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ABSTRACT 

Modern radar systems employ multiple transmit antennas on 

transmit and multiple receive antennas on receive to improve 

many aspects of the system performance including improved 

target detection performance, improved angle estimation 

accuracy, decreased minimum detectable velocity. However 

these advantages are obtained only when orthogonal probing 

waveforms are emitted from each of the transmit antenna 

elements. These waveforms further need to have good 

autocorrelation and crosscorrelation properties for good range 

resolution and multiple target return separability. Many 

previous works presented noise-like pseudo random phase 

coded waveforms with good correlation properties. However 

these waveforms suffered from limited family size, zero-lag 

non-orthogonality and hence non uniform distribution of 

transmit power in space. This paper presents the design of 

phase coded pulse waveforms with good correlation 

properties, zero-lag orthogonality property, delay and add 

property that support Doppler compensation, large family 

size, simpler generation, constant modulus etc. 
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1. INTRODUCTION 
Radar systems transmit electromagnetic energy into free space 

and use the reflected energy to detect and locate desired 

targets of interest. Modern radar systems employ antenna 

array based transmit system and antenna array based receive 

system to improve many aspects of system performance. 

Multiple transmit antenna elements allow directive radiation 

of transmit power and multiple receive antenna elements 

allow directive reception of reflected echoes. The use of array 

based antenna systems allows angular parameters of the target 

to be determined accurately. Conventional phased array radars 

transmit fully coherent waveforms (possibly scaled by a 

complex constant) from their   different transmit antenna 

elements forming a strong transmit beam in the desired 

direction. Beamforming is performed only by the receive 

array (containing   antenna elements) to estimate the angular 

parameters of the target. Thus the transmit degrees of freedom 

are limited to one and receive degrees of freedom are  . 

However multiple input multiple output (MIMO) radars 

transmit diverse waveforms from their different transmit 

antenna elements and use joint processing of the received 

signals from the different receive array elements. While 

phased array radars employ only spatial diversity, MIMO 

radars employ both spatial and waveform diversity to improve 

many aspects of system performance. MIMO radars can 

employ widely spaced antennas [1] or collocated antennas [2]. 

While the former configuration offers improved spatial 

diversity to improve target detection capabilities the latter 

configuration improves the spatial resolution, parameter 

identifiability and interference rejection capability. However 

the above advantages are achieved only with orthogonal 

waveforms with good autocorrelation and crosscorrelation 

properties at all time lags.  

Deng [3], Liu [4] have initially proposed polyphase sets based 

on genetic algorithm and simulated annealing respectively. 

However the size of the sequence sets is small and do not 

satisfy the orthogonality requirement. They also suffer from 

Doppler degradation. Hao and Stoica [5] have proposed 

unimodular sequence sets based on cyclic algorithm having 

continuous phases over the range [0,2π]. This makes 

generation of signals at the transmitter and design of matched 

filters at the receiver difficult. Hammad [6] addressed the 

Doppler problems of Deng sequences but still the size of the 

sequence family is limited. Singh [7] proposed a simulated 

annealing algorithm combined with hamming scan algorithm 

for designing eight phase sequence sets. However the size the 

sequence sets is small and using eight phