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S U M M A R Y
The problem of inferring subsurface properties from shallow-seismic data is solved by a two-
stage scheme that fits the full wavefield by its synthetic counterpart. In a first stage (described
in a companion paper) I derive Fourier–Bessel expansion coefficients for the recorded data
through a wavefield transformation. The present paper describes the joint inversion of these
coefficients together with P-wave arrival times to infer subsurface properties. In this way we
exploit the full signal-content including the dispersion of higher-modes, leaky-modes, their
true amplitudes, and, at least partly, body waves.

Owing to the multi-mode character of shallow-seismic field-data conventional techniques of
dispersion analysis are not applicable. Since an initial model appropriate for inversion of full
seismograms is rarely available in shallow seismics, the direct inversion of waveforms is not
feasible. The wavefield transformation removes a remarkable amount of non-linearity from the
data. In consequence the proposed method is robust even in the absence of a priori information.
In distinction to the inversion of dispersion curves, it does not require the identification of
normal-modes prior to inversion. The method performs well when applied to the multi-mode
wavefields present in most shallow-seismic data sets. Compared to waveform fitting, it can be
more efficient by about a factor of ten, because we need not evaluate the Bessel-expansion and
therefore need less calculations of the forward problem.

Subsurface properties are derived for the two sets of field-data that were already presented
in the first paper. One of them includes a pronounced low-velocity channel. For both we
observe a remarkably good resolution of S-velocity down to the bedrock, which is found
in 6 and 16 m depth, respectively. In both cases it would not be possible to infer the depth
of bedrock from P-wave data alone. Synthetic seismograms calculated from the final model
match the recorded waveforms surprisingly well, although no waveform fitting was applied.
A subsequent waveform inversion becomes feasible with initial models taken from the results
of this method.

Finally it is shown by example, that conventional techniques of dispersion-curve fitting are
likely to give misleading results when applied to our field-data.

Key words: full wavefield inversion, joint inversion, low-velocity channel, near-field, Rayleigh
waves, shallow seismics.

1 I N T RO D U C T I O N

1.1 Application of shallow surface-wave inversion

The shear wave velocity in the subsurface is a material property
of interest for many applications like building site characteriza-
tion, ground-water studies, shear strength estimates, or for provid-
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Germany.

ing static corrections in shear-wave surveys. Rayleigh waves provide
direct access to shear wave velocity, are easy to excite and record
and offer an excellent signal-to-noise ratio. In contrast to refraction
seismics, surface wave studies are not limited to media with seismic
velocities increasing with depth. Therefore they are well applicable
in geotechnical tests of the subsurface of pavements.

Surface-wave studies are rather frequent in civil-engineering lit-
erature (e.g. Jones 1958; Nazarian 1984; Gucunski & Woods 1991;
Tokimatsu et al. 1992; Matthews et al. 1996). Many of these studies
apply a method called SASW (spectral analysis of surface waves) by
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Stokoe & Nazarian (1983). An ‘Annotated Bibliography on SASW’
compiled by Hiltunen and Gucunski lists 41 publications in the
years from 1982 to 1993 (Oelsner, private communication, 1999).
27 of them were published in the period from 1988 to 1992. And 20
studies deal with the subsurface of pavements. These studies adopt
techniques originally developed for teleseismic investigations. Most
of them neglect typical properties of shallow-seismic wavefields like
mode interference, dominance of higher modes, osculation points,
and strong leaky-modes. Complications arising from this are dis-
cussed in Paper I (Forbriger 2003, this issue).

1.2 The concept of the proposed inversion scheme

The proposed two-stage inversion infers subsurface properties from
a wavefield transform instead of dispersion curves or waveforms. I
define the (ω, p) transform Gη(ω, p) of the recorded wavefield by
the expansion

uη(t, r ) =
∫ +∞

−∞

∫ +∞

0
Gη(ω, p)Jη(ωpr )p dp e−iωt dω

2π
, (1)

where η = 0 for the vertical component and η = 1 for the radial
component, respectively (Paper I). uη(t , r ) is the corresponding seis-
mogram at offset r and J η is the Bessel function of the first kind.
The (ω, p) transform is a complete representation of the recorded
wavefield. It allows one to exploit the full signal-content including
the dispersion of higher-modes, leaky-modes, and their true ampli-
tudes. It avoids to deal with dispersion in terms of normal modes
and thus any complications arising from mode identification. The
relation between the data and subsurface parameters is significantly
less non-linear than it is for waveform data. Therefore the inver-
sion is robust even in the absence of a priori information and it is
less likely to be trapped in local minima of the objective function.
Further, this approach is potentially more efficient than waveform
fitting, as is substantiated in Paper I.

In addition to the (ω, p) spectrum we use onset-times of refracted
P-waves in a joint inversion. Basically the body waves are also
present in the wavefield transform. However, since refracted waves
are typically of small amplitude and large apparent velocity, they can
be severely disturbed in the spectrum by surface waves that are either
excited by noise sources or scattered by heterogeneity and appear
later in the waveforms but with large apparent phase-velocities in
the geophone line. The onset time of refracted P-waves is a unique
information and is easy to extract. It gives additional constraints on
the P-velocity structure that may be only weakly constrained by the
dispersion of surface waves.

We fit both the (ω, p) transform and the P-wave arrivals by syn-
thetic predictions. The calculation of refracted wave traveltimes is
straightforward for horizontally layered media (Telford et al. 1990,
section 4.3.3). Fourier–Bessel expansion coefficients for the impulse
response of the medium as defined by eq. (1) can be taken from
standard algorithms for the calculation of synthetic seismograms
in plane, laterally homogeneous media. These algorithms typically
expand the wavefield into cylindrical harmonics. A reflectivity code
written by Ungerer (1990) was used for the examples below.

1.3 The structure of this paper

In Section 2 I describe particularities of the iterative least squares
problem where they go beyond textbook subjects. This con-
cerns control parameters like data weights, model damping, model
parametrization, and reasonable parameter ranges. I also have to

discuss the treatment of the source wavelet. It is an essential part
of the data that cannot be described by a simple δ-function. After
describing the inversion itself, I add a resolution analysis that tests
how well constrained the inferred parameters are.

Two quite different field data examples are shown in Section 3.
The first reveals a smooth but strong velocity variation in the sub-
surface. The wavefield is dominated by a higher mode. The second
data set was recorded on a hard pitch. The site has a strong low-
velocity channel due to the hard top asphalt layer. This results in
very specific dispersion characteristics (Paper I). The inversion is
able to resolve vs in the channel. In both cases synthetic waveforms
are calculated from the final model. They match the recorded data
already quite well. Remarkably, this is achieved without waveform
fitting.

Finally, in Section 4, I discuss systematic problems that arise
when conventional techniques are applied to the example data sets.
They are likely to result in misinterpretations.

2 I N V E R S I O N S C H E M E

2.1 Setting up the inverse problem

To outline the elements of the inverse problem I define the penalty
function

E2
n = |W(d − s(mn) − Dδmn)|2 + λ|Sδmn|2 (2)

of the nth iteration. The vector mn contains the initial values of
the inversion parameters for the nth iteration. This may include all
parameters describing the subsurface properties (seismic velocities,
depth of first order discontinuities, Q-values and density) or just a
subset of them. The elements of the vector d are the data values,
which here are both the real P-wave arrival times and the complex
Fourier–Bessel coefficients of the recorded wavefield. The vector
s(mn) denotes the corresponding synthetic predictions, based on
model mn . The elements

Dkl = ∂sk

∂ml

∣∣∣∣
mn

(3)

of the matrix of partial derivatives D are complex valued like the
wavefield expansion coefficients, and have to be recalculated after
each model-update. The matrix W contains real weight factors for
the data and the matrix S, in the damping term, applies weights to
the parameter variations. The factor λ allows to scale the damping,
but usually λ = 1.

The least squares condition E2
n

!= min leads to the system of
linear equations

	{(D†WTWD) + λSTS}δmn = 	 {
D†WTW(d − s(mn))

}
, (4)

where 	{z} means the real part of the complex value z, D† is the
hermitian conjugate of D, and WT is the transpose of W. The next
improved estimate of model parameters follows from the solution
of eq. (4) by

mn+1 = mn + δmn . (5)

The first initial model m1 still must be found by trial and error.
By solving eqs (4) and (5) iteratively we systematically improve

the model parameters. The iteration is stopped when the relative
change of E2 or m falls below a case-specific limit (i.e. when the
operating seismologist is satisfied) or when m leaves the range of
reasonable values.
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2.2 Data weights and misfit

In its simplest form W = diag(W k) is a diagonal matrix, where W k =
1/σ k accounts for the tolerance σ k of the data dk . By this all residuals
in eq. (2) become dimensionless relative values, regardless of their
physical nature. We then may easily combine traveltime data and
expansion coefficients. Aliasing should be considered when defining
the W k (Paper I). Practically they allow to suppress the misleading
influence of aliasing in the (ω, p) coefficients.

Since the number of (ω, p) coefficients is typically much larger
than that of first breaks, the former will dominate in the inversion.
If this is not desired, extra factors have to be applied to the W k to
balance between both data sets.

It is advisable to normalize the W k according to the total number
of the data values so that a misfit

χ 2(m) = |W(d − s(m))|2 (6)

equal to one means that the data are in the average explained by the
subsurface model m within their tolerance. In cases where the phys-
ical meaning of the W k in the sense of data tolerance is questionable,
we simply normalize

χ2(m) = |W(d − s(m))|2
|Wd2| (7)

by the weighted mean square of the data. I prefer to achieve this
by choosing the W k appropriately for |W d|2 = 1, thus making the
denominator in eq. (7) obsolete. For s = 0 we then obtain χ2 = 1.
However, χ 2 = 1 practically means some success in fitting the data,
because we will ensure |s| ≈ |d| in the inversion process.

χ2 measures the portion of the signal energy that is not fitted.
Although this measure is essential to least-squares fitting, its exact
value may be of little objective significance. It depends on highly
subjective decisions like the relative weight given to the P-wave data
relative to the (ω, p) spectrum, the section of the spectrum used for
the inversion, and the distribution of the W k . Besides, the reduc-
tion in misfit that actually can be achieved depends on the model
parametrization. For this reason, I refer to the graphical comparison
of data with synthetics and especially to the waveforms when as-
sessing the finally achieved fit, rather than reducing this information
to the scalar χ 2.

2.3 Damping

Apart from the misfit, the penalty function (2) contains an extra
term |S δm|2. This is used to damp the iterative inversion. It ensures
the regularity of the system (4). When the elements of S are well
chosen, it keeps the model modifications δm in a range, where the
linearization

s(m + δm) ≈ s(m) + Dδm, (8)

inherent in eq. (4), is a useful approximation.
The matrix S applies weights to the model changes δm. In its

simplest form it is a diagonal matrix

S = diag

(
1

rk

)
, (9)

where rk may be regarded as a kind of search range for the parameter
mk . That is the range δmk = ±rk , where reasonable improvements
are expected from the linear approximation (i.e. where eq. 8 holds).
Since the damping term is added to the misfit in eq. (2), the rk

should contain appropriate normalization to balance between both
terms. Scaling all rk with

√
N , where N is the number of inversion

parameters mk , results in a damping term equal to one if the full
search ranges are exploited in the average.

Appropriate search ranges are found by trial and error. For suitable
rk the misfit χ2( m + δm) should decrease with increasing λ, where
δm is the solution of eq. (4) and thus a function of λ. If not, the
model variation δm exceeds the range of the linear approximation
(8) and the search ranges must be chosen smaller. For the examples
that are discussed below suitable ad hoc values for rk have been
found to be 100 m s−1 for the seismic velocities and 0.1 m for the
depth of discontinuities.

The damping term introduced here limits the model variation
within one iteration step. The total model variation relative to the first
initial model m1 still may be arbitrary large. While the terms present
in eq. (2) are a must, it might be helpful to add additional damping
terms relating the model parameter to a reference or to introduce
empirical vp–vs-correlations or a smoothing constraint (Forbriger
2001). In many cases this can be problematic due to the notorious
lack of a priori data in shallow-seismic studies. Nevertheless, it
stabilizes the inversion, and can replace manual interventions in the
iterative process by weak constraints.

2.4 Partial derivatives and model parametrization

If partial derivatives (3) are not available in analytical form, we
have to approximate them through finite differences. We then need
one extra calculation of synthetics s(m) per inversion parameter
mk . This is the numerically most expensive part of the whole pro-
cess. We therefore will try to keep the number of model parameters
small. Notice that we will need much more iterations to reach the
final model than is usual in teleseismic studies, where initial models
typically differ only by a few percent from the final result.

Experience shows that in some cases a stack of only a few ho-
mogeneous layers is inappropriate to describe the observed wave
propagation. In the case of Bietigheim (discussed below) we need a
non-linear continuous variation of the seismic velocities with depth.
Bachrach et al. (2000) theoretically predict an increase of vp and vs

with depth to the power of 1/6 in sand and confirm this by experi-
mental observations.

In the examples below I used an expansion of the model functions
into second order polynomials. This is a good compromise between
the demands to use only few inversion parameters and to describe
smooth variations with depth. However, further experiments with
waveform-fitting for the example Bietigheim, starting from the fi-
nal model presented below, resulted in a significantly improved fit,
when allowing parameter variations that depart from second order
polynomials in the top few metres. The associated small changes
of the velocity model might be regarded as insignificant. But, since
the partial derivatives are model-dependent, this might give hope
to exploit some of the weak constraints on density present in the
data, when allowing more general model variations for the seismic
velocities.

In the examples below the inversion parameters were polynomial
coefficients, while the applied reflectivity algorithm uses a stack
of homogeneous layers. Therefore the forward calculation of syn-
thetic data includes the calculation of a layer-approximation to the
continuous model-functions.

