
Buying AES Design Resistance
with Speed and Energy

Jean-Michel Cioranesco1, Roman Korkikian1,
David Naccache1,2, Rodrigo Portella do Canto1

1 Université Panthéon Assas
12 Place du Panthéon, 75005, Paris, France.

jean-michel.cioranesco@etudiants.u-paris2.fr
roman.korkikian@etudiants.u-paris2.fr

rodrigo.portella-do-canto@etudiants.u-paris2.fr
2 École normale supérieure

Département d’informatique
45, rue d’Ulm, 75005, Paris CEDEX 05, France.

david.naccache@ens.fr

Keywords: AES, power scrambling, power attack, CPA, fault attack, half size
memory.

Abstract. Fault and power attacks are two common ways of extracting
secrets from tamper-resistant chips. Although several protections have
been proposed to thwart these attacks, resistant designs usually claim sig-
nificant area or speed overheads. Furthermore, circuit-level countermea-
sures are usually not reconfigurable at runtime. This paper exploits the
AES’ algorithmic features to propose low-cost and low-latency protec-
tions. We provide Verilog and FPGA implementation details. Using our
design, real-life applications can be configured during runtime to meet
the user’s needs and the system’s constraints.

1 Introduction

The Advanced Encryption Standard (AES) algorithm, also known as Rijndael,
is a widely used block-cipher standardized by NIST in 2001 [1]. Compared with
its predecessor DES [1,2], the AES features longer keys, larger plaintexts and
more involved basic binary transformations [3].

Despite the fact that AES is mathematically safer than the DES, straightfor-
ward AES implementations are not necessarily secure and several authors [4,5,6]
have exhibited ways of exploring information that leaks from AES implemen-
tations. Such leakage is typically power consumption, electromagnetic emana-
tions or the time required to process data. Additional constraints such as fault-
resistance, chip technology, performance, area, power consumption, and even
patent compliance further complicate the design of real-life AES coprocessors.

mailto:jean-michel.cioranesco@etudiants.u-paris2.fr
mailto:roman.korkikian@etudiants.u-paris2.fr
mailto:rodrigo.portella-do-canto@etudiants.u-paris2.fr
mailto:david.naccache@ens.fr

2

This article addresses resistance against two physical threats: power and fault
attacks. The proposed AES architecture leverages the algorithm’s structure to
create low-cost protections against these attacks. This allows very flexible run-
time configurability without significantly affecting performance.

The remaining of the paper is organized as follows: Section 2 recalls the AES’
main features and proposes an architecture for implementing it. Section 3 ex-
plains how to add power scrambling and fault detection to the proposed imple-
mentation. The result is a chip design allowing 29 different software-controlled
runtime configurations. Section 4 introduces an idea of reducing the memory
required to store state keys in the decryption mode. Section 5 compares sim-
ulation and synthesis results between an unprotected AES and our protected
implementations. While Section 6 concludes this article, Section 7 proposes fur-
ther research about a novel type of attack.

2 The Proposed AES Design

The AES is a symmetric iterative block-cipher that processes 128-bit blocks and
supports keys of 128, 192 or 256 bits [1]. Key length is denoted by Nk = 4, 6,
or 8, and reflects the number of 32-bit words in the key. At start, the 128-bit
plaintext P is split into a 4 × 4 matrix S of 16 bytes called state. The state goes
through a number of rounds to become the ciphertext C.

The number of rounds Nr is a function of Nk. Possible {Nr, Nk} combinations
are {10, 4}, {12, 6} and {14, 8}. A particular round 1 ≤ r ≤ Nr takes as in-
put a 128-bit state S[r] and a 128-bit round key K [r] and outputs a 128-bit state
S[r+1]. This is done by successively applying four transformations called Sub-
Bytes, ShiftRows, MixColumns and AddRoundKey.

P AddRoundKey

K [r] C

SubBytes ShiftRows MixColumns

(Nr times)

Fig. 1. AES Encryption Flowchart.

AES encryption starts with an initial AddRoundKey transformation followed by
Nr rounds consisting of four transformations, in the following order: SubBytes,
ShiftRows, MixColumns and AddRoundKey. MixColumns is skipped in the final

3

round (r = Nr). If during the last round MixColumns is bypassed, we can look
upon the AES as the 4-block iterative structure shown in Fig.1.

