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SUMMARY

Standard clustering algorithms when applied to DNA microarray data often tend to produce erroneous
clusters. A major contributor to this divergence is the feature characteristic of microarray data sets that
the number of predictors (genes) in such data far exceeds the number of samples by many orders of mag-
nitude, with only a small percentage of predictors being truly informative with regards to the clustering
while the rest merely add noise. An additional complication is that the predictors exhibit an unknown
complex correlational configuration embedded in a small subspace of the entire predictor space. Under
these conditions, standard clustering algorithms fail to find the true clusters even when applied in tandem
with some sort of gene filtering or dimension reduction to reduce the number of predictors. We propose,
as an alternative, a novel method for unsupervised classification of DNA microarray data. The method,
which is based on the idea of aggregating results obtained from an ensemble of randomly resampled data
(where both samples and genes are resampled), introduces a way of tilting the procedure so that the en-
semble includes minimal representation from less important areas of the gene predictor space. The method
produces a measure of dissimilarity between each pair of samples that can be used in conjunction with
(a) a method like Ward’s procedure to generate a cluster analysis and (b) multidimensional scaling to
generate useful visualizations of the data. We call the dissimilarity measures ABC dissimilarities since
they are obtained by aggregating bundles of clusters. An extensive comparison of several clustering
methods using actual DNA microarray data convincingly demonstrates that classification using ABC
dissimilarities offers significantly superior performance.
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1. INTRODUCTION

Classification techniques, both supervised and unsupervised, have been among the most popular and use-
ful tools for extracting information from the complex mega-variate data sets characteristic of modern high
throughput functional genomics research technologies like DNA microarrays and protein arrays. Even the
seminal paper on DNA microarrays by Eisen and others (1998) involved classifying a set of microarray
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samples. Specific details are provided in recent microarray data analysis texts such as Amaratunga and
Cabrera (2004) and Gentleman and others (2005).

Despite the ready availability of a large variety of classification techniques in the multivariate data
analysis and machine-learning domains (Hastie and others (2001) and Seber (1984) are good references),
the somewhat exceptional structure of microarray data often renders standard procedures inefficient. Some
particular issues are that (a) the number of predictors (i.e. genes) far exceeds the number of samples,
(b) only a small percentage of the available predictors are truly predictive, and (c) the predictors exhibit
an unknown complex correlational configuration.

For supervised classification, extensive comparison studies conducted by Dudoit and others (2002)
and Lee and others (2005) reported relatively high error rates for classical methods such as the Fisher
linear discriminant analysis and classification and regression trees. On the other hand, both studies re-
ported procedures based on aggregating classifiers obtained from ensembles of randomly resampled data,
notably random forest (Breiman, 2001), as having generally good performance.

High error rates occur with standard procedures in unsupervised classification or clustering as well,
with error rates exceeding 20%, even 40%, as demonstrated in Section 4. Nevertheless, careful analysis
with unsupervised classification has proven useful in microarray settings as a means of identifying struc-
tures in the data (D haeseleer (2005) discusses clustering in gene expression work). It has been possible to
discern disease subtypes, notably in cancer, such as in cutaneous malignant melanoma (Bittner and others,
2000), B-cell lymphoma (Alizadeh and others, 2000), brain glioblastoma (Mischel and others, 2003), and
breast cancer (Kapp and others, 2006). Even in experimental situations in which the classes are known
beforehand, it is still instructive to perform a cluster analysis as a proof of concept or an experimental
quality check to ensure that the gene expression profiles differentiate enough so that the expected groups
indeed manifest as separate clusters.

In unsupervised classification, as with supervised classification, explorations as to whether aggregat-
ing results obtained from ensembles of randomly resampled data would result in improved classifications
have proven positive. In these, Dudoit and Fridlyand (2003) use bagging (Breiman, 1996) and Breiman
and Cutler (2003), Shi and Horvath (2006), and Shi and others (2005) use random forest on artificially
augmented data as a means of generating a set of proximity measures by recording how often each pair of
samples cluster together; these proximity measures are subsequently used as similarities (or dissimilari-
ties) in a clustering algorithm based on similarities (or dissimilarities).