2.5 Ranges of reasonable parameter values

The materials met in the shallow depth range include unconsolidated
sediments and solid bedrock. At interfaces between these two, the
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seismic velocities may change by a factor of five or more. For com-
parison, prominent global discontinuities are much smaller (e.g.
20 per cent at the Moho). Within the unconsolidated sediments we
find material ranging from muddy loam to dry sand. Owing to the
lack of a priori information, we have to expect the inversion results
within a wide parameter range. Since the least-squares criterion it-
self does not ensure the inversion results to be physically feasible,
we have to check them to lie within reasonable ranges.

2.5.1 Velocities and Poisson’s ratio

Observed P-velocities range from 40 m s−1 in dry sand (Bachrach
et al. 1998) to a few km s−1 in solid bedrock. The S-velocities
vary over a similar range but are linked to vp. The vp/vs ratio is
reasonably expected between 1.56 (i.e. a Poisson number of ν =
0.15) and values larger than 10 (i.e. ν > 0.495). ν ≈ 0.15 was
observed by Bachrach et al. (2000) in dry sand and in our example
Bietigheim. ν > 0.495 approaches the case of a liquid (vs = 0 m
s−1, ν = 0.5). Roth & Holliger (2000) report values of vp/vs = 16
(ν = 0.498). Seismic material properties of shallow sediments were
also studied intensively by Stümpel et al. (1984). They report vp/vs

ratios up to 9 (ν = 0.494) in boulder clay and variations from 1.41
(ν = 0) to 4 (ν = 0.47) in dry and partially saturated sand.

2.5.2 Dissipation

Attenuation generally may be strong (Q < 10) in unconsolidated
sediments. Positive seismic velocities and Q-values do not ensure
positive elastic moduli, which are essential to thermodynamic stabil-
ity of the material. Therefore it is necessary to calculate the complex
bulk and shear moduli at each iteration and to check them for positive
real parts and negative imaginary parts (due to the sign convention
of the Fourier transformation used in eq. 1). Then all other elastic
moduli satisfy this condition too.

The properties of dissipative material must be frequency de-
pendent to be causal. In fact sediments show not only frequency-
dependent moduli but also frequency-dependent Q in the seismic
frequency-range (e.g. Spencer 1981; Burkhardt et al. 1992). It is,
however, almost hopeless to infer additional information on the in-
trinsic frequency-dependency. We use velocities and Q-values con-
stant with frequency in the inversion, because the depth variation
of seismic velocities is much larger than the intrinsic frequency-
variation (even for small Q).

Stronger attenuation leads to broader surface-wave peaks in the
(ω, p) domain. However, also spatial tapering influences the form of
the resonance peaks. For this reason I regard the resulting Q-models
as rather qualitative estimates. Comparison of recorded waveforms
with synthetic seismograms calculated from the subsurface models
shows that attenuation is typically underestimated. This is due to
initial Q-models that are still chosen too conservative.

Global reference models like PREM (Dziewonski & Anderson
1981) indicate that dissipation may be mostly due to shear defor-
mation. If this applies to shallow media too, it would be more ap-
propriate to search for Qµ rather than Qp and Qs, and to keep Qκ

large and fixed.

2.5.3 Density

In general surface waves are sensitive to variations in density too.
However, the sensitivity to density is significantly smaller than to
seismic velocity. Therefore we do not vary the values taken for the

initial model except to test for vanishing constraints on density.
Ad hoc values for the initial model are available from standard
references (e.g. Schön 1998).

2.6 The source time-function

The (ω, p) coefficients

dK = G(ωk, pl ) (10a)

of the wavefield are calculated from the recorded waveforms with
respect to eq. (1). Here K = {k, l} denotes unique combinations of
k and l. The corresponding synthetic predictions, which shall fit the
data, are

sK = S(ωk)Gδ(ωk, pl ), (10b)

where Gδ(ωk , pl) is the impulse response of the subsurface model
and S(ωk) are Fourier coefficients of the impulsive response of the
experimental setup (further called ‘field-device response’). The lat-
ter contains both the known contributions like the geophone re-
sponse or the anti-aliasing filter response and the unknown wave-
form of the source (e.g. hammer impact). Since the time constant of
the source process lies within the recorded period band, we cannot
simply approximate it by a delta-impulse function. In order to fit the
data through synthetics we have either to remove the influence of
S(ωk) or to determine it from the data by inversion.

The field-device response coefficients S(ωk) could be regarded
as an extra set of unknowns or model parameters in the inversion.
Then they would be determined in the inversion process along with
the subsurface parameters. I prefer to treat them separately from
the inversion parameters. Two different approaches are discussed
below. The first removes the S(ωk) by normalization of data and
synthetics. The second determines appropriate S(ωk) within each
forward calculation of synthetic predictions sK . Thus as much as
possible is removed from the residuals between data and synthetics
before they enter eq. (2). We use only the unexplained rest to infer
subsurface structure. I regard this as the most conservative approach.

In a similar way the traveltime may contain a systematic delay
due to the trigger mechanism and filter delays. This can be removed
by normalization or can be determined from the data as well, similar
to the handling of (ω, p) coefficients explained below.

2.6.1 Normalizing the (ω, p) coefficients

Alternatively to eqs (10) we may define the data

dK = G(ωk, pl )∑
j W{k, j}G(ωk, p j )

(11a)

and the synthetic predictions

sK = Gδ(ωk, pl )∑
j W{k, j}Gδ(ωk, p j )

, (11b)

with W {k, j} = W K being the appropriate diagonal elements of the
weight matrix W in eq. (2).

This way all (ω, p) coefficients are normalized to a weighted
mean of 1 in a sum over all slowness samples at each frequency.
The influence of the field-device response is thus removed from
both, data and synthetics. The latter will fit the former if appropriate
subsurface parameters are used to calculate Gδ(ωk , pl). The (ω, p)
coefficients may be small due to destructive interference of waves or
may compensate in the sum. Hence a lower bound should be applied
to the denominator of eqs (11) to avoid numerical overflow.
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2.6.2 Determining the field-device response

The subsurface parameters and the source time-function have rather
independent influence to the predictions (10b). While the subsurface
parameters influence the location, width, and amplitude of individ-
ual maxima of Gδ(ωk , pl) in the (ω, p) plane, the coefficients S(ωk)
of the field-device response will affect the amplitude and phase of
all coefficients at a given frequency in the same way. The (ω, p)
coefficients at a single phase-slowness can be explained by an ap-
propriately chosen S(ωk) alone. If we, however, demand a good
fit for all pl at once we can determine subsurface parameters and
field-device response independently.

Field-device response coefficients

S(ωk) =
∑

l W 2
{k,l}G

∗
δ (ωk, pl )G(ωk, pl )∑

l W 2
{k,l}G

∗
δ (ωk, pl )Gδ(ωk, pl )

(12)

fit the data in a least-squares sense. Here G∗
δ is the complex con-

jugate of Gδ . Again it is advisable to apply a lower bound to the
denominator.

The true force time-function of the hammer can be estimated
by fitting a filtered trial function to S(ωk). Examples are discussed
below.

2.6.3 When to use which of both alternatives

At an early stage of the iterative inversion the S(ωk) determined
from eq. (12) are completely meaningless since Gδ(ωk , pl) is still far
from describing the observed wave propagation. I therefore propose
to start the inversion with the normalization of (ω, p) coefficients.
This approach also removes the field-device amplitude spectrum and
thus allows an equal contribution of all frequencies to the inversion
result.

At that early stage it also might be advisable to use the real abso-
lute value of Gδ(ωk , pl) and G(ωk , pl) rather than the complex val-
ues. The varying phase may destabilize the inversion as long as the
dispersion characteristics of the data and synthetics are in bad misfit.
As well it can be helpful to use the logarithm of the amplitude. This
allows modes with smaller amplitudes in the wavefield-transform
to contribute stronger to the resulting subsurface model.

It is not necessary to actually determine the S(ωk) until we really
want to infer the time-function or calculate synthetic seismograms
for comparison with recorded waveforms.

When inverting only the modulus of G(ωk , pl), it can be helpful
to calculate a real amplitude factor by eq. (12) rather than using
normalization. This will lead to vanishing amplitudes of synthetic
predictions and partial derivatives at frequencies where they do not
match the observed data at all. Thus implicitly only those spectral
intervals influence the inversion where the predictions are already
appropriate. This stabilizes the whole procedure. With ongoing it-
eration larger (ω, p) intervals will contribute.

2.7 The inversion process

2.7.1 The initial model

An initial model for vp is most easily found by standard refrac-
tion inversion. As a first guess the vs model may be taken from
vs = vp/

√
3. Density is taken from standard references and Q-values

are simply guessed. The latter should be taken rather too small than
too large, since large Q results in narrow maxima of large amplitude
in the (ω, p) spectrum. For broad maxima the iterative inversion be-
comes more robust at an early stage where data and synthetics hardly
match.

Usually the initial vs-model is far from explaining the
(ω, p) spectrum of the observed wavefield. A suitable initial model
for the least-squares inversion must be found by trial and error. If
the surface wave maxima in the predicted (ω, p) spectrum are at
phase slowness values smaller than in the recorded wavefield, vs-
values in the model have to be decreased and vice versa. If the
transition to larger phase slowness values of a dispersion curve ap-
pears at frequencies larger than in the observed data, the depth of
model discontinuities has to be increased and vice versa. This man-
ual procedure must be continued until the predicted and the observed
maxima touch at least at one frequency.

2.7.2 Twofold iteration

The actual least-squares inversion involves a twofold iteration. The
automatic least squares inversion must be iterated due to the non-
linearity of the problem. This process of improving inversion pa-
rameters cannot be done manually due to the multidimensionality
of the parameter space and trade-off between parameters. However,
the automatic inversion may produce unreasonable results in some
regions of the model due to noise in the data, lack of resolution, in-
appropriate parametrization, and lack of a reliable reference model
to which we could constrain the inversion. For this reason we have to
intervene manually by explicitly changing model values, removing
or adding model parameters from/to the set of inversion parameters,
changing additional constraints or weighting parameters, etc. Then
the automatic inversion is started again, now with another, already
improved initial model.

This scheme is iterated until the automatic inversion no longer
produces a significant misfit reduction. Apart from being unavoid-
able, the frequent manual interventions help the operator to gain an
intuitive knowledge about the resolution capabilities of the partic-
ular data set. Besides, it is useful to check for extremes of possible
parameter values like the maximum depth of the halfspace.

Each sequence of automatic iterations may include 10 to 50 steps.
And the whole process may include 10 to 20 manual interventions
depending on how many different model alternatives should be
tested. On a modern Personal-Computer this can conveniently be
done in interactive mode.

2.8 Resolution analysis (‘Rubberband test’)

Resolution analysis for non-linear inversion problems can hardly be
accomplished by a single test. At many places in the parameter space
we might find alternative models that resemble the inferred model
in the quality of the data-fit obtained from them. To test for this,
the manual interventions in the inversion procedure are essential.
Local, quantitative resolution analysis is based on the matrix of
partial derivatives. I supplement the inversion results, given in the
examples below, with a simple (but instructive) linear test. It gives
a local estimate of constrainedness by linear extrapolation of the
predicted data. The concept of this test is due to Wielandt (private
communication, 1998). A similar, more elaborate discussion is given
by Jackson (1976).

We start from an optimized model mopt, i.e. a minimum of E2.
Varying the Lth model parameter mL by �mL will increase the misfit
between predicted and recorded data. At the same time we may add
changes δml to all other model parameters to keep the increase in the
misfit as small as possible. This accounts for the trade-off between
model parameters. How large is the allowed model variation in this
sense, when allowing a maximum increase of �χ2

max in the misfit? I
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will ask this question in turn for every model parameter. This test is
easily implemented in the standard least-squares algorithm as will
be explained.

The test can be visualized as follows: I seize one model-parameter
curve at any depth. Then I pull it to one direction (e.g. increasing
velocity or decreasing the depth of a discontinuity). The curve will
bend, like a rubber band, but with different shape. The rubber band
bends in a way that keeps the potential energy small. The model
curve bends in a way that keeps �χ2 small. The weaker the con-
straints, the more bending is possible until a threshold �χ 2

max is
reached.

Rather than discussing only the misfit I use the penalty function

E2(δm + mopt) = |W(d − s(mopt) − Dδm)|2 + λ|Sδm|2. (13)

Here mopt is the inversion result, the ‘optimum’ model, a minimum
of E2. The partial derivatives D are calculated for this model. The
factor λ allows to study the influence of the damping conditions
on the inversion result. A test for �χ 2 is accomplished by setting
λ = 0.

We now study the increase

�E2(�mL ) = E2(δm + mopt) − E2(mopt) (14)

Figure 1. Data set Bietigheim: (ω, p) spectrum of the recorded data. The grey-scale gives the modulus of the complex wavefield coefficients that are calculated
with the modified Hankel transformation (Paper I). The most prominent signals are the fundamental Rayleigh mode between 10 and 30 Hz and the first higher
mode that dominates at frequencies larger than 30 Hz. The hatched area gives a measure of the maximum resolution possible for a spread length of 66 m.
Aliasing is avoided by a dense effective geophone interval of 1 m in the combined data set.

of E2, where we set the Lth element of δm

(δm)L
!= �mL (15)

and optimize all other elements in δm to keep �E2 small. Abbre-
viating M = D†WTW D + λSTS we obtain

�E2(�mL ) = δmMδm

=
∑

l �=L ,n �=L

δml Mlnδmn +
∑
l �=L

δml�mL (Ml L + MLl )

+ �mL ML L�mL . (16)

Since mopt itself is an extremum of E2, �E2(�mL) has only terms
quadratic in δm. The sums are formed for all values of l and
n, except for l = L and n = L . Keeping �E2 small by opti-
mizing all δml with l �= L is a least squares criterion equivalent
to

∂�E2

∂δml
= 0 for all l �= L (17)

which is∑
n �=L

Rlnδmn + Rl L�mL = 0 (18)
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Figure 2. Data set Bietigheim: Final model and traveltime fit. The left graph gives the variation of seismic velocities with depth as inferred by a joint inversion
of the (ω, p) spectrum (Fig. 1) and the P-wave first arrivals. The right graph gives the picked P-wave arrival times with error bars and the traveltimes predicted
by the final model.