Decryption has a similar structure in which the order of transforms is reversed
(Fig. 2) and where inverse transformations are used (Note that AddRoundKey
is idempotent). In both designs, a register barrier at the end of each transfor-
mation block is used to save intermediate results. Therefore the intermediate
information that eventually yields S[r] is saved four times during each AES
round. It takes 4Nr + 1 clock cycles to encrypt (or decrypt) a data block using
this design.

C AddRoundKey

K [r] P

InvMixColumns InvSubBytes InvShiftRows

(Nr times)

Fig. 2. AES Decryption Flowchart.

Fig. 1 and Fig. 2 show that, during each clock cycle, only one block of the chain
actually computes the state, while the other three blocks are processing useless
data. This is potentially risky, as the three concerned blocks “chew” computa-
tionally useless data related to P (or C) and K [r] and thereby expose the de-
sign to unnecessary side-channel attacks.1 This computation is shown in Fig. 3
where red arrows represent the path of usefully active combinatorial logic.

3 Energy and Security

3.1 Power Analysis

We assume that the reader is familiar with the power [6] and fault [7] attacks
that we do not remind here.

To benchmark our design the AES was implemented on FPGA. Power was
measured at 1GS/s sampling rate with 250MHz bandwidth using PicoScope
3407A oscilloscope. To guarantee the identical conditions every new plaintext
was given to the FPGA at the same clock after the reset.

We performed a Correlation Power Attack (CPA) on the first AES Sbox output
since Sbox operation is generally considered as the most power gluttonous. Our

1 In that respect see our open question in Section 7.

4

power model was based on the number of flipped register’s bits in the Sbox
module when the initial register’s barrier R0 is rewritten with the Sbox output
as follows:

HD(Sbox[P ⊕K0], R0) = HW(Sbox[P ⊕K0]⊕R0) (1)

where R0 is the previous register’s state; P is a given plaintext; K0 is the AES
master key.

The value R0 was assumed to be constant since all the encryptions were per-
formed at the same clock after the reset. When R0 could not be computed then
all possible 256 values were tried. Pearson correlation coefficient was used to
link the model and the genuine consumed power.

The following section presents a reference evaluation of the unprotected AES
implementation showing its vulnerability compared to two (LFSR and tri-state
buffers) side-channel countermeasures introduced later.

3.2 Power Scrambling

It is a natural idea to shut down unnecessarily active blocks. To do so, each
block receives a new 1-bit input named ready activating the block when ready =
1. If ready = 0, the block’s pull-up resistors are disconnected using a tri-state
buffer connected to the power source. This saves power and also prevents the
circuit from leaking “unnecessary” side-channel information.

Clock = t AddRoundKey SubBytes ShiftRows MixColumns

Clock = t+ 1 AddRoundKey SubBytes ShiftRows MixColumns

Clock = t+ 2 AddRoundKey SubBytes ShiftRows MixColumns

Clock = t+ 3 AddRoundKey SubBytes ShiftRows MixColumns

Fig. 3. Flow of Computation in Time.

Logically the pipeline architecture that we have just described has to be less
vulnerable against First Order DPA attacks. Its four register barriers introduce

5

additional noise, so we expect that the correlation shall be at least smaller that
for the AES design with one round per clock computation.

To asses the security of each proposed design, we will compare an incorrect
key byte correlation to a correct key byte correlation. Fig. 4 shows these two
coefficients. As expected, the correct key is correlated to the power traces, how-
ever even for 500,000 traces Pearson correlation coefficient is smaller than 0.015.
Anyway, this implementation is vulnerable.

0 100 200 300 400 500 600 700 800 900 1000

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time, ns

P
e
a
r
s
o
n

C
o
r
r
e
l
a
t
i
o
n

0 100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

V
o
l
t
a
g
e
,

m
V

Pearson correlation for the correct key byte
Pearson correlation for the wrong key byte
Power trace

Fig. 4. Unprotected implementation: Pearson correlation value of a correct (red) and an
incorrect (green) key byte guess. 500,000 power traces.

To exploit the unused blocks to hide the device’s power signature even better
we propose two modifications. The first consists in injecting (pseudo) random
data into the unused blocks, making them process that random data. Subse-
quently, three of the four blocks will consume power in an unpredictable man-
ner. Note that because we use the exact same gates to compute and to gener-
ate noise, the expected spectral and amplitude characteristics of the generated
noise should mask leakage quite well. Although any random generator may be
used as a noise source, we performed our experiments using a 128-bit LFSR. An
LFSR is purely coded in digital HDL, making tests easier to implement.