A key aspect of the problem is feature selection. Biological intuition affirms that of all the genes ar-
rayed on a microarray, only a small subset is truly relevant for differentiating among the different classes
of samples. Eliminating the others, which merely obscure the picture by contributing noise, should vastly
improve classification accuracy. Recognizing this, gene filtering is often performed, for instance, by filter-
ing out genes with low variance or coefficient of variation (e.g. using Bioconductor’s genefilter library),
but the results tend to vary markedly with the number of genes selected and fail to take into account com-
binations of genes that could be useful. It is desirable to have an approach that is less influenced by gene
selection, considers combinations of genes in some way, and is automatic and more adaptive to the data.

This then is the motivation for proposing a novel method for unsupervised classification (or learning)
that builds up on the idea of aggregating results obtained from an ensemble of randomly resampled data
(but doing so without the need for data augmentation). We introduce a technique of tilting the ensemble so
that it includes minimal representation from less important regions of the gene predictor space, essentially
a form of feature selection but one that is less drastic than the commonly used tack of gene filtering.
The resampling involves both samples and genes, with a subset of genes being drawn at each iteration
weighted toward genes with higher variance. Each resampled subset is used for a cluster analysis, and
the resulting bundle of clusters is used, as above, to generate dissimilarity measures that are subsequently
used as dissimilarities in a clustering algorithm based on dissimilarities. We call the dissimilarity measures
ABC dissimilarities as they are based on Aggregating Bundles of Clusters.
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We demonstrate, using actual DNA microarray data, that classification using ABC dissimilarities
offers significantly superior performance.

2. THE PROCEDURE

As is customary in the DNA microarray literature, we assume that the data have been organized as a
gene expression matrix, X={xz;}, whose G rows and N columns represent, respectively, G genes and N
samples. Depending on the experiment, the N samples may correspond to N tissues, cell lines, patients,
or other biological samples. The entries x,; are the measured gene expression levels for the gth gene in
the ith sample, suitably transformed and normalized (following the methods of Amaratunga and Cabrera
(2004) for preprocessing). The objective is to cluster the N samples.

The procedure involves generating a bundle of clusters as follows: Let n = +/N and g = +/G. The
procedure is iterative. At the rth iteration:

1) Calculate a weight wy for each gene k: wy = 1/(Ry +c¢), where Ry is the rank of the variance of the
kth gene and c is such that the 1% of genes with the highest variance have a combined probability
of 20% of being selected.

2) Select N samples with replacement, discarding any replicate samples. Let Ji”]‘.r
jth samples of X are both selected, Ji’;r = 0 otherwise. Let Zle Ji’;.r = N*.
3) Select g genes using weighted random sampling without replacement with weights wy.

= 1 if the ith and

4) Run Ward’s clustering procedure on the resulting g x N* matrix X* to find n clusters. These are
the rth “base clusters.”

5) Record I*

ijr

= 1 if the ith and jth samples of X cluster together, Ii’;r = 0 otherwise.

Repeat steps (1)~(5) R times (say R = 1000) and let P;; = > X | Jir />R, J;5,- A relatively small
value of P;; would indicate that samples i and j are relatively close to each other, while a relatively large
value of P;; would indicate that samples i and j are relatively far from each other. Thus, D;; =1 — P;;
can be used as a dissimilarity measure, which we refer to as the ABC-dissimilarity measure, and as an
input to a hierarchical clustering algorithm, which in our implementation is Ward’s method (Seber, 1984).
Further details of the procedure are available at Biostatistics online.

