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SUMMARY  Subspace representation model is an important subset of
visual tracking algorithms. Compared with models performed on the orig-
inal data space, subspace representation model can effectively reduce the
computational complexity, and filter out high dimensional noises. How-
ever, for some complicated situations, e.g., dramatic illumination chang-
ing, large area of occlusion and abrupt object drifting, traditional subspace
representation models may fail to handle the visual tracking task. In this pa-
per, we propose a novel subspace representation algorithm for robust visual
tracking by using low-rank representation with graph constraints (LRGC).
Low-rank representation has been well-known for its superiority of han-
dling corrupted samples, and graph constraint is flexible to characterize
sample relationship. In this paper, we aim to exploit benefits from both
low-rank representation and graph constraint, and deploy it to handle chal-
lenging visual tracking problems. Specifically, we first propose a novel
graph structure to characterize the relationship of target object in different
observation states. Then we learn a subspace by jointly optimizing low-
rank representation and graph embedding in a unified framework. Finally,
the learned subspace is embedded into a Bayesian inference framework by
using the dynamical model and the observation model. Experiments on
several video benchmarks demonstrate that our algorithm performs better
than traditional ones, especially in dynamically changing and drifting situ-
ations.
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1. Introduction

In recent years, model based tracking algorithms have re-
ceived significant attention due to their good performance
of handling appearance variability of the target object, such
as 3D models [1], integration of shape and color [2], fore-
ground/background models [3], kernel-based filters [4] and
subspace learning models [5], [6]. The common part of
these algorithms is that all of them build or learn a model of
the target object at first and then use it for tracking. To some
extent, therefore, how to learn the initial model decides the
tracking performance of each algorithm.

Subspace representation model is an important subset
of visual tracking algorithms. Compared with models per-
forming on the original data space, subspace representation
model can effectively reduce the computational complexity
due to its fast feature extraction. The subspace representa-
tion model provides a compact notion of the target rather
than treating the target as an unclear sparse feature repre-
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sentation. It can also filter out high dimensional noises.
The classical subspace tracking approach of Black and Jep-
son [7] was enhanced by incremental subspace updating in
[6], [8]. Ho et al. [5] considered the general adaption prob-
lem as a subspace adaption problem, where the visual ap-
pearance variations at a short time period are represented as
a linear subspace. Ross et al. [6] proposed an incremental vi-
sual tracker (IVT) with adaptive appearance model that aims
to account for rigid appearance variations and deformable
motions.

In various subspace learning methods, graph embed-
ding [9] has been widely exploited for its superiority of
preserving samples manifold structures. Recently, differ-
ent kinds of approaches have been proposed to apply graph
embedding for visual tracking [10], [11]. In order to pre-
serve discriminative characteristics of target object after fea-
ture extraction, Zhang et al. [10] used some labeled fore-
ground and background samples to construct the topolog-
ical graph. Qiao et al. [11] focused on preserving the
short distance among some labeled rotating head samples
for face tracking. The essence of graph embedding is that
two graphs, a within-cluster/class graph and a between-
cluster/class graph, are constructed to preserve the relation-
ship among samples [9], [12]. Before tracking starts, there
may be some labeled samples in different states (e.g., dif-
ferent extents of rotation, different levels of occlusion and
illumination conditions) available. If we can utilize the la-
bel information to design an optimal graph structure to ex-
tract the relationship among object samples, we can learn
a subspace which can preserve the properties of the object
distributions. In this paper, we classify samples into differ-
ent clusters according to their states. In the tracking process,
object samples obtained consecutively in a short time usu-
ally show high similarities when the object moves smoothly
and regularly. In this situation, these object samples should
be close to each other in the geometric structure. This neigh-
bor relationship can be captured well by the within-cluster
graph. The object may also change abruptly from one state
to another state. In this case, there should also be a close
connection between the object samples although they are in
different states. This connection can be handled well by the
between-cluster graph to degrade the drift problem.

The very assumption behind graph embedding used in
visual tracking is that it can preserve the geometric manifold
structure within the same state and among different states.
Actually, the relationship among different samples not only
can be formulated as geometric structure, it can also be ana-

Copyright © 2017 The Institute of Electronics, Information and Communication Engineers



1326

lyzed from the view of feature selection. Specifically, in the
tracking process, the object may have different modalities
due to the change of pose, rotation, illumination or occlu-
sion. However, the target objects obtained consecutively in
a short time usually share a lot of features. If we can dig out
the common factors shared among objects, we can obtain
the latent low-dimensional space and employ it for the ob-
ject tracking. Low-rank representation (LRR) [13] has been
proven to be effective for revealing common latent factors
from different appearances of one object. LRR also stands
out for its superiority of robustness. Therefore, it is reason-
able to introduce low-rank representation into our model to
handle the challenging visual tracking task.