Fig. 5 shows that a multiplexer controlled by the ready signal selects either the
useful intermediate state information or the pseudo-random LFSR output. For
the AddRoundKey block, LFSR data replaces the key. Therefore when AddRound-
Key’s ready = 0, pseudo-random data (unrelated to the key) are xored with the
state coming from the previous block (MixColumns if encrypting, InvShiftRows

6

128-bit
LFSR

P

K [r]

seed

1
0

0
1

AddRoundKey

C

0
1 SubBytes 0

1 ShiftRows 0
1 MixColumns

(Nr times)

Fig. 5. Power Scrambling with a PRNG.

if decrypting). For the other blocks, the pseudo-random data replaces the state
when ready = 0.

0 100 200 300 400 500 600 700 800 900 1000

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time, ns

P
e
a
r
s
o
n

C
o
r
r
e
l
a
t
i
o
n

0 100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

V
o
l
t
a
g
e
,

m
V

Pearson correlation for the correct key byte
Pearson correlation for the wrong key byte
Power trace

Fig. 6. LFSR implementation: Pearson correlation value of a correct (red) and an incorrect
(green) key byte guess. 1,200,000 power traces.

Attacks performed on this implementation revealed that this countermeasure
increases key lifetime. Fig. 6 is the equivalent of Fig. 4 for the protected imple-
mentation using an LFSR. The correct key correlation can not be distinguished
from the incorrect key correlation even with 1,200,000 traces. However, we as-
sume that this implementation still might be vulnerable if more traces are ac-
quired or if Second Order DPA is applied.

7

Real-life implementations must use true random generators. Indeed, if a deter-
ministic PRNG seed is used the noise component in all encryptions becomes
constant and cancels-out when computing differential power curves.

A second design option interleaves tri-state buffers between blocks to hide
power consumption. By shutting down the three useless blocks, we create a
scrambled power trace where one block computes meaningful data while the
other three “process” high impedance inputs, which means that these blocks
“compute” leakage current coming from their inputs.

P

ready1

AddRoundKey

K [r]

C

ready2

SubBytes

ready3

ShiftRows

ready4

MixColumns

(Nr times)

Fig. 7. Power Scrambling with Tri-State Buffers.

As illustrated in Fig. 7, the input signal readyi determines which blocks are tri-
stated and which block is computing the AES state. In other words, the readyi
signal “jumps” from one block to the next, so that only one block is computing
while the other three are scrambling the power consumption. Although this
solution has a smaller overhead in terms of area (as it does not require random
number generation) tri-state buffers tend to be slow. Furthermore, the target
environment (FPGA or IC digital library) must offer tri-state cells.

The experimental results we obtained on FPGA were surprising, we couldn’t
attack the design with 800,000 power traces. The correlations shown in Fig. 8 do
not allow to visually distinguish the correct key from a wrong guess. As before
we assume that this implementation can be still attackable if more power traces
are acquired or if Second Order DPA is applied.

A full study of this solution would require an ASIC implementation with real
tri-state buffers, as an FPGA emulates these buffers and may turn out to be
resistant because of an undesired CLB mapping side effects.

3.3 Transient Fault Detection

We will now use idle blocks to check for transient faults. Each block in the chain
can ”stutter” during two consecutive clock cycles to recompute and check its
own calculation. For instance, as shown in Fig. 9, at clock t, a given block Bi

receives a readyi signal, computes the state and saves it in the register barrier Ri.

8

0 100 200 300 400 500 600 700 800 900 1000

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time, ns

P
e
a
r
s
o
n

C
o
r
r
e
l
a
t
i
o
n

0 100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

V
o
l
t
a
g
e
,

m
V

Pearson correlation for the correct key byte
Pearson correlation for the wrong key byte
Power trace

Fig. 8. Tri-state buffers implementation: Pearson correlation value of the correct key byte
(green) and a wrong key byte guess (red). 800,000 power traces.

At clock t+1, the result enters the next block Bi+1 mod 4 which is now working,
while Bi reverts to checking, i.e., Bi recomputes the same output as at clock t
and compares it to the saved Bi value. This process is repeated for the other
blocks in the chain. If any transient fault happens to cause a wrong result at the
output of any block, the error will be detected within one clock cycle.

Clock = t

Clock = t+ 1

WORKING

Block Bi Ri

CHECKING

Block Bi

⊕
compare

Fig. 9. Transient Fault Detection Scheme for AES.

3.4 Permanent Fault Detection

The AES structure of Section 2 also allows us to use one block of the chain to
compute a pre-determined plaintext or ciphertext. The encryption (or decryp-
tion) of a chosen input (e.g. the all-zero input Z) is pre-computed once for all

9

and hardwired (let W = AES(Z) denote this value). While the system processes
the actual input through one block (out of four) during any given clock cy-
cle, another block is dedicated to recompute W . One clock after the actual C
emerges, AES(Z) can be compared to the hardwired reference value W . If W 6=
AES(Z), a transient or a permanent fault occurred.

In this scenario, the system starts by computing AES(Z) in the first clock cycle,
followed by the actual computation of C. This allows the implementation to
check up all the blocks during the execution and make sure that no permanent
fault occurred. In the last clock cycle, while C is being processed in the last
block, the correctness of AES(Z) is compared with the hardwired value before
outputting C.

In Fig. 10, the red arrows represent data flow through the transformation blocks.
After the initial clock cycle, the first block starts computing C. The WORKING
blocks represent the calculation of C. The CHECKING blocks represent the cal-
culation of AES(Z).

While AES(Z) will be calculated in 4Nr + 1 clock cycles, C will be calculated
in 4Nr + 2 cycles. If the fault needs to be caught earlier, the solution described
in [8] can be adapted. Yet another option consists in comparing intermediate Z
encryption results (i.e. intermediate state values) to hardwired ones. Note that
our design differs from [8] where a the decryption block is used for checking
the encryption’s correctness [3].

Clock = t CHECKING IDLE IDLE IDLE

Clock = t+ 1 WORKING CHECKING IDLE IDLE

Clock = t+ 2 IDLE WORKING CHECKING IDLE

Clock = t+ 3 IDLE IDLE WORKING CHECKING

Fig. 10. Permanent Fault Detection Scheme for AES.

10

3.5 Runtime Configurability

The proposed AES architecture is a 4-stage pipeline where each stage can be
used independently of the others. As already noted, blocks can perform five
different tasks:

– Compute a meaningful state;

– Be in idle state to save energy;

– Scramble power consumption;

– Check for transient faults by recomputing previous calculation;

– Check for permanent faults by computing a known input.

To explore all possible combinations, we proceed as follows: first, we gener-
ate all 54 = 625 combinations (5 operations for 4 transformation blocks). We
can consider a subset of these combinations if we work with 4 operations only,
and remember that each E entry represents two actual options (tri-state or idle).
This reduces the number of combinations to 44 = 256. We eliminate all con-
figurations that are circular permutations of others, i.e. already counted config-
urations shifted in time. We also eliminate the meaningless configurations in
which there isn’t at least one block computing. All configurations having more
than one permanent fault protection block at a time are removed as they don’t
add any extra protection. Finally, we eliminate the cases where a transient fault
checking is not preceded by a computing block or by a permanent fault verifi-
cation.

Table 1. 29 Possible Configurations.

Block 1 Block 2 Block 3 Block 4
C C C C
C C C E
C C C T
C C C P
C C E E
C C E T
C C E P
C C T T
C C T P
C C P E
C C P T
C E C E
C E C T
C E C P
C E E E
C E E T
C E E P
C E T T

? C E T P
C E P E

? C E P T
C T C P
C T T T
C T T P

? C T P E
C T P T
C P E E

? C P E T
C P T T

Table 2. Number of Configurations.

C E P T Configurations
4 1
3 1 1
1 3 1
3 1 1
3 1 1
1 3 1
2 2 1
1 1 2 1
1 2 1 1
2 2 2
1 1 2 2
2 1 1 3
1 2 1 3
1 1 2 3
2 1 1 3
1 1 1 1 4

11

Table 1 shows that the design can perform 29 different task combinations, where
C stands for computing, E stands for energy (power scrambling, idleness or any
combination of these two if there are more than two Es in the considered config-
uration), T stands for transient fault checking and P stands for permanent fault
checking. These options can be activated during runtime according to the sys-
tem’s constraints such as power consumption or speed. If there are no specific
requirements, we recommend any of the four best configurations protecting
against all attacks at once. These are singled-out in Table 1 by a ?.