Figure 3. Data set Bietigheim: Spectrum of the synthetic Green’s function Gδ(ω, p) for the final model (Fig. 2). It fits the (ω, p) spectrum of the data (Fig. 1) in
a least-squares sense. The fundamental mode and the first higher mode are predicted correctly. Like in the data, the first higher mode dominates at frequencies
larger than 30 Hz. Whether the feature in the data at 25 Hz and 1 s/km can be explained by the second and third higher mode remains questionable due to the
limited data quality.

C© 2003 RAS, GJI, 153, 735–752



742 T. Forbriger

for all l �= L with R = 	(M). We obtain a numerical solution for
the δmn by setting

�mL = 1. (19)

Eqs (18) and (19) can be combined to the system of linear
equations

R′δmL = eL , (20)

where R′ is derived from R by setting the Lth row to zero except the
Lth element which is set to one. The vector eL has only elements
of zero, except the Lth element, which is one. The solution δmL of
eq. (20) is the model variation with least �E2 when setting the
model parameter �mL = 1. From this we calculate

�mLmax =
√

�E2
max

δmL MδmL
δmL (21)

which is the total model variation for a maximum variation of model
parameter L while allowing for an increase of E2 by �E2

max. By
comparison of eqs (4) and (20) we find that this resolution analysis
can be carried out with the inversion algorithm by simply modifying
the Lth row of the system matrix and the inhomgeneous term in
eq. (4).

In the examples below, I will display mopt ± �mLmax rather than
±�mLmax alone, because this graphically links the test results to the
final model. It must be emphasized however, that mopt ± �mLmax,
although discussed in model space, are not valid alternative models.
The test gives a local estimate of constrainedness by linear extrapo-
lation. In the case of model parameters being almost unconstrained
by the data, mopt ± �mLmax may easily leave the range of reasonable
parameter values and may even have negative values. The change
�E2 calculated by exact evaluation of s (mopt ± �mLmax) may be
larger or smaller than �E2

max in any case.
Since mopt is a minimum of E2, all constant terms and terms

linear in δm cancel out in eq. (14). The terms remaining in eq. (16)
are quadratic in δm and independent of the data d. �E2 measures
only the increase of E2 relative to the best-fit synthetics, regardless
of the total fit. Only �E2 in relation to the constant terms in eq.
(14) gives a measure relative to the data and I will specify �E2

max/

E2(mopt) in the examples below.
Notice that

√
�E2

max in eq. (21) serves as a scaling factor for the
plot of mopt ± �mLmax in the first place. We will tend to choose
small values to keep the less constrained parameters within the plot
range. Furthermore, all remarks on χ2 in Section 2.2 apply to �E2,
too. Eq. (21) implicitly depends on subjective decisions like the
distribution of data weights or the range of (ω, p) coefficients used.
Parts of the data that are badly fitted by mopt may contribute an
apparent resolution just because �mLmax has an influence on the
synthetics. Thus along with the formal resolution analysis the source
of observed constraints must be discussed as is done in the examples
below. In that context a look at the partial derivatives can be very
instructive.

3 F I E L D - DATA E X A M P L E S

I already discussed two data sets in Paper I, illustrating the properties
of the wavefield transform. They are examples for typical classes of
subsurface structure. Here I continue with an inversion leading to a
model for the subsurface of each of the discussed sites.

3.1 Data set Bietigheim

The (ω, p) spectrum of the data set, as discussed in Paper I, is
shown in Fig. 1. By joint inversion of the (ω, p) coefficients and

the first arrivals (Fig. 2, right) the subsurface model given in Fig. 2
(left) was obtained. The arrival times predicted by the model fit the
observations. A spectrum of the Green’s function Gδ(ω, p) for this
model is shown in Fig. 3. It reproduces the Rayleigh-wave dispersion
of the observed wavefield as well as the amplitude excitation. The
first higher mode dominates at frequencies greater than 30 Hz.

I distinguish three different regions in the model. The uppermost
2.5 m have small velocities with significant depth-dependent varia-
tion, here parametrized by second order polynomials. The material
here is weathered loam. A linear gradient is not sufficient to explain
the almost linear p(ω) relation of the dispersion above 20 Hz. At
least a variation of second order is essential to produce this feature.
Bachrach et al. (2000) show a similar strong variation of seismic
velocities in the very shallow subsurface. They explain their ob-
servation by the pressure dependency of effective elastic moduli in
sand. This may be a feature common to all unconsolidated sediments
in the shallow region.

From 2 m to 16 m depth we observe intermediate velocities with a
slight gradient. This region is still characterized by unconsolidated
sediments (mostly loam and gravel). At a discontinuity in about
16 m depth the velocities jump to substantially higher values of a
few km s−1. This is the bedrock (dolomitic limestone). We have
no resolution below that depth and thus define the bedrock as a
homogeneous halfspace.

Table 1 gives a drill log that was taken at a distance of a few de-
cametres from the seismic profile. We can identify the main features
of the final model in the drilling result. A driving test at the seismic
location could not be carried down to a depth larger than 9 m for
technical reasons. It did not reach the bedrock, but confirmed the
drill log in the upper part.

Figure 4. Resolution analysis for data set Bietigheim: The broadness of
the hatched areas gives a qualitative measure for the constrainedness of the
model parameters, taking trade-off into account. The final model (Fig. 2)
was subdivided into 8 sections. The test was applied to the mean of vp and
vs in each section and to the depth of the halfspace. The result is shown
for a relative increase �χ2/χ2(mopt) of 2 per cent in the misfit. The figure
shows a spurious resolution for vs in the halfspace, for which constraints
result from changes in Gδ(ω, p) at p < 1 s km−1, where the fit is poor.
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Table 1. Data set Bietigheim: Drilling log that was taken a
few decametres away from the seismic profile (by courtesy of
the Wilhelm Fink KG). A driving test at the seismic location
could be carried down only to 9 m depth for technical reasons,
but confirmed the log for that depth range.

0 m–0.3 m Topsoil
0.3 m–3 m Loess and loess loam (Quaternary)
3 m–13 m Mud and loess loam (Quaternary)
13 m–15 m Fluvial gravel (Quaternary)
15 m–21 m Dolomite (Upper Muschelkalk)
Below 21 m Limestone (Upper Muschelkalk)

3.1.1 How well constrained are the model parameters?

To test for the constrainedness of the subsurface parameters, the
model was subdivided into eight independent sections. Fig. 4 shows
the results of the resolution analysis for the mean values of vp and
vs in each section and for the depth of halfspace. The parameter
range defined by eq. (21) is given by a hatched area. All tests are
superimposed on each other in the plot. The broader the total hatched
area is, the less constrained is the corresponding parameter. No
damping was applied (λ = 0 in eq. 13). Data with better fits are
given larger weights in the analysis. Weighting all data equally would
apparently improve the resolution of vp at depth greater than 5 m.

S-velocity is well constrained by the (ω, p) coefficients down to
13 m depth. The apparent increase in resolution at depth greater
than 2.5 m is due to the increase in thickness of the test sections.

Figure 5. Data set Bietigheim: Synthetic waveforms calculated from the final model (Fig. 2) are superimposed on the recorded seismograms (grey curves).
The source wavelet (Fig. 6, top) derived from the (ω, p) spectrum was used for the calculation. The seismograms are given on a reduced timescale with vred =
300 m s−1. Absolute amplitudes are displayed. They are scaled with an offset dependent factor rκ .

The resolution of vs in the halfspace is spurious. The synthetics that
contribute to this are all from Gδ(ω, p) with p < 1 s km−1. However,
the fit is rather poor in that slowness range. If we remove these data
from the test, vs is almost unconstrained in the halfspace.

From the P-wave arrivals we have direct constraints on vp only
down to 5 m and again in the halfspace. Below 5 m vp is weakly
constrained by the (ω, p) coefficients.

Due to the high refractor velocity, the range between 5 m depth
and the halfspace is hidden to the first arrivals. They can be ex-
plained by a variety of different P-velocity models with a refractor
anywhere between 15 m and 21 m depth or even shallower, if a low-
velocity channel is allowed. The (ω, p) spectrum alone provides no
constraint on the depth of halfspace. Only the combination of con-
straints on vp from the (ω, p) spectrum and the onset times of the re-
fracted P-wave provides a (rather weak) constraint on the halfspace’s
depth.

Partial derivatives show a significant sensitivity of the fundamen-
tal mode to vp. The main contribution to vs at shallow depth results
from the first higher mode. This possibility is usually neglected in
conventional surface-wave inversion.

3.1.2 Synthetic data for the final model

Inferring the field-device response from the data, as defined by
eq. (12), allows the calculation of synthetic waveforms for the in-
version result. They are compared to the recorded seismograms in
Fig. 5 and match them well without explicit waveform fitting.
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Figure 6. Data set Bietigheim: The top panel shows a source wavelet that
was derived from the (ω, p) spectrum by linear regression. The wavelet
being deconvolved to a passband from 4 to 60 Hz (due to the filters given
in Table 2) is shown in the bottom panel by the solid line. The drift of
the signal’s baseline for times larger than 0.1 s is due to the long-period
noise that is amplified by the deconvolution. The dashed line gives a band-
limited version of the force time-function shown in the middle panel with
an impulse content of 138 Ns. Times are given relative to the trigger of the
seismograph.

The synthetics are slightly shifted if compared with the signal
phase of the data, in particular at large offsets. This results from a
small departure from the true phase slowness. Waveforms at large
offsets are extremely sensitive to phase slowness [much more than
the (ω, p) spectrum], because the signal phase is the wavenumber
scaled by the offset.

The source wavelet used in the calculation is given in Fig. 6 (top).
The signal inferred from the (ω, p) spectrum was scaled by a factor
of two in the plot. The linear regression eq. (12) tends to give smaller
amplitudes if the fit is not fully satisfactory. A physical interpretation
of the source wavelet is given below.

3.2 Data set Berkheim

The second data set was recorded on a hard pitch. The (ω, p) spec-
trum is shown in Fig. 7. It reveals at least four different Rayleigh
modes. The overall characteristics of the wavefield are inverse and
anomalous dispersion due to the velocity inversion close to the sur-
face (Paper I).

Fig. 8 shows the model (left) inferred by the inversion of the
spectrum and P-wave first arrivals (right). The model is remarkably
simple. It consists of three structural units. On top is the fast asphalt
layer of 20 cm thickness. Below we find a low-velocity section ex-
tending to a depth of 5.5 m. There we meet the top of a fast bedrock,
which is a jurassic sandstone (Lias α) according to geological back-
ground information.

Although the fit might be further improved by allowing for more
structural detail in the low-velocity channel, there is no indication
of discontinuities. The interface at 90 cm depth was introduced to
allow for a gravel foundation, but is not really needed to explain the
data. The low-velocity section mainly consists of loam (Bessing,
municipality Esslingen, private communication, 1999).

The traveltime curve (Fig. 8, right) is split into arrivals from a
fast direct wave in the asphalt layer and waves refracted from deeper
regions. Since the fast wave in the asphalt layer radiates refracted
waves into the media below, its amplitude decreases rapidly, per-
mitting to read later arrivals. Full space P-velocities were used to
predict the traveltimes of the direct wave. Since the asphalt thick-
ness is much smaller than the wavelength, this approach is physically
questionable. It does, however, not affect the results for the deeper
structure.

Fig. 9 shows the spectrum of the Green’s function Gδ(ω, p)
for the final model. It fits the observed data well. The modes are
mainly excited in the parts typical for a flexural wave in a thin
plate (Angenheister 1950). Since the plate (the asphalt layer) is not
free but coupled to the ground below, several overtones contribute
to the observed wavefield. Each takes over at an osculation point
(Paper I).

3.2.1 How well constrained are the model parameters?

Fig. 10 gives the results of a numerical test of constrainedness. No
additional damping is applied (λ = 0 in eq. 13) and all data are
weighted equally. For this analysis the final model was subdivided
into nine homogeneous sections and the test is calculated for vp and
vs in each section and for the asphalt’s thickness and the depth of
halfspace.

The S-velocity in the low-velocity channel is remarkably well
constrained by the amplitude maxima in the (ω, p) spectrum.
In the opposite, vs in the asphalt shows a strong trade-off with
the thickness of the asphalt layer. The majority of the observable
modes represents the flexural wave of the asphalt plate. The phase-
velocity of the flexural wave in a thin plate is vph(ω) = √

ωK .
It’s dispersion is just sensitive to the constant K = √

1/3 h
vs

√
1 − (vs/vp)2, which is determined by the seismic velocities

and the thickness h of the plate (Brekhovskikh & Goncharov 1985
e.g.).

The depth of the bedrock is well constrained by the frequencies
of the osculation points. The halfspace’s S-velocity is numerically
constrained by only a few (ω, p) coefficients around 0.6 s km−1 and
12 Hz. They have a remarkably good fit – by pure chance. Omit-
ting these coefficients leaves vs completely unconstrained in the
halfspace.

The P-velocity is well constrained for the bedrock only. It is
poorly constrained in the asphalt and it may be irrelevant there as
noted above. From first arrivals we have some constraint on vp di-
rectly below the asphalt as well as in the halfspace. No waves from
depth between 0.5 m and 5.5 m contribute to the first arrivals. vp

is virtually not constrained in that depth range. In this data set the
(ω, p) spectrum gives only extremely weak contributions to vp and
these only in the uppermost 50 cm.

3.2.2 Synthetic data for the final model

Fig. 11 shows synthetic waveforms calculated from the final model
and a source wavelet. The latter was derived by eq. (12) and is shown
in Fig. 12 (top). The synthetic predictions (black) are compared to
the recorded seismograms (grey). While the overall waveforms fit

C© 2003 RAS, GJI, 153, 735–752



Inversion of shallow-seismic wavefields: II 745

Figure 7. Data set Berkheim: (ω, p) spectrum that was derived from the recorded data by a modified Hankel transformation. We can distinguish at least four
different modes in the slowness range from 3 s km−1 to 5 s km−1. The signal at 1 s km−1 and frequencies larger than 100 Hz may be a P-wave from below the
asphalt. The hatched area gives a measure of the maximum resolution possible for a spread length of 52 m. The hyperbola in the upper right corner marks the
frequency at which aliasing may appear for a given signal phase-slowness due to the largest single-shot geophone-interval of 2 m.

well, traces at large offset indicate that attenuation is still too weak
at high frequencies. Q values are between 10 and 50 and should
probably be less than 10 in the shallow part of the model.

Fig. 13 (left) shows group-traveltime dispersion-curves for the
free modes together with the excitation coefficients for a vertical
force at the surface. All modes are excited in group-velocity min-
ima. This explains the spectrogram derived from the recorded data,
which is shown beside and was already discussed in Paper I. While
the overall wavefield has the character of anomalous and inverse
dispersion, the individual free modes have not, in the frequency
range where they can be observed. That is obvious from Figs 9
and 13.

3.3 Source time-functions

The field-device response derived by eq. (12) contains not only the
geophone’s response to ground velocity and instrumental filter re-
sponses. It contains also the force time-function of the hammer’s
impact. The geophone’s response can be deconvolved to ground
displacement and a natural frequency of 4 Hz. The remaining filter

effects (Table 2) lead to a band-limited version of the force wavelet,
as shown in the bottom panels of Figs 6 and 12.

The momentum that is transferred by the hammer’s impact is
always directed into the ground. Thus the true force time-function

Table 2. Filter effects remaining in the deconvolved, but still
band-limited version of the force time-function. The param-
eters apply to a Butterworth characteristic (HP = high-pass,
LP = low-pass).

Parameters Stage

Data set Bietigheim:
HP 4 Hz, 2 poles Geophones (after deconvolution)
HP 8 Hz, 2 poles Data recorder
LP 80 Hz, 4 poles Signal processing
LP 500 Hz, 4 poles Data recorder

Data set Berkheim:
Parameters Stage
HP 4 Hz, 2 poles Geophones (after deconvolution)
HP 4 Hz, 2 poles Data recorder
LP 60 Hz, 4 poles Signal processing
LP 250 Hz, 4 poles Data recorder
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Figure 8. Data set Berkheim: The left graph shows the final model for P- and S-velocity derived from the (ω, p) spectrum (Fig. 7) and the P-wave first
arrivals (right graph). The thin layer on top represents the asphalt plate. The right graph shows P-wave arrivals (with error bars) picked from the data. They
are superimposed by the arrival times predicted by the final model. The traveltimes are subdivided into two groups. The first is due to the direct wave in the
asphalt, which dies out at a few metres offset.

Figure 9. Data set Berkheim: Spectrum of the synthetic Green’s function Gδ(ω, p) predicted by the final model (Fig. 8). It has the same multi-mode character
like the observed wavefield in Fig. 7. Horizontal asymptotes at phase slowness less than 1 s km−1 are related to refracted body-wave onsets.
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Figure 10. Resolution analysis for data set Berkheim: The broadness of
the hatched areas give a qualitative measure for the constrainedness of the
model parameters. The broader the area, the less constrained is the parameter,
taking trade-off into account. The final model (Fig. 8) was subdivided into
9 sections. The test was applied to the mean of vp and vs in each section and
for the thickness of the asphalt and the depth of the halfspace. The P-velocity
in the depth range from 0.5 m to 5.5 m is unconstrained, since there are no
first arrivals from that depth range. The result is shown for a relative increase
�χ2/χ2(mopt) of 5 per cent in the misfit. Resolution of vs in the halfspace
is not reliable, since it numerically results only from a few (ω, p) coefficients
at 0.6 s km−1 and 12 Hz.

Figure 11. Data set Berkheim: Synthetic waveforms calculated from the final model (Fig. 8) are superimposed on the recorded seismograms (grey curves).
The source wavelet (Fig. 12, top) derived from the (ω, p) spectrum was used in the calculation. While the overall waveforms match very well, it is obvious that
attenuation of high frequencies is still too weak in the synthetics.

is positive. During acceleration of the hammer preceding the actual
impact, the force exerted to the ground is reduced. However, this
release-force is too small to be observed. The two-sided nature of
the shown wavelets is due to the remaining high-pass filters and
ringing of the low-pass filters. We can estimate the true force time-
function by filtering a reasonable impulse-function with the known
characteristics and fitting the result to the wavelet derived from the
data. The result of this process is shown in the bottom panels of Fig. 6
for Bietigheim and Fig. 12 for Berkheim. Since the data is high-pass
filtered, the transferred momentum cannot be inferred directly. But if
we assume that the source time-function is a one-sided impulse, we
can obtain at least an estimate. The fit is satisfactory for impulsive
wavelets of finite pulse-width and with a momentum of 138 Ns
for Bietigheim and 85 Ns for Berkheim. Since the hammer was
manually accelerated in addition to gravity and is weakly reflected
by the ground, the transferred momentum should be larger than the
momentum of an 8 kg weight dropped from 2.5 m height, which is
56 Ns. This condition is satisfied for both fits.

Remarkably the fit is best for input wavelets of finite duration.
This suggests a finite duration of the hammer’s impact on elastic
ground. The impulse on hard asphalt is shorter. The onsets match
the trigger time reasonably well.

4 C O M PA R I S O N W I T H
C O N V E N T I O N A L T E C H N I Q U E S

The use of conventional techniques for dispersion analysis gives
misleading results when applied to multi-mode data sets (Paper
I). For both example data sets the multi-mode character may re-
main unnoticed. In the case of Bietigheim the first higher mode
would be taken for the fundamental mode at frequencies larger than
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Figure 12. Data set Berkheim: The top panel shows a source wavelet that
was derived from the (ω, p) spectrum by linear regression. The wavelet being
deconvolved to a passband from 8 to 80 Hz (due to the filters given in Table
2) is shown in the bottom panel by the solid line. The drift of the signal’s
baseline for times larger than 60 ms is due to the long-period noise that is
amplified by the deconvolution. The dashed line gives a band-limited version
of the force time-function shown in the middle panel with an impulse content
of 85 Ns. Times are given relative to the trigger of the seismograph.

30 Hz. And in the case of Berkheim a fundamental mode with
anomalous dispersion would be inferred. I will now investigate the
consequences of these misinterpretations with respect to the result-
ing subsurface model.

Figure 13. Data set Berkheim: The left graph shows synthetic group-traveltimes for the offset 51.5 m as predicted by the final model (Fig. 8). Excitation
amplitudes of the wavefield are calculated for a vertical force and vertical geophones at the surface, and are displayed like error bars. The figure on the right
is a spectrogram calculated for the trace at 51.5 m offset. Body waves were removed by tapering. The greyscale gives the signal amplitude. Group arrivals are
indicated by dark areas. The observed group traveltimes are well explained by the prediction calculated from the model.