The “statistical properties” and “geometric structure”
are two observations of the data from different viewpoints.
The two viewpoints are not mutually exclusive and com-
bining them normally could transcend the specific limita-
tions of each perspective. Some influential work [14], [15]
has demonstrated that the two properties are complemen-
tary and according experiments have shown the benefits of
jointly optimizing them. Low-rank constraint is useful for
feature selection and can technically uncover the shared fea-
tures among different samples; while the graph allows the
samples to follow the data manifold. Since the neighbor-
hoods would be changed if we use a different feature space
learned by feature selection method, we employ the graph
embedding as a regularization to preserve the properties of
the samples distributions. Finally, the main contributions of
this work are listed as follows:

1) A novel graph structure is proposed under the framework
of graph embedding to capture the relationship among
target objects in the same observation state or different
observation states.

2) Low-rank representation and graph embedding are
jointly optimized in a unified framework to learn a ro-
bust subspace, and this subspace learning is incorporated
into the Bayesian framework for robust visual tracking.
Thus, the benefits from both feature selection and geo-
metric structure preservation are exploited.

The rest of this paper is organized as follows. Section 2
presents the background information and related work. The
propose method, low-rank representation with graph con-
straints for robust visual tracking, is detailed in Sect. 3. Ex-
periments are reported in Sect. 4, and Sect. 5 is the conclu-
sion.

2. Background Information and Related Work

In this section, we first introduce two related techniques,
graph based subspace learning and low-rank representation.
Then, we review some related work, especially tracking al-
gorithms based on subspace model.

2.1 Graph Based Subspace Learning

Graph based subspace learning aims to learn a compact sub-
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space where the data manifold structure can be captured by
constructing appropriate graph. The graph is used to define
the relationship among samples. From the view of spec-
tral graph theory [16], the learned subspace should mostly
preserve the topological structure of vertices in the graph.
Consider the problem of mapping the weighted graph G to
aline. Lety = (y1,y2, ... ,v2)T be such a map. The optimal
y is given by minimizing [17]:

m
_ _Zl(yz' - V)W
i,j=

st. y'Dy =1

(D

where W is the weight matrix and D is a diagonal matrix

whose entries are column (or row since W is symmetric)

sums of W: D;; = > Wi, and L = D — W is the Laplacian
J#i

matrix of graph G [16]. In Eq. (1), the constraint y? Dy = 1

removes an arbitrary scaling factor in the embedding. Then

the minimization problem reduces to find

y* = argminy’ Ly. 2)
yI'Dy=1
Suppose y7 == pTX is the linear projection from X to y,

where p is a projection vector and X = [x, ..
matrix. Equation (2) can be rewritten as

L Xp]isadXn

min p? XLXT p
P

3
st. pTXDXTp=1. ©)

When P is the projection that maps the data points from the
original space to a low-dimensional space, we can rewrite
Eq. (3) to the following equation

mgn tr(PTXLXT P)

4
s.t. PTXDXTp=1. @)

Finally, the optimal P can be obtained by solving eigen-
decomposition

XLXTP = AXDXTP, (3)

where A is a diagonal matrix whose diagonal elements are
eigenvalues.

2.2 Low-Rank Representation

Low-Rank Representation (LRR) [13] has been proven to be
effective for many machine learning problems, such as im-
age classification [18], [19], subspace segmentation [13] and
transfer learning [20]. A representative practical of LRR is
the Robust PCA [21]. To discover the global subspace struc-
tures of data, LRR optimizes the following objective func-
tion:

nzl’%n rank(Z) + A||E||, ©
st.X=AZ+E,

where X is the data matrix and A is a dictionary that linearly
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spans the data space. rank(Z) is the rank of coefficients ma-
trix Z. A > 0 is a balanced parameter and || - ||, indicates cer-
tain regularization strategy, such as the £, £>-norms, used
for modeling the noise. By choosing an appropriate dictio-
nary A, LRR can recover the underlying row space so as to
reveal the true segmentation of data.

Recently, low-rank representation has been incorpo-
rated with subspace learning, e.g., Low-rank Transfer
Subspace Learning (LTSL) [22], Supervised Regularization
based Robust Subspace (SRRS)[18], Low-Rank Common
Subspace (LRCS) [23] and Low-Rank Discriminate Embed-
ding (LRDE)[19], aiming to find a more robust subspace
with low-rank constraint.

2.3 Subspace Based Visual Tracking Algorithms

Subspace learning has been widely exploited in visual track-
ing tasks due to its good performance. Here we review some
previous work reported in recent literatures. The earlier
work [7] deployed classical subspace learning method Prin-
cipal Component Analysis (PCA)[24] to tackle the visual
tracking problem. However, PCA is not optimal to preserve
the manifold structure of data samples. Qiao et al. [11] pro-
posed a method to better preserve the manifold for dynamic
visual tracking. To address the robustness of tracking algo-
rithm, sparse representation [25], [26] and low-rank repre-
sentation [27] were introduced into the visual tracking mod-
els. Graph models [25], [28] were also incorporated to pre-
serve the relationship among samples. In the tracking pro-
cess, most subspace models were combined with Bayesian
framework to predict the location of the target object [6].

3. Low-Rank Representation with Graph Constraints
for Robust Visual Tracking

In this section, we introduce the details about how we learn
the robust subspace for visual tracking. Firstly, we give the
details of how to construct an appropriate graph under the
framework of graph embedding. Then, we formulate our ob-
jective as a low-rank optimization problem with graph con-
straints. Thirdly, we use the Alternating Direction Method
of Multiplier (ADMM) [29] to solve the objective. In the
last, we incorporate our model into the Bayesian framework
to tackle visual tracking tasks.

3.1 Construct Graphs

Given a set xy,x,---,x; in R, where x; is the sample,
h is the sample number and d is the feature dimension.
The samples are classified into K different clusters, e.g.,
C1,Cs,- -+ ,Ck, according to the states. Samples with sim-
ilar modalities are grouped into the same cluster. Fig-
ure 1 shows some clusters of 2 data sequences. Clearly,

h= 3 ng where n, is the number of samples for cluster
g=1,-K
Cy-
In the tracking process, the target object is consecu-
tively changing, that is, the features of the target object in
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Fig.1 Cluster samples. (a) Dudek sequence. Samples with different
expressions or different extents of rotation (e.g., front face and profile) are
grouped into different clusters. (b) Fish sequence. Samples with different
lighting conditions are grouped into different clusters.

current frame would usually show high similarity with that
in the previous frame and that in the next frame. From the
intuition and experience of human beings, we know that
the most relevant factors of tracing in current frame are
the target object state in the latest frames. If we say that
global information (long-term memory) is predominant in
recognition and classification tasks, we would say that ac-
tive information (short-term memory) is important in track-
ing tasks. Therefore, it’s significant to preserve the short-
term memory for visual tracking. To address this prob-
lem, we use a cluster, denoted by C,, to memorize the
target objects obtained from the latest several frames in
the tracking process. The size of C.y is limited to n.g,
e.g., three or five, to ensure that it contains up to n,, tar-
get objects which are only obtained recently. C.y is up-
dated every n., observations obtained in the tracking pro-
cess. Given data matrix X = [X, Xs,..., Xk, Xes], Where
data matrix X,(¢ = 1,2,...,K) corresponds to cluster C,
and X, corresponds to cluster C,.y, we aim to construct a
graph which can reflect relationship among samples in the
same state or different states. Suppose X contains n data
points, we have n = ), ng + ney. Let G = {7V, W} be
g=12,-K

the graph with vertex set V and similarity matrix W, where
V=CUCU - UCxkUC.y and W is an n X n matrix
used to define the relationship between each pair of vertices.
The graph structure is modeled as the combination of the
within-cluster graph and the between-cluster graph, which
are detailed in the next two subsections, respectively.

3.1.1 Construct Within-Cluster Graph

The within-cluster graph is constructed according to rela-
tionship among samples in each cluster. Let G,, = {V, W, }
be the within-cluster graph, where V is the vertex set and
W, is the n X n within-cluster matrix. Suppose x; and x;
are any two vertices in V, an edge is added between x; and
x; if x; and x; are in the same cluster and x; is one of x;’s
k-nearest neighbors. Examples are shown in Fig.2. The
connection between vertices can reflect the transition of the
modality in the same cluster. Thus this method can preserve
the local manifold structure by keeping objects with similar
modalities closer. We apply the heat kernel method to define
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Fig.2  The adjacency within-cluster graph. (a) The vertices of different
colors belong to different clusters. (b) The adjacency within-cluster graph.
We set k = 2 in nearest neighbor searching to preserve the local structure.
Here we only take one vertex in each cluster as the example.

W,,. The element wi; representing the similarity between x;

LN .
and x; is defined as wy = exp(—%) if there is an edge

between x; and x;, otherwise it is 0.

The within-cluster graph can be used to preserve the
distribution of data points when the target object changes
smoothly and regularly. However, in some cases, the tar-
get object may drift abruptly. To address this problem, we
further construct the between-cluster graph as follows.

3.1.2  Construct Between-Cluster Graph

The between-cluster graph is used to preserve the distribu-
tion of samples in different states. Since samples in C, are
obtained recently and can reflect current state of the object,
the between-cluster graph is constructed according to the
relationship between C,g and other clusters. This method
aims to set up connections between current state and other
states, thus it can capture the abrupt changes of the object in
the tracking process.

Let G, = {V, W, } be the between-cluster graph, where
YV is the vertex set and W, is the n X n between-cluster ma-
trix. To construct the between cluster graph G;, we connect
C.s: and each of other clusters. Specifically, suppose x; and
x; are any two vertices in V, an edge is added between x;
and x; if x; € C. and x; € C; (¢ = 1,2,...,K) and {x;,
x;} is one of the k-nearest pairs of neighbors between C,
and C,. Examples are shown in Fig. 3. In Fig.3 (a), when
k=2, the two-nearest pairs of neighbors between C, and C;
are selected and each pair of neighbors are connected. C.
and C, are connected in the same way. In Fig. 3 (b), when
k = 1, the nearest pair of neighbors between C,, and C; are
selected and connected. C,y and C, are also connected in
the same way. Similarly, we apply the heat kernel method to
define W;,. The element wf’j representing the similarity be-

. b lxi—x;1P | - .
tween x; and x; is defined as w; = exp(——5—) if there is

an edge between x; and x;, otherwise it is 0.
3.1.3  Graph Combination

The within-cluster graph G,, and between-cluster graph G,
are two complementary parts of graph G. Finally, we can
obtain the graph structure by combining the two graphs. The
similarity matrix W is the combination of W,, and W,
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Fig.3  The adjacency between-cluster graph. We connect C,5 with each
of other clusters to ensure that our model can handle complicated situa-
tions no matter which state the target object drift to. (a) When k = 2,
the two-nearest pairs of neighbors between C,s; and each of other clusters
are selected, and each pair of neighbors are connected. (b) When k = 1,
the nearest pair of neighbors between C,g; and each of other clusters are
selected, and each pair of neighbors are connected.

W=W, +W,. )

3.2 Learning Subspace with Low-Rank Representation

Suppose the data matrix X € R consists of n data points
in graph G, where d is the original data dimension. Given
a complete basis matrix A = [aj,az, -+, a,] € REPm it can
linearly spans the data space as

X = AZ, ®)

where Z € R™" is the coefficient matrix. To achieve our
goal of seeking a robust subspace P € R (I < d)which
maps the n samples to the low-dimensional space, we first
denote the projected low-dimensional data matrix as

X=P'x=PAZ )

Due to the fact that the samples belong to different clus-
ters of the same class, the coefficient vectors corresponding
to samples within the same cluster should be highly corre-
lated, and therefore the coefficient matrix Z is expected to
be low-rank. By incorporating the low-rank constraint and
the subspace learning into a single problem, we formulate
our problem as the following objective function:

rrzlipn rank(Z) + A1tr(PTXLX" P) + A,||PTAZ]|

10
s.t.PTX = PTAZ, PTXDX"P =1, (10)

where A; > 0 and A, > 0 are two trade-off parameters used
to balance different parts of the objective and L = D — W
is the Laplacian matrix of graph G and D; = X W;;.
J#i
tr(PTXLXTP) and PTXDXT P = I are the typical forms of
graph embedding as aforementioned in Eq. (4). The regular-
ization term ||PTAZ |I§ is introduced to learn a more compact
subspace. It should be noticed that the rank(-) minimization
problem in objective Eq. (10) is difficult to solve. Fortu-
nately, nuclear norm can be used as a good surrogate for
the rank minimization problem [13]. Then, the objective be-
comes

r?ipn IZIl. + 4itr(PTXLXT P) + L||[PTAZ2

11
s.t.PTX = PTAZ, PTXDX"P =1. (1D
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We convert Eq. (11) to the equivalent Eq. (12) to make the
optimization easier.

min1Z]J. + AIXT P = HIE, + LIIPTAZI,

12
s.t.PTX = PTAZ, (12)

where H is a matrix whose rows are eigenvectors of the
eigen-problem WH = ADH, and A is a diagonal matrix of
which diagonal elements are eigenvalues. The proof of the
equivalence of Eq. (11) and Eq. (12) can be found in [30].

In real world applications, the samples often mix with
large amount of noise. To learn a robust subspace, we need
to measure the noise and learn discriminative subspaces
from the noiseless samples. Recently, [13] has shown that
>, ;-norm can be used to successfully model the sample-
specific corruptions and other types of noise. Therefore, we
introduce an additional term into our objective to model er-
rors. Based on the above observations, we come up with the
final objective function:

: Tp_ 2
glf{lgllle* + Aol Ell2,1 + 4IXT P — Hl%

+||PTAZ|1% (13)
st.PTX=PTAZ+E, PTP=1,

where 1p > 0 is a trade-off parameters. The constraint
PTP = [ is introduced to learn a compact subspace.

3.3 Problem Optimization

To address the optimization problem of Eq. (13), we write it
as the following equivalent problem by introducing a relax
variable J:

- <+ lElL; + LIXTP - H|3?
nglEr}J||J|| AollEll21 + Al Il

+A,||PTAZ|1% (14)
st.PTX=PTAZ+E, Z=1,

Eq. (14) can be solved by Augmented Lagrangian Multiplier
(ALM) [31]. Firstly, we transform Eq.(14) into the aug-
mented Lagrangian function as follows:

1711 + AollEll2,1 + LIIXT P — HI% + A,||PTAZ||%
+tr(YT(PTX — PTAZ — E)) + tr(UT(Z - J)) (15)
+4(IPTX = PTAZ - EI- + 1Z - JI%)

where u© > 0 is a penalty parameter, Y and U are
two Lagrange multipliers. To optimize the variables in
Eq. (15), we use the Alternating Direction Method of Multi-
plier (ADMM) [29] since previous work [18] and [23] have
demonstrated that ADMM works well in solving similar
problems. By using ADMM, we can alternately update vari-
ables one by one with an iterative method. Specifically, once
the target variable is determined, the others can be regarded
as constants. For example, when we optimize P, the irrel-
evant terms in Eq. (15), e.g., [|/]ls, A0llEll2.1, Utz - D))
and ||Z - J |I% can be regarded as constants.