3. PROPERTIES

A crucial aspect of the procedure is the use of weights calculated in step (1) and used in step (3). The
randomness of the subsets used for building the base clusters increases the diversity of the assemblage
and reduces dependence among base clusters. However, a large majority of genes in a typical microarray
data set are non-informative, and if simple random sampling were used, most of the gene subsets selected
will consist mostly of non-informative genes, potentially depleting the accuracy of the base clusters. In
a microarray experiment in which only H of G genes contain information about the desirable grouping,
if at each iteration we select g genes by resampling with equal weights, the probability distribution
of the number of informative genes selected is binomial with g trials and probability z = H /G so that the
mean number of informative genes selected at each iteration is 4 = 7 g. Since 7 is typically small, so will
u be. For example, if H = 100 and G = 10000 (g = G'/?> = 100), u is only one gene per iteration. By
weighting the random sampling of genes so that less informative genes are less likely to get selected, our
procedure tilts the odds in favor of selecting informative genes and thus is able to include a high number
of such genes at all iterations and thereby form better base clusters. The enormous choice of predictors
available ensures that the diversity of the ensemble (necessary for the effectiveness of ensemble methods;
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Breiman, 1996, 1997) is not compromised. The value of doing the weighting is amply demonstrated in
the performance assessment reported in Section 3.

Dissimilarity measures used in clustering need not be metrics (Sibson, 1971). For example,
“I-correlation,” and the random forest dissimilarity are not. Neither is the ABC dissimilarity, dapc.
Nevertheless, it satisfies the following properties: 0 < dapc(x1, x2) < 1, dapc(x1, x1) = 0, dapc(x1,
Xx2) = dapc(x2, x1). In addition, when run without bagging (i.e. step 2 involving the resampling of arrays),
dapc also satisfies the triangle inequality: dapc(x1, x2) < daBc (X1, x3) + daBc(x3, x2) (see Biostatistics
online for proof).

4. PERFORMANCE ASSESSMENT

A number of data sets for which the sample groupings are known were used to compare the performance
of our procedure with several others. The data sets we used were chosen because they are reasonably
representative of common microarray experiments, are fairly different in size and group numbers, and
(with one exception) are available publicly. They are as follows:

Golub: The Golub data set, which is one of the earliest and the most widely used data sets in the mi-
croarray literature, comes from an experiment in which gene expression levels were measured
for 3 types of acute leukemia tumor samples: 38 B-cell acute lymphoblastic leukemia (B-ALL)
samples, 9 T-cell acute lymphoblastic leukemia (T-ALL) samples, and 25 acute myeloid leukemia
(AML) samples, using Affymetrix GeneChips containing 7129 human genes (Golub and others,
1999). The data were preprocessed, cleaned, and scaled before analysis leaving 5888 working
genes.

AMS: This data set comes from an experiment in which gene expression levels were measured for
3 types of leukemia tumor samples: 24 acute lymphoblastic leukemia (ALL) samples, 20 AML
samples, and 28 mixed lineage leukemia (MLL) samples, using Affymetrix GeneChips contain-
ing 8700 human genes (Armstrong and others, 2001). All the 8700 genes were included in the
analysis.

ALL: The ALL data set consists of data for 128 patients with recently diagnosed ALL: 95 B-cell patients
and 33 T-cell patients (Chiaretti and others, 2004). The analysis is run on all the 12 625 genes.

Colon: The Colon data set is a colon cancer data set consisting of 2000 genes and 62 samples. The 62
samples came from 40 normal and 22 cancerous colon tissues. Affymetrix GeneChips were used
in the experiment (Alon and others, 1999).

CL: This data set comes from an experiment in which gene expression levels of 20 samples were
measured using Codelink microarrays with 34946 genes. The 20 samples fall into 5 groups
of 4 samples each, the different groups corresponding to different treatments (data provided by
T. Shi, unpublished data).

Iris: Finally, to demonstrate the versatility of the ABC approach, we chose a familiar non-microarray
data set, one often used in the multivariate statistics literature. This is the famous iris data set
(Fisher, 1936) which consists of the measurements of the lengths and widths of the sepals and
petals (i.e. 4 predictors) of 150 flowers, which can be classified into 3 species of iris with 50
flowers in each. This data set offers a challenge as 2 of the species are contiguous in the predictor
space and are tricky to separate.

Armed with the knowledge of the true nature of each sample, we compared the relative performance
of several common clustering algorithms by determining how many samples were misclassified. The
methods compared are the following.
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The primary procedure and variations:

(1) The method as described above (referred to as BagWeight).
(2) No sampling of arrays and unequal weight sampling of genes (i.e. omit step (2)) (NoBagWeight)

(3) Sampling of arrays and no sampling of genes (i.e. omit steps (1) and (3), essentially the approach
taken by Dudoit and Fridlyand (2003)) (BagNoWeight)

(4) no sampling of arrays and equi-weight sampling of genes (i.e. set wx = 1 in step (1) of the proce-
dure) (NoBagNoWeight)

(5) sampling of arrays and equi-weight sampling of genes (BagWholeData).

Other methods (as comparators):

(6)—(16) Several hierarchical clustering methods (using both Euclidean (Euc) and 1-correlation
(Cor) as dissimilarities), K-means, partitioning around medoids (PAM) (Kaufman and
Rousseeuw, 1990), and random forest clustering.

The results are shown in Table 1. The complete method with both sampling of arrays and weighted
sampling of genes (i.e. “BagWeight”) clearly did best: it was the top performer for all but one microar-
ray data set and the second best performer in that. In fact, a major find is that the 2 methods that use
weighted sampling (i.e. “BagWeight” and “NoBagWeight”) were among the 2 or 3 best performers across
all the microarray data sets and for these data sets generally performed considerably better than any stan-
dard method. Of the non-ensemble methods, PAM and Ward’s method gave the best results. The popular
hierarchical clustering methods were among the worst performers.

The ABC dissimilarity between 2 samples, in general, quite accurately reflects the dissimilarity be-
tween them if their gene expression patterns are reasonably similar. Thus, ABC dissimilarities for pairs

Table 1. Misclassification rates (expressed as percentages) with the lowest and second lowest rates for

each data set displayed in bold. The time column shows the computational time for each method (in s),

averaged over the 6 data sets. All computations were done in R (version 2.2.1). We wrote R routines for

methods (1)—(5) and (16), and since R code tends to run slower than C code by about 10%, the time
entries for these methods are shown in italics

Method Golub AMS ALL Colon CL Iris Time

(1) BagWeight 18.1 1.4 0.0 9.7 20 9.3 82.02
(2) NoBagWeight 18.1 2.8 0.0 21.0 20 10.0 35.00
(3) BagNoWeight 29.1 6.9 3.9 48.4 20 10.7 40.83
(4) NoBagNoWeight 25.0 4.2 1.6 27.4 20 10.0 32.33
(5) BagWholeData 16.7 4.2 2.3 48.4 20 9.3 303.25
(6) Single linkage (Cor) 47.0 47.0 25.0 37.0 40 34.0 0.16
(7) Single linkage (Euc) 51.0 58.0 25.0 37.0 40 32.0 0.29
(8) Complete linkage (Cor) 37.5 23.6 41.4 45.0 40 14.7 0.17
(9) Complete linkage (Euc) 25.0 23.6 414 45.0 40 16.0 0.22
(10) Average linkage (Cor) 47.2 27.8 26.5 38.7 40 53 0.16
(11) Average linkage (Euc) 51.3 27.8 26.5 38.7 40 9.3 0.43
(12) Ward’s method (Cor) 23.6 9.7 2.3 48.4 40 7.3 0.29
(13) Ward’s method (Euc) 29.2 9.7 40.0 48.4 40 9.3 0.15
(14) K-means 20.8 5.5 42.2 48.4 40 10.7 0.49
(15) PAM 23.6 8.3 2.3 16.1 60 10.7 0.20

(16) Random forest 43.0 26.4 48.0 43.5 20 10.0 1227.25
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Fig. 1. Density plots of the intracluster and intercluster dissimilarities for (a) ABC dissimilarities, (b) Euclidean
distance, and (c) 1-Pearson correlation for the AMS data set. The fraction of the area that lies in the overlap is shown
below each plot.

of samples belong to the same class range from being very small for nearby samples (so that they clus-
ter together very often in the base clusters) to being moderately large for samples that are further apart
(so that they cluster together a little less often in the base clusters) so that, in such cases, the ABC dis-
similarities tend to properly reflect the differences between samples. This is not so when the samples
are distant. In this case, pairs of samples belonging to different classes rarely tend to fall into base clus-
ters together so that ABC dissimilarities for pairs of samples belonging to different classes tend to take
values close to the maximum value of one. In such cases, the ABC dissimilarity does not provide an
accurate measure of how dissimilar the sample profiles are. This tendency is evident in Figure 1, which
shows the density plots of the intercluster and intracluster ABC dissimilarities for the AMS data set. It
is this tendency and the ensuing small overlap between intercluster and intracluster dissimilarities that
make ABC dissimilarities so effective for cluster identification. In contrast, observe that the Euclidean
distance and the Pearson correlation (the corresponding plots are also shown in Figure 1) do not exhibit
this tendency, have greater overlap between intercluster and intracluster dissimilarities, and are hence less
effective.

5. VISUALIZATION

For data exploration, it is very useful to be able to visually render and examine the results of a classification
procedure. A simple way to do this is to use ABC dissimilarities to generate a configuration of points in
2-dimensional space via multidimensional scaling (see e.g. Kendall, 1971, or Seber, 1984) and then to plot
this configuration on a scatter plot. Figure 2 shows such configurations for the Golub and AMS data sets.
Except for a few samples, the clusters clearly separate. Contrast this with the usual principal components
analysis (PCA) plots for the same data sets shown in Figure 3, where the clusters are almost impossible to
discern. For example, for the AMS data set, the ABC plot separates out all the 3 groups, whereas the PCA
plot only separates out MLL. (Notes: (a) The addition of a third principal component did not improve the
separation. (b) A spectral map (Wouters and others, 2003) is an alternative PCA-like display that does
show a separation of the clusters.) The tendency of unalike samples to have more or less equal ABC-
dissimilarity values (as described above) results in the ABC plots exhibiting a “horseshoe” shape, a term
coined by Kendall (1971), who saw such patterns in multidimensional scaling plots with dissimilarities
having this property.
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Fig. 2. Multidimensional scaling plots of the ABC dissimilarities for the Golub and AMS data sets; the actual groups
are identified by different symbols: for the Golub data set, o, AML; A, B-ALL; and B, T-ALL; for the AMS data set,
o, MLL; A, ALL; and ll, AML.
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Fig. 3. Principal components plots of the Golub and AMS data sets; the actual groups are identified by different
symbols as above.

6. DISCUSSION

We have introduced an ensemble method based on weighted resampling for unsupervised learning. We
have applied it to several actual experimental data sets and found it to be highly effective. We conclude
with a few miscellaneous comments.

Computational considerations and software: ABC dissimilarities can be computed at relatively low
cost even in a data set with a very large number of genes due to the gene selection involved at each itera-
tion. Parallelization is possible as the cluster analyses in step (4) could be run in parallel. An R script (non-
parallelized) for computing ABC dissimilarities are available at the authors” Web sites: http://www.rci.
rutgers.edu/~cabrera/DNAMR/, http://www.geocities.com/damaratung/.

As can be seen from Table 1, ABC dissimilarities are very much faster to compute than random forest
dissimilarities.

Number of clusters: In settings where the number of clusters is not known, a number of methods may
be used in conjunction with ABC dissimilarities to determine the number of clusters, including Dunn’s
(1974) statistic, the Davies—Bouldin (1979) index, and the silhouette (Rousseecuw, 1987). These methods
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all gave reasonable, though not perfect, results for the above data sets. Since determining the optimum
number of clusters is an entire research topic in itself, this is not studied further here.

Supervised classification with ABC dissimilarities: When the classes are known, ABC dissimilarities
can be used in a dissimilarity-based supervised classification scheme for prediction. Initial trials showed
that this gave good results. Since it is an entire topic in itself, this will be explored elsewhere.
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