4.1 Missing the fundamental mode

For data set Bietigheim a subsurface model was sought that fits the
first arrivals and that fits the first higher mode by fundamental-mode
dispersion. Fig. 14 shows the (ω, p) spectrum of the data set together
with normal-mode dispersion-curves calculated from the model in
Fig. 15 (left). The first arrivals are well explained by the vp model.
They give an upper bound on vp. Regions of lower P-velocity could
be easily incorporated in the model, because they do not contribute
to the first arrivals. On the other hand, the surface wave dispersion
gives a lower bound on vs. By taking the higher mode wrongly as a
fundamental mode we overestimate the phase velocity and thus vs.
As a result Poisson’s ratio of the final model is too small. Fig. 16
shows that it contains unrealistic negative values. But this is only
revealed by the joint inversion. Without fitting the P-wave arrivals
too, the misinterpretation would remain unnoticed.

4.2 Missing osculation points

In the case of data set Berkheim a model was sought that explains the
overall anomalous dispersion by a single fundamental mode and fits
the first arrivals. Fig. 17 shows the (ω, p) spectrum of the recorded
data together with dispersion curves calculated for the model given
in Fig. 15 (right). There is an apparent crossing of dispersion curves
at 70 Hz and 4.2 s km−1. However, as Fig. 18 reveals, this is a strong
osculation point. The modes’s amplitudes for a hammer source are
given like error-bars in the figure. The excited half of each of the
osculating mode branches contributes to the flexural wave of the
asphalt layer. The other half of each mode is related to a channel
mode, that has virtually no vertical amplitude at the surface. Thus
the false model apparently explains the observed wavefield by a
single mode up to 100 Hz.

The position of the transition of fundamental-mode’s dispersion
to smaller phase slowness with decreasing frequency at approxi-
mately 20 Hz, is related to the depth of the high-velocity bedrock.
The deeper the bedrock is, the smaller the frequency at which the
transition takes place. This is also the case for the higher modes.
The regular pattern of modes reaching a plateau near 0.5 s km−1 in
Fig. 9 is due to this. For this reason it is not possible to find a model
that predicts a slow fundamental mode down to 20 Hz and that does
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Figure 14. False interpretation of data set Bietigheim: (ω, p) spectrum superimposed by the normal mode dispersion calculated for the model given in Fig. 15
(left). This model predicts a fundamental mode with approximately the dispersion of the dominating first higher mode in the observed data. Additionally it
predicts the observed P-wave arrival times (not shown).
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Figure 15. Models resulting from a false interpretation of data sets Bietigheim (left) and Berkheim (right). The normal mode dispersion predicted by these
models is given in Figs 14 (Bietigheim) and 17 (Berkheim).
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Figure 16. False interpretation of data set Bietigheim: Poisson’s ra-
tio for the inversion result (Fig. 2) and the false model (Fig. 15, left).
Since the surface-wave dispersion provides a lower bound on vs and the
P-wave arrivals provide an upper bound on vp, the false interpretation (Fig.
14) leads to an unreasonable negative Poisson’s ratio. The black curve was
calculated for the inversion result shown in Fig. 2. Its detail features may be
mainly due to the parametrization of vp and vs with polynomials. But the
values keep to the range of a reasonable Poisson number.

Figure 17. False interpretation of data set Berkheim: (ω, p) spectrum superimposed by the normal mode dispersion of of the model given in Fig. 15 (right).
Notice, that the osculation point at 70.3 Hz and 4.19 s km−1 cannot be recognized in the excited wavefield (Fig. 18). The fundamental mode above 70 Hz and
the first higher mode below 70 Hz are not excited by a hammer source at the surface. With respect to the excited wavefield, the signal observed at Berkheim is
explained by the false model apparently with a single mode up to 100 Hz.

not have higher modes in the frequency range up to 100 Hz. This
must also be the result with conventional inversion and should thus
reveal the misinterpretation.

Finally, consider a data set recorded on a site with the properties
given in Fig. 15 (right). Due to the amplitude characteristic shown in
Fig. 18 it would be impossible to distinguish the fundamental mode
from the higher mode even in the (ω, p) spectrum. Fitting dispersion
curves alone would be almost impossible in that case.

The normal-mode synthetics presented in this section are cal-
culated with a strinkingly robust code (FLSPHER by Wolfgang
Friederich). It makes use of second order minors for the the integra-
tion of the elastodynamic system of ordinary differential equations
(Friederich & Dalkolmo 1995) in combination with a root-count
technique (Woodhouse 1988). Both features are essential to obtain
accurate results in the vicinity of osculation points.

5 C O N C L U S I O N S A N D O U T L O O K

The two data sets for which I show inversion results are examples for
typical classes of subsurface structure out of a larger number of field
data. One reveals a smooth non-linear increase of seismic velocity
with depth. The other includes a pronounced low-velocity channel
under a fast lid. Both reveal a large variation of seismic velocities
from ground level to bedrock. Constraints on vs are remarkably good
down to bedrock in both cases. The depth of bedrock is reasonably
constrained, which would be impossible from P-wave refraction
alone.
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Figure 18. False interpretation of data set Berkheim: The false model given in Fig. 15 (right) produces a strong osculation point at 70.3 Hz and 4.19 s km−1.
The curves give the normal mode dispersion and the amplitude excitation for a vertical force and vertical geophones at the surface is displayed like error-bars.
The apparent crossing of normal-mode dispersion-curves in Fig. 17 is an osculation point. Notice, that with respect to the excited wavefield, the observed signal
is explained by the false model apparently with a single fundamental mode up to 100 Hz.

The examples prove that the proposed inversion scheme is a robust
means to retrieve subsurface velocities from Rayleigh-wave data
even without a priori information. In particular, it performs well
with multi-mode wavefields that are often observed in the shallow
domain. That is because it does not require to identify normal-modes
prior to inversion, even though this is possible in the (ω, p) domain
for many cases. Rather than fitting dispersion curves, we search
for a subsurface model that predicts large amplitudes at the correct
locations in the (ω, p) transform for a given source and ground-
displacement component. Thus the full wavefield-content including
the dispersion of higher modes and their true amplitudes is exploited.
Since the inversion needs not evaluate the Fourier–Bessel expansion,
as would be necessary for waveform fitting, this method can be
numerically more efficient by up to a factor of ten.

In comparison, conventional dispersion-curve fitting is problem-
atic when applied to the example data sets. In a careful study that
exploits P-wave arrivals too, systematic errors might be noticeable.
But both data sets are still likely to give misleading results with
conventional methods.

The subsurface models resulting from the proposed method pre-
dict the recorded waveforms surprisingly well, although no wave-
form fitting was applied. This can serve as an additional indicator of
quality. Source wavelets inferred from the data without constraining
them to a certain curve form are physically reasonable. The force
time-function is well fitted by a one-sided pulse of finite duration.
This indicates a parametrization that will be helpful in waveform
fitting.

Apart from direct interpretation, the final models obtained by this
method can serve as initial models for a subsequent waveform in-
version. Waveform fitting can provide even stronger constraints on
velocity because the signal phase is an integral of phase slowness
over offset. Additionally it can provide more useful constraints on at-

tenuation. Attenuation in final models from the technique proposed
here is typically still too weak due to conservative assumptions in
the initial models. Waveforms indicate Q < 10. But waveform fit-
ting is not possible without a method to find an appropriate initial
model. With the proposed technique this final step in seismogram
interpretation should now be within reach.
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