For clarity, we use subscript ¢ to represent the #-th iter-
ation and we optimize the variables in the (z + 1)-th iteration
as shown in Algorithm 1. For simplicity, we use the data

1329

Algorithm 1. Solving Eq. (15) by ADMM
Input: data matrix X, Ao, 11, A2.
Initialize: /o =7y =0,Ey=0,Y=U =0,
1o = 1070, fpar = 109, p = 1.2,€ = 1078,
Output: P,Z, E
1. Build the graph structure by using the method presented in 3.1

2. Initialize P by optimizing Eq. (5).

3. Learn H by solving the eigen-problem WH = ADH.

while not converged do

4. Update Jy11:

e = argming (Il + 310 = Z = Ur/plly
5. Update E;41:
Eyyy = argming Z—?llEllz,l
+3E = (PTX = PTAZ + Y, /u)II%
6. Update Z;,1:
Ziv1 = Qo + p)AT PPTA + D)7
(u(ATP(P]X — E))+ J)) - Uy + ATP,Y)

7. Update Py4g:

Pyt = QUXX" + p (X - AZ)(X - AZ)T)
+20LAZZTATY (X - AZ)(WET - YT) + 22, XH)
Piy1 «— orth(Pry1)

8. Update the multipliers:
Yier =Y, + (Pl X = Pl
Urr1 = U + i(Ziy = Jiv1)

9. Update the penalty parameter fi;.1:
Hes1 = min(pps, fmax)-

10. Check the convergence conditions:
IPT X = PT | AZ41 — Ersill, < € and
1Zt+1 = Ji+1llo < €, and

AZH—] - Et+l)

11. Update the iteration variable using t =t + 1.
End while.

matrix X itself as the dictionary A in Algorithm 1.
3.4 Complexity Analysis

The main time consuming of Algorithm 1 depends on the
following parts:

1) Nuclear norm calculation in step 4;
2) Matrix multiplication and inverse in step 6 and 7.

As aforementioned, X is a d X n matrix, where d is
the original data dimension and » is the size of the dataset.
The SVD computation in Step 4 takes O(n?). The cost of
the inverse of an n X n matrix is O(x®). The general matrix
multiplication of an n X n matrix takes O(n?). If there are y
multiplications, the total cost is yO(n®). For simplicity, sup-
pose the matrixes in step 6 and 7 are n X n matrixes, then the
computation in step 6 and 7 each takes (y + DO®®3). If the
number of samples is large, the computation cost cannot be
ignored. Fortunately, step 4 can be solved more efficiently
by using the way proposed by [13] and the time complexity
of matrix multiplication can be reduced to O(n*3%) by us-
ing the method provided by [32]. Moreover, as the vertex
set of graph G is composed by samples achieved currently
and other samples with possible appearances, the number of
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data points in X is fixed every time when the subspace is up-
dated. Therefore, the time cost would not increase with the
accumulation of observations in the tracking process. We
clarify this in detail in Sect. 3.6.

3.5 Tracking Model

Bayesian framework has provided a robust and effective
framework in many tracking algorithms [6], [10]. We intro-
duce our low-rank graph embedding into Bayesian frame-
work to learn a flexible and effective tracking algorithm.
The goal is to find the best configuration of the target with a
given observation.

Let ¢; = (x4, y;) be the coordinates of the center of the
detection window with width w;, height %, and rotation angle
0, for the target object in frame t. X, = {c;, h;, w;, 6;} is the
state at time ¢, and J., is the observation up to time ¢. The
Bayesian tracking framework is then shown as follows:

pXilL 1) o< p(L| X))
[ pXIXi-Dp(Xia| T 1m)dX
where p(Z,|X;) denotes the observation model that measures
how much the target and observation at the proposed state

coincide, and p(X,|X;-1) denotes the dynamical model be-
tween two states X; and X;_;.

(16)

3.5.1 Dynamical Model

Each parameter in X; is modeled independently by a Gaus-
sian distribution around its counterpart in X,_;, and thus
the motion between frames is itself an affine transformation.
Specifically,

P(XilXi-1) = N(Xy; X1, D), (17)

where X is a diagonal covariance matrix whose elements are
the variances of the x, y position, height, width and rotation
angle of the object.

3.5.2 Observation Model

The observation model is an important part of the Bayesian
framework for visual tracking. Consider an image patch 7,
predicated by X,, and 7, was generated from a subspace of
the target spanned by P and centered at . The probability
of a sample being generated from this subspace is inversely
proportional to the distance from the sample to the reference
point (i.e. @) of the subspace. The probability can be com-
puted by [6]:

p(T\X) = NIy, PPT + €I, (18)

where &l corresponds to the additive Gaussian noise in the
observation process, and / is an identity matrix with proper
size.