Table 2 shows the number of configurations per protection goal. Note that for
a given protection goal, different configurations can be alternated between ex-
ecutions without any performance loss.

4 Halving the Memory Required for AES Decryption

As we have seen, it takes 4Nr+1 clock cycles to encrypt or decrypt an input. The
first block of the chain, AddRoundKey xors the state with the subkey. Therefore,
the key expansion block is designed to deliver a new 32-bit subkey chunk at each
clock cycle.

When decrypting, the AES uses subkeys in the reverse order, so all subkeys need
to be expanded and stored in memory before decryption starts. For that, de-
cryption requires a 128Nr-bit buffer. These 128Nr bits are stored in a register
having Nr records of 128 bit each. Nevertheless, it is possible to halve the num-
ber of records by using the following idea: let skNr be the subkey required at
round Nr. All subkeys are computed but only the last Nr/2 subkeys are stored in
memory. After the first 4 clock cycles, AddRoundKey block uses skNr

(the first
AddRoundKey uses the initial key sk0 which we assume to be already recorded).
After 4 more cycles, sk1 is saved in the record previously occupied by skNr

.
The buffer continues to be used in such a way that each previously used (i.e.
read) subkey is replaced by a new subkey of rank smaller than Nr/2. By the time
that AES decryption requires skNr/2, the subkeys sk1 to skNr/2−1 would have
already been replaced subkeys skNr

to skNr/2.

0
1
2
3
4

sk6

sk7

sk8

sk9

sk10

sk6

sk7

sk8

sk9

sk1

sk6

sk7

sk8

sk2

sk1

sk6

sk7

sk3

sk2

sk1

sk6

sk4

sk3

sk2

sk1

sk5

sk4

sk3

sk2

sk1

sk6

sk4

sk3

sk2

sk1

sk6

sk7

sk3

sk2

sk1

sk6

sk7

sk8

sk2

sk1

sk6

sk7

sk8

sk9

sk1

Fig. 11. Memory Halving for AES Decryption When Nr = 10.

12

As shown in Fig. 11, only 5 records are required when Nr = 10. Analogously,
{6, 7} records are required for Nr = {12, 14}. The red positions are subkeys being
used at each AddRoundKey operation, from left to right. Note that we assume
that the initial key sk0 is known and does not need to be stored.

The algorithm is formally defined as follows: Create a buffer of Nr/2 records
denoted r[0], . . . , r[Nr/2− 1]. Place in each r[i] the subkey ski+1+Nr/2.

Define the function:

f(i) =
|2i−Nr − 1| − 1

2

When ski is needed, fetch it from r[f(i)]. After this fetch operation update the
record r[f(i)] by writing into it skNr−i+1.

5 Implementation Results

A 128-bit datapath AES encryption core was coded and tested in Verilog and
compiled using Cadence irun tool. Cadence RTL Compiler was used to map the
design into a 45nm FreePDK open cell digital library. Fig. 12 represents the in-
puts and outputs of the AES core. The module contains a general clock sig-
nal called CLOCK IN, an asynchronous low-edge reset called RESET IN and
a READY IN signal that flags the beginning of a new encryption. Plaintext is
fed into the device via the 128-bit bus TEXT IN, while the 128-bit key is fed
to the system through the input called KEY IN. The module outputs two sig-
nals: TEXT OUT, which contains the resulting plaintext and READY OUT, that
represents a valid output.

AESREADY IN

RESET IN

CLOCK IN

TEXT IN[127:0]

KEY IN[127:0]

TEXT OUT[127:0]

READY OUT

Fig. 12. AES Design’s Inputs and Outputs.

Table 3 compares an unprotected AES core to the countermeasures described in
this paper. The increase in terms of area is ∼ 6% for the LFSR implementation
and ∼ 4% for the tri-state design. The LFSR implementation showed almost no
increase in terms of power consumption. Since tri-state buffers shut down three

13

out of four blocks per clock, we expect a reduction in the power consumption.
The tri-state design saves roughly 20% of power compared to the unprotected
AES. As tri-state buffers tend to be slower, this design lost 20% in terms of clock
frequency and throughput, while the LFSR version showed no speed loss, as
expected.

Table 3. Unprotected AES, LFSR and Tri-State Buffer Designs Synthesized to the 45nm
FreePDK Open Cell Library.

Unprotected LFSR Tri-state
Area (µm2) 61,581 65,194 64,243
Number of cells 10,643 11,035 11,162
sequential 783 911 787
inverters 1,483 1,614 1,493
logic 8,375 8,506 8,368
buffers 2 4 2
tri-state buffers 0 0 512
Total power (mW) 2.10 2.16 1.68
leakage power 1.20 1.28 1.26
dynamic power 0.89 0.87 0.41
Timing (ps) 645 645 806
Frequency (GHz) 1.55 1.55 1.24
Throughput (Gbit/s) 4.84 4.84 3.87

Table 4 shows the three designs benchmarks in FPGA. They were coded in Ver-
ilog and synthesized to the Spartan3E-500 board using the Xilinx ISE 14.7 tool.
LFSR and tri-state designs showed an area overhead of ∼ 15% compared to
the unprotected AES implementation. In terms of performance, LFSR design
showed no loss, while the tri-state core lost ∼ 7%.

Table 4. Spartan3E-500 Utilization Summary Report.

Unprotected LFSR Tri-state
Number of Occupied Slices 1,994 2,290 2,296
Number of Flip Flops 1,142 1,270 1,146
Number of LUTs 3,521 4,106 4,031
Timing (ns) 10.789 10.714 11.580
Frequency (MHz) 92.68 93.33 86.35
Throughput (Mbit/s) 289.3 291.3 269.6

14

6 Conclusion

We described an unprotected AES implementation sliced in four clock cycles
per round. Making use of this approach, we built on top of the unprotected
core two power scrambling ideas to thwart side-channel attacks, such as CPA.
We also demonstrated how the design can also prevent fault injection by re-
computing its internal state values or by compromising one out of four blocks
at each clock to compute the encryption of a known plaintext. We then exhibited
simulation results and showed the comparison of the unprotected against the
protected cores. The results confirm that the overhead in terms of area, power
and performance is small, making this countermeasure attractive.

Moreover, the proposed AES architecture provides different options to tune the
design into the user’s need. Among 29 different configurations, examples in-
clude: to make the proposed AES a 4-stage pipeline (i.e., compute four different
plaintexts per execution), to use three blocks to generate noise against power
attacks, or to use one inactive block in the chain to recompute for encryption
correctness. In addition to the proposed AES implementation, we presented a
simple scheme to halve the number of memory positions required for storing
subkeys when AES is performing decryption.

7 Further Research: Ghost Data Attacks?

The footnote in Section 2 raises an interesting question: is it possible to exploit
leakage from uselessly active circuit blocks to infer information about P , C or
K? In this model the attacker is not allowed to access the side-channel infor-
mation resulting from the actual computation of the active block (that we can
assume to be ideally protected or not leaking) but only the side-channel infor-
mation leaked by the three uselessly active blocks. To the best of our knowledge
such attacks, that we call ghost data attacks, were never considered in the litera-
ture.

8 Acknowledgments

The authors thank Ms. Natacha Laniado (natacha@laniado.fr) for proofreading
and correcting this paper.

References

1. National Institute of Standards and Technology (NIST), Announcing the Advanced En-
cryption Standard (AES), November 2001.

mailto:natacha@laniado.fr

15

2. M.-L. Akkar and C. Giraud, “An Implementation of DES and AES, Secure Against
Some Attacks,” in CHES’01, vol. 2162 of Lecture Notes in Computer Science, pp. 309–
318, Springer, 2001.

3. G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri, “Error Analysis and Detec-
tion Procedures for a Hardware Implementation of the Advanced Encryption Stan-
dard,” IEEE Trans. Computers, vol. 52, no. 4, pp. 492–505, 2003.

4. P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems,” in CRYPTO’96, vol. 1109 of Lecture Notes in Computer Science, pp. 104–
113, Springer, 1996.

5. P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in CRYPTO’99,
vol. 1666 of Lecture Notes in Computer Science, pp. 388–397, Springer, 1999.

6. S. Mangard, E. Oswald, and T. Popp, Power analysis attacks - revealing the secrets of
smart cards. Springer, 2007.

7. M. Joye and M. Tunstall, eds., Fault Analysis in Cryptography. Information Security
and Cryptography, Springer, 2012.

8. G. Bertoni, L. Breveglieri, I. Koren, and V. Piuri, “Fault Detection in the Advanced
Encryption Standard,” in Proc. Conf. Massively Parallel Computing Systems, pp. 92–97,
2002.

	Buying AES Design Resistancewith Speed and Energy

