Round Robin and proximity based

Scheduling algorithm and output would be load balanced servers. The initial

architecture would use the open source software such as BIND for DNS, JMeter for

generating processes for client request, coding for the Dispatcher and Apache Tomcat

Web Server for simulation. The software development model used to remove the

defects as they come and enhance the system as much as possible [28][29][30][31].

3.1 Architectural Design of the Proposed Model

On the basis of several architectural design of various models and knowing there

pros and cons, we have tried to design a model that should fulfill our requirements as

shown in figure 6. We have designed an architecture that consists of following

components:

 A DNS Server, Dispatcher Selector,

 N- Dispatcher (corresponding to N Clusters i.e. one for each cluster),

 Load Collector for each Dispatcher, Alarm Monitor for each Dispatcher,

 Load Checker for each Server, Request Counter for each Server.

A DNS server is one which is initially communicating with client for the request to

convert its required URL into IP Address. Since every cluster has single Dispatcher,

therefore Dispatcher Selector is directly connected to every Dispatcher. Each

Dispatcher is directly connected to all the Web Servers in its cluster. Each Dispatcher

consists of one Load Collector which collects the load of each server. Each Dispatcher

also consists of one Alarm Monitor which checks the load on every server and

temporarily stops the service of Web Server whose load becomes high. Whereas each

Server consists of one Load Checker and one Request Counter which calculates and

sends the information of load on server.

Figure 6 : Architectural design of dispatcher based dynamic load balancing

model

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

100

4. Implementation and Testing

4.1 Modules Implemented

The algorithm of the proposed system is further alienated in various modules and later all

of them were integrated into the whole architecture comprising of the dispatcher, server, and

clients. The architecture was capable enough of deciding the best suited server for a particular

client, on the basis of various chosen parameters like response time, CPU utilization,

throughput and bandwidth. The modules are as follows:

 Establishing the architecture involving client, server and dispatcher.

 Calculation of response time of all the participating servers.

 Calculation of the CPU utilization of all the participating servers.

 Calculating the throughput of all the participating servers.

 Sending all the valid calculated data to the dispatcher which would further act as a

decisive system and decide the best suited server for the requesting clients.

4.2 Concepts involved during implementation

CPU utilization is one of those performance factors that is both grossly underrated and

overrated at the same time. Most people have never even heard of it; it often seems though

that a big percentage of those who do understand its role worry about it way too much. Like

most performance issues, sweating small differences in numbers is usually pointless; it

doesn't matter much if your CPU utilization is 5% or 10%; but if it is 80% or 90% then you

are going to see an impact on the usability of the system if you multitask. Another key issue is

that faster drives transfer more data, and more data--all else being equal--requires more

processing time. It's totally invalid to compare the CPU utilization of drives of different

generations without correcting for this very important consideration. In this system we have

used CPU as a factor for deciding the least loaded server. Following are the basic steps:

 Dispatcher is the decisive system that requests each of the servers for their respective

CPU utilization.

 Each of the servers calculates their CPU utilization and sends them to the dispatcher.

 The whole process uses the concept of RMI i.e. Remote Method Invocation.

 The main formula used for this process is :

Response time measures the performance of an individual transaction or query. Response

time is typically treated as the elapsed time from the moment that a user enters a command or

activates a function until the time that the application indicates the command or function has

completed. The response time for a typical Dynamic Server application includes the

following sequence of actions. Each action requires a certain amount of time.

Throughput is essentially synonymous to digital bandwidth consumption. Since a client

server interaction is not a single interaction since we are using Single packet rewriting

approach a single server would be catering to the same client over a period of time and hence

we need to calculate the throughput i.e. the number of successful requests send in a particular

time period.

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

101

There are following steps involved in the throughput calculation:

 We have assigned an arbitrary time period to our dispatcher of 2 sec for the

calculation of throughput.

 The dispatcher records the initial time and starts sending requests to the server

and along with it computes the number of successful responses.

 At the end of 2 sec the number of successful responses is computed and this is

our throughput.

The function and formula used for calculation of throughput are:

 Take a loop starting from 1 to 1000000

 Calls an arbitrary function on the server.

 Record the no. of successful connection established.

 Divide the no. of successful connections made by 1, to get the throughput.

Apache JMeter may be used to test performance both on static and dynamic resources

(files, Servlets, Perl scripts, Java Objects, Data Bases and Queries, FTP Servers and more). It

can be used to simulate a heavy load on a server, network or object to test its strength or to

analyze overall performance under different load types. You can use it to make a graphical

analysis of performance or to test your server/script/object behavior under heavy concurrent

load [7].

4.3 Test Plan

To test the model, we have used a distributed testing approach of JMeter. In this

approach, we have made one master system and several other slave systems. Then a test plan

is designed on a master system in such a way that multiple threads (users) are generated on

each slave on command given through master system. Each thread is capable of sending

different types of requests (in our case it is HTTP request) on the system under test (in this

case it is System of Web Servers). Thus creating load on the specific system under testing.

To test our we designed a test plan with one master system and three slave system and

created total of 17000 threads (users) on the Web Server System to create load and evaluate

the performance test of the System. The test plan which we have designed has following

specification:

No. of master: 1

No. of slave: 3

No. of threads (user) generated: 17000

Loop count: 1

Server Name or IP: www.webservice.com

Path : website

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

102

4.3.1 Test Procedure and Results

To test the model with the above designed test plan, we had run the test plan under two

different conditions and the results in various forms are collected. We have collected the

result in following forms:

Throughput graph, % Error in responding from Web server, and Average response time

of the System and its graph.

These results are finally compared with each other in this section. The two conditions

under which the test is done and there results are as follows:

4.3.2 Test under Simple Condition (without load balancing)

In this condition, test is performed on a simple single Web Server with apache tomcat

web server software installed on it and a simple HTML website is hosted on it. This is the

simplest possible web server’s architecture without load balancing implementation. Various

results are as follows:

Table 2: Results of Testing in Simple Condition

Parameters Value

No of request Served 14164

Average Response
time 2400ms

% Error 21.45

Throughput 53.9/sec

4.3.3 Test Under the Architecture Condition (with load balancing)

In this condition, test is performed on web server’s system with our architecture with on

cluster having two web servers with apache tomcat web server software installed on it and a

simple HTML website is hosted on it. Various result of this test is as follows:

Table 3: Results of Testing in Proposed Architectural Condition

Parameters Value

No of request Served 16581

Average Response time 512 ms

% Error 15.28

Throughput 58.1/sec

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

103

Table 4: Comparison of Two Test Conditions

The test results of the two conditions shows clearly that there is improvement in response

time, % Error and throughput after implementing the model is the web server system’s when

there is the large load on these system.

5. Conclusion and Future Work

Dynamic Load Balancing on Web Server System has been used to improve the

availability and reduce the overloading of the Web Servers. After studying the various

classical approaches such as the Client based approach, DNS based approach,

Dispatcher based and Server based approach for load balancing we developed our own

model which is an amalgamation of the DNS and Dispatcher based approach. We have

taken into consideration a few parameters such as CPU utilization and network traffic to

select our Web Server to serve the request. During the development of the design and

architecture we studied the various drawbacks of the existing models and tried to

improve upon them and finally developed the load balancing model.

The testing of the model was done in a real time environment in the lab using testing tools

such as the JMeter. The result of the tests were obtained and compared to prove the

usefulness of our model. The work presented here is still preliminary and there are still areas

where the outlined system could be improved upon. The fact that there are so many areas in

the system that could be further investigated is also encouraging because it means that there is

plenty of scope for future work in this area. Although the model proposed by us solves the

purpose of Dynamic load balancing on Web Server System, it can be considered as a base

model or preliminary work. The main goal of the model is to minimize the worst case

scenario i.e., to avoid that server node drops request and eventually crashes. To this purpose

we have taken into consideration the CPU utilization and network traffic, but there are several

other parameters that can be considered such as the no of active TCP/IP connections and

setting a limit for maximum cluster utilization.

Considering the network bandwidth and proximity of the web server is also an important

aspect. Further emphasis can be given on improving the throughput and response time of the

web servers. The area has a great potential and a very important aspect of distributed

system. Load balancing is a concept which is still under research. Everyday new

algorithms are being developed and existing models are studied. Hence there is a vast

scope for future enhancement.

Parameters
Value (without load

balancing Condition)
Value (with load balancing

Condition)

No of request Served 14164 16581

Average Response
time 2400 ms 512 ms

% Error 21.45 15.28

Throughput 53.9/sec 58.1/sec

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

104

References

[1] Cardellini, Colajanni, and Philip S. Yu, ―Dynamic Load balancing on web-server systems‖, published in

IEEE internet Computing, vol. 3, no. 3, pp 28-39, 1999.

[2] Cardellini, Colajanni, and Philip S. Yu, ―Dynamic Load Balancing in geographically Distributed

Heterogeneous Web Server‖, published in the proceedings of IEEE 18th International Conference on

Distributed Computing Systems, at Amsterdam, The Netherlands, pp, 295-302, May 1998.

[3] Dheeraj Sanghi, Pankaj Jalote, Puneet Agarwal, ―A Testbed For Performance Evaluation of Load Balancing

Schemes for Web Server Systems‖, Department of Computer Science & Engineering, IIT Kanpur, India.

[4] D. Anderen, T. Yang, V. Holmedahl, O. H. Ibarra, ―SWEB: Toward a scalable World Wide Web server on

minicomputers‖, Proc. IPPS’06, Honolulu, pp. 850-856, April 1996.

[5] O. K. Tonguz and E. Yanmaz, ―On the Theory of Dynamic Load Balancing,‖ in Proc. IEEE Global Telecom.

Conf. (GLOBECOM’03), vol. 7, pp. 3626-3630, Dec. 2003.

[6] J. C. I. Chuang, ―Performance Issues and Algorithms for Dynamic Channel Assignment,‖ IEEE J. Sel. Areas

Commun., vol. 11, no. 6, pp. 955-963, Aug. 1993.

[7] E. Yanmaz and O. K. Tonguz, ―Dynamic Load Balancing and Sharing Performance of Integrated Wireless

Networks,‖ IEEE JSAC Special issue on Advanced Mobility Management and QoS Protocols for Next

Generation Wireless Internet, vol. 22, no. 5, pp. 862-872, June 2004.

[8] E.Yanmaz and O. K. Tonguz, ―Location Dependent Dynamic Load Balancing,‖in Proc. IEEE Global

Telecom. Conf. (GLOBECOM’05), Dec. 2005, in press. IEEE Globecom 2005 602 0-7803-9415-1/05/$20.00

© 2005 IEEE.

[9] Abrahams, D. M. and Rizzardi, F., The Berkeley Interactive Statistical System. W. W. Norton, 1988.

[10] Agrawal, R. and Ezzet, A., Location independent remote execution in NEST. IEEE Trans. Softw. Eng. 13, 8

(Aug.), 905–912, 1987

[11] Ahmad, I., Ghafoor, A., and Mehrotra, K., Performance prediction of distributed load balancing on

multicomputer systems. In Supercomputing. IEEE, New York, 830–839, 1991

[12] Artsy, Y. and Finkel, R., Designing a process migration facility: The Charlotte experience. IEEE Comput. 22,

1, 47–56, 1989

[13] Barak, A., Shai, G., and Wheeler, R. G., The MOSIX Distributed Operating System: Load Balancing for

UNIX. Springer-Verlag, Berlin, 1993.

[14] Bonomi, F. and Kumar, A., Adaptive optimal load balancing in a nonhomogeneous multiserver system with

a central job scheduler. IEEE Trans. Comput. 39, 10 (Oct.), 1232–1250, 1990.

[15] Bryant, R. M. and Finkel, R. A., A stable distributed scheduling algorithm. In the 2nd International

Conference on Distributed Computing Systems. 314–323, 1981.

[16] Cabrera, F. 1986. The influence of workload on load balancing strategies. In Proceedings of the Usenix

Summer Conference (June). USENIX Assoc., Berkeley, Calif., 446–458.

[17] Casas, J., Clark, D. L., Konuru, R., Otto, S. W., Prouty, R. M., and Walpole, J., Mpvm: A migration

transparent version of pvm. Comput. Syst. 8, 2 (Spring), 171–216,1995.

[18] Casavant, T. L. and Kuhl, J. G., Analysis of three dynamic distributed load-balancing strategies with varying

global information requirements. In the 7th International Conference on Distributed Computing Systems

(Sept.). IEEE, New York, 185–192, 1987.

[19] Chowdhury, S., The greedy load sharing algorithm. J. Parallel Distrib. Comput. 9, 93–99,1990.

[20] De Paoli, D. and Goscinski, A., The rhodos migration facility. Tech. Rep. TR C95-36, School of Computing

and Mathematics, Deakin Univ., Victoria, Australia. Available via http://www.cm.deakin.edu.au/ rhodos/rh

tr95.html#C95-36. Submitted to the Journal of Systems and Software, 1995.

[21] Douglis, F. and Ousterhout, J., Transparent process migration: Design alternatives and the Sprite

implementation. Softw. Pract. Exper. 21, 8 (Aug.), 757–785, 1991.

[22] Downey, A. B. and Harchol--Balter, M., A note on ―The limited performance benefits of migrating active

processes for load sharing.‖ Tech. Rep. UCB/CSD-95-888, Univ. of California, Berkeley, 1990.

[23] Eager, D. L., Lazowska, E. D., and Zhaorjan, J., Adaptive load sharing in homogeneous distributed systems.

IEEE Trans. Softw. Eng. 12, 5 (May), 662–675, 1986.

[24] Eager, D. L., Lazowska, E. D., and Zahorjan, J., The limited performance benefits of migrating active

processes for load sharing. In the ACM SIGMETRICS Conference on Measuring and Modeling of Computer

Systems. ACM, New York, 662–675, 1988.

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

105

[25] Epema, D., An analysis of decay-usage scheduling in multiprocessors. In the ACM SIGMETRICS

Conference on Measurement and Modeling of Computer Systems. ACM, New York, 74–85, 1995.

[26] Evans, D. J. and Butt, W. U. N., Dynamic load balancing using task-transfer probabilities. Parallel Comput.

19, 897–916, 1993.

[27] Hac, A. and Jin, X., Dynamic load balancing in a distributed system using a senderinitiated algorithm. J. Syst.

Softw. 11, 79–94, 1990.

[28] Hennessy, J. L. and Patterson, D. A., Computer Architecture: A Quantitative Approach. Morgan Kaufmann,

San Mateo, California, 1990.

[29] Krueger, P. and Livny, M., A comparison of preemptive and non-preemptive load distributing. In the 8th

International Conference on Distributed Computing Systems. IEEE, New York, 123–130, 1988.

[30] Kunz, T., The influence of different workload descriptions on a heuristic load balancing scheme. IEEE Trans.

Softw. Eng. 17, 7 (July), 725–730, 1991.

[31] Larsen, R. J. and Marx, M. L., An Introduction to Mathematical Statistics and Its Applications. 2nd ed.

Prentice-Hall, Englewood Cliffs, N.J., 1986.

[32] Leland, W. E. and Ott, T. J., Load-balancing heuristics and process behavior. In Proceedings of Performance

’86 and ACM SIGMETRICS. Vol. 14. ACM, New York, 54–69, 1986.

[33] Lin, H. C. and Raghavendra, C., A state-aggregation method for analyzing dynamic load-balancing policies.

In the IEEE 13th International Conference on Distributed Computing Systems. IEEE, New York, 482–489,

1993.

[34] Litzkow, M. and Livny, M., Experience with the Condor distributed batch system. In the IEEE Workshop on

Experimental Distributed Systems. IEEE, New York, 97–101, 1990.

[35] Litzkow, M. and Livny, M., and Mutka, M., Condor—A hunter of idle workstations. In the 8th International

Conference on Distributed Computing Systems. IEEE, New York, 1988.

[36] Livny, M. and Melman, M., Load balancing in homogeneous broadcast distributed systems. In the ACM

Computer Network Performance Symposium (April). ACM, New York, 47–55, 1982.

[37] Milojicic, D. S., Load distribution: Implementation for the Mach microkernel. Ph.D. dissertation, Univ. of

Kaiserslautern, Kaiserslautern, Germany, 1993.

[38] Mirchandaney, R., Towsley, D., and Stankovic, J. A., Adaptive load sharing in heterogeneous distributed

systems. J. Parallel Distributed Computing 9, 331–346, 1990.

[39] Powell, M. and Miller, B., Process migrations in DEMOS/MP. In the 6th ACM Symposium on Operating

Systems Principles (Nov.). ACM, New York, 110–119, 1983.

[40] Pulidas, S., Towsley, D., and Stankovic, J. A., Imbedding gradient estimators in load balancing algorithms. In

the 8th International Conference on Distributed Computing Systems (June). IEEE, New York, 482–490,

1988.

Authors

Harikesh Singh is working as Senior Lecturer in Department of

Computer Science & Engineering, Jaypee University of Engineering &

Technology, Guna (MP), INDIA since 2007. He is pursuing research

work in the area of Grid Computing.

Dr. Shishir Kumar is working as Professor and Head of Department

of Computer Science & Engineering in Jaypee University of Engineering

& Technology, Guna (MP), INDIA since 2005. His area of interest is

Distributed Computing.

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

106