3.6 Tracking Procedures

In this section, we introduce our low-rank graph embed-
ding into the Bayesian framework to complete the tracking
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S1: Locate the object in the first frame. Initialize
Cesty X, aand /. Initialize the graph structure to
learn subspace P

rp
S2: Advance to next frame. Draw particles
according to the dynamical model.

I

S3: Calculate the likelihood of each particle
under the observation model

!

S4: Store the new object into Cy .Update o and

o+

Nol

| S5: Update X and update the graph structure |

l

S6: Run step 2 through step 11 of Algorithm 1 to
update subspace P Empty C. and set /=0

}

Fig.4 Diagram of the tracking algorithm

task. The corresponding diagram of the tracking algorithm
is shown in Fig.4. We use f to indicate the number of ob-
servations accumulated in C,, in the tracking process. To
learn the subspace for tracking, the graph is initialized when
f =1 and C,, contains only one object (the first object). We
now specify the steps of the proposed tracking algorithm as
follows.

S1: Locate the target object in the first frame, either manu-
ally or by using an automated detector, and use a single
particle to indicate this location. Initialize the reference
point @ to be the appearance of the target in the first
frame. Initialize C,,; with the first target object and the
effective number of objects in C, is f = 1. Initialize
X = [X1,Xo,..., Xk, Xes], where X, (¢ = 1,2,...,K)
corresponds to cluster C, (obtained from training) and
X.s: corresponds to cluster C, . Run the first step of Al-
gorithm 1 to initialize the graph structure. Since there is
only the first object in C,y, at the beginning, W,, is ini-
tialized according to samples relationships in each clus-
ter of C1,Cy, - -+, Ck, and W, is initialized according to
the relationship between the first target object and each
cluster of Cy,C», - - -, Cg. W is initialized by combining
W,, and W;,. Run step 2 through step 11 of Algorithm 1
to learn subspace P.

S2: Advance to the next frame. Draw particles from the
particle filter, according to the dynamical model.

S3: For each particle, extract the corresponding window
from the current frame, and calculate its weight, which
is its likelihood under the observation model.

S4: Store the image window corresponding to the most
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The description of the experimental sequences. Each video consists of 320 x 240 pixels
gray-scale images recorded at 30 frames per second.

Sequence | Targettype | # Frames Description
Dudek Human face 573 A person undergoing large pose, expression, appearance, and lighting changes, as well as partial occlusions.
David Human face 462 A person moves from a dark to a bright area, undergoing large lighting and pose changes.
CarDark Object 393 A vehicle moving in the night time with large illumination changes.
Fish Object 476 A fish doll with lighting change and there exists large and unpredictable camera motion in the video.

likely particle as the new object into C,y, and update
a to be the appearance of the object newly obtained.
Increase the effective number of the objects in C.y, i.€.,
f=f+1.1If f <n.y, goto S2. Otherwise go to SS5.

S5: Update X since n.y, new objects have been accumu-
lated in C,. That is, the old X, in X is replaced by
the new X,5. Run the first step of Algorithm 1 to up-
date the graph structure. Specifically, W,, is updated by
updating the elements corresponding to the similaries
between each pair of samples in C,y, and W}, is up-
dated according to the relationship between C,; and
each cluster of C|,Cy,---,Ck. W is obtained by com-
bining W,, and W,

S6: Run step 2 through step 11 of Algorithm 1 to update
subspace P. Empty C,, and set f = 0. Go to S2.

Just as we have discussed in Sect.3.1 that the active
information of the object states is predominant in tracking
tasks. It can be seen from the above tracking procedure that
after the graph is initialized in S1, each time when the graph
is updated, C,s only contains the n,, newly obtained ob-
jects in the tracking process. In other word, the number of
vertices in the graph is fixed each time when the graph is
updated. Thus the computational cost would not increase
and the subspace learning would not become slow with the
accumulation of observations in the tracking process.

4. Experiments

In this section, we conduct several experiments to demon-
strate the effectiveness of our algorithm. All experiments
are carried out on a standard 2.50GHz computer with 8GB
memory. Four representative video sequences, i.e., Dudek,
David, CarDark and Fish', are used in our experiments. Ta-
ble 1 shows the characteristics of these sequences. As there
is no extra data of these sequences provided for training, for
each video sequence, we divide it into several sub-sequences
and each sub-sequence contains 30-50 consecutive frames.
The sub-sequences are then separated into two sets, e.g., set
A and set B, according to the objects (samples) states (the
definition of the samples states will be clarified in the next
paragraph). Each set contains a few sub-sequences and both
sets have similar distributions of the samples states. We first
use the sub-sequences in (A as the training sequences and
use the sub-sequences in B as the testing sequences. Like-
wise, we then use the latter as the training sequences and

http://cvlab.hanyang.ac kr/tracker_benchmark/datasets.html

use the former as the testing sequences. For each testing
sub-sequence, we locate the object in the first frame and im-
plement the tracking algorithm presented in Sect.3.6. The
final results on a video sequence are obtained by combining
the test results of all sub-sequences in both sets.

We extract a frame every a few frames (e.g., five
frames) from the training sequences to collect the train-
ing frames. The smallest rectangle containing the object
is cropped from the selected frame and resized to 32 x 32
pixels to fit the default size of the tracking window. After
being selected, the training samples are grouped into dif-
ferent clusters according to the samples states. The defini-
tion of the samples states of different video sequences may
vary. Generally, it depends on the specific modalities, such
as different poses, expressions, extents of rotation, levels of
occlusion, lighting conditions, etc. For instances, the front
face and the profile can be regarded as different states and
an object in different lighting conditions can be regarded as
in different states. To make clusters, K typical samples in
K different states are selected from the training samples as
the centers of K clusters. Then, the K-means algorithm is
used to make clusters. Finally, we adjust the clustering re-
sults manually if it exists obviously incorrect clustering. If
the number of samples in a cluster is restricted to ny(n, is set
to 3 by default), we select only n, samples randomly from
each cluster as the cluster members. The number of clusters
(K) varies for different sequences. We evaluate the results
under different number of clusters and different number of
samples in a cluster in Sect.4.1. We also attempt to use the
hierarchical clustering method to determine the number of
clusters and make clusters in our future work.

The number of the nearest neighbors for the within-
cluster graph is set to 2 and the number of the nearest pairs
of neighbors for the between-cluster graph is set to 1. n, is
set to 5. The dimensionalities of the original space and the
subspace are 1024 and 16, respectively.

4.1 Performance under Different Parameters

The center distance between the center of the tracked target
and the center of the ground truth is used to measure the
performance. Figure 5 shows the average center distance
under different values of balanced parameters Ay, 4; and A,
on Dudek sequence. The default values of these parameters
are 1o = 0.1, 4y = 1 and A, = 1. When we test the effect of
a balanced parameter, the other two are set to their default
values. It can be seen from Fig. 5 that the tracking result is
insensitive to the variation of these parameters.

Figure 6 shows the results with different number of
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Table 2  Running time (min) of all approaches on different sequences.
Sequence | IVT | KCF | CT | CLRST | MTT ST LRGC
Dudek 1.95 | 1.28 | 2.51 | 2825 | 1438 | 30.25 | 4.83
David 095 | 0.83 | 091 | 2541 17.7 10.5 1.53
CarDark | 0.83 | 0.65 | 0.76 9.5 436 | 13.65 | 1.28

Fish 1.01 | 0.86 | 0.99 | 2576 | 1551 | 19.97 | 1.51
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clusters (K) on two video sequences. We can see from Fig. 6
that the optimal parameters are different among situations.
Basically, the average center distance decreases with the in-
crease of number of clusters, as more observation states of
the target object can be captured and extracted by the graph.
Figure 7 show the results with different number of sam-
ples in a cluster on two video sequences, respectively. In
this experiment, the number of samples for each cluster of
C1,Cy, -+ +,Ck is changed from 3 to 7 and n,y; is set to 5 by
default. The results show that the optimal number of sam-

ples for each cluster is different for different sequences.

For fair comparison, we use the compromise values
as the default settings of these parameters in our approach
to compare it with other related work in Sect.4.2. For in-
stances, K is set to 13 for Dudek sequence and 6 for Fish
sequence respectively, and the number of samples for each
cluster of C,C», - -+, Ck is set to 3 for all sequences.

4.2 Performance Comparison

To fully evaluate our approach, we compare it with
6 recently proposed algorithms.  Incremental Visual
Tracking (IVT) [6], Consistent Low-Rank Sparse Tracker
(CLRST) [27], Multi-task Sparse Tracking (MTT) [26], Su-
perpixel tracking (ST)[33], Kernelized Correlation Filters
(KCF) [34] and Compressive Tracking (CT)[35]. IVT ap-
plies PCA to achieve and update the subspace online.
CLRST represents particles as sparse linear combinations
of dictionary templates to capture the low-rank structure
of data. MTT formulates object tracking in a particle fil-
ter framework and deploys sparse learning to learn a robust
subspace. ST is based on mean shift method. KCF formu-
late tracking as a ridge regression problem for correlation
filter learning and apply HOG [36] in the visual model. CT
uses an appearance model based on features extracted from
the multi-scale image feature space with data-independent
basis. For fair comparison, we use the source codes of all
approaches with the default settings of the parameters pro-
vided by the authors. The initial parameters of the tracking
window in the first frame of the testing sequence are same
for all the approaches.

The running time of all approaches is shown in Table 2.
It is worth noticing that the running time of all approaches
in our experiment includes the time of saving the tracking
result of each frame into the disk, thus the speeds of KCF
and CT are not so fast as that are presented in [34]. We can
see from Table 2 that the running time of IVT, KCF and CT
is short and similar. The running time of our approach is
close to that of these three approaches and it is much shorter
than that of CLRST, MTT and ST. Our approach learns the
subspace based on the samples achieved recently and other
training samples. Thus the computation cost would not in-
crease dramatically with the accumulation of observations.

We show the center distance (in pixels) between the
tracking result and the ground truth over time for all ap-
proaches on 3 video sequences in Fig.8. Some selected
tracking results of all approaches are also shown in Fig. 9,
Fig. 10, Fig. 11 and Fig. 12, respectively. Since the selected
frames are the most representative or challenging ones in
the video sequence, the results can reflect the global per-
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Fig.9
our approach on Dudek sequence at frame #107, #184, #380, #470 and #570. The ’X’ in (d) indicates
tracking failure, i.e., the tracking window is out of the image.

Selected tracking results of (a) IVT, (b) CLRST, (c) MTT, (d) ST, (e) KCF, (f) CT and (g)

discussions can be drawn as follows:

1) From the tracking results of faces in Fig.9 and Fig. 10,
we can see that our approach achieves good perfor-

mances on both sequences. KCF perform good on
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REulie [J til
Selected tracking results of (a) IVT, (b) CLRST, (c) MTT, (d) ST, (e) KCF, (f) CT and (g) our
approach on David sequence at frame #31, #85, #120, #161 and #200.

Fig. 10

Dudek sequence, but the locating rectangle is much big-
ger than the object on David sequence when the object
moves abruptly, which indicates its ability of discrimi-
nating the object from the background becomes weaker
when the object changes suddenly. CT works well in
early stage when the object changes smoothly, but there
are some biases on Dudek sequence and the locating
rectangle is also much bigger than the object on both se-
quences when the object changes abruptly. IVT can suc-
cessfully capture the smooth changes of object, and it can
also handle small changes. However, there are still some
biases when IVT tracks the profile of Dudek. The eigen-
basis of IVT can capture the appearance details of the
target in different poses, expressions, and with or without
glasses, but the eigenbasis learned in IVT by PCA cannot
preserve data manifold structure. Thus, when the target
changes dramatically, e.g., from frontal face to profile,
IVT may fail to effectively adapt to the changes. Since

2)

IEICE TRANS. INE. & SYST., VOL.E100-D, NO.6 JUNE 2017

both CLRST and MTT deploy sparse learning to learn
a robust subspace, their performances are also similar.
ST works perfect in earlier stage. It uses an appearance
model to distinguish the foreground target and the back-
ground, but it does not consider much about the change
of the foreground target. Therefore, it fails when the
foreground target changes abruptly.

Fig. 11 shows that both IVT and our approach perform
well in dark environment. MTT also works well by
dynamically updating particles. There are some biases
in the tracking results (e.g., frame #123, #223, #280
and #355) of KCF. It seems that the tracking accuracy
of KCF degrades when the object moves fast and the
illumination changes frequently. Compared with IVT,
MTT and our approach, the locating rectangle drawn by
CLRST is much bigger, which means its discrimination
ability is weak when features of the foreground and the
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Fig.11
approach on CarDark sequence at frame #63, #123, #223, #280 and #355.

background are similar. In addition, it seems that ST
is sensitive to target which has obvious difference with
background. CT cannot capture the object on CarDark
sequence and it seems that CT is not suitable for the en-
vironment with large illumination changes.

It can be seen from Fig. 12 that IVT, CLRST, KCF and
our approach can steady handle the camera motion, but
MTT, ST and CT perform comparatively bad when the
differences between the foreground and the background
are small.

IVT, KCF and CT runs fast, but the accuracy of track-
ing may degrade in some circumstances when the state
of the object changes abruptly. The running time of our
approach is close to that of these approaches. More-
over, our approach is robust to local changes of the tar-

5)

Selected tracking results of (a) IVT, (b) CLRST, (c) MTT, (d) ST, (e) KCF, (f) CT and (g) our

get object by constructing a within-cluster graph to pre-
serve the relationship of objects in similar modalities.
It is also robust to abrupt changes of the target object
by constructing a between-cluster graph to forcibly keep
connections between current appearance (C,,,) and other
possible appearances. Besides, low-rank representation
in our model helps to revel the common latent features
shared by different appearances.

ST needs to generate the super-pixel regions in each
tracking, thus it needs a higher cost of computation and
storage and a relatively long time to complete the track-
ing task, while our approach is computational friendly
by constructing a compact graph and projecting samples
to a low-dimensional space.

Although our approach is robust to both local changes
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Fig.12  Selected tracking results of (a) IVT, (b) CLRST, (c) MTT, (d) ST, (e) KCF, (f) CT and (g) our
approach on Fish sequence at frame #20, #163, #276, #388 and #464.

and abrupt changes of the object in many circumstances, it
needs to collect different observation states before tracking.
This precondition may be not easy to satisfy in some circum-
stances. How to overcome this disadvantage is the work we
need to do in the future.

5. Conclusion

This paper proposes a robust visual tracking algorithm by
low-rank representation with graph constraints. It exploits
the benefits from both feature selection and geometric struc-
ture preservation. Experimental evaluations on different
faces and objects demonstrate that our approach is robust
to both local changes and dramatically changes of the tar-
get object. Since our model needs some training samples
to construct the graphs, in our future work, we will explore
how to automatically generate training samples by only one

sample, e.g., variation of pose and scale, shape deformation
and occlusion.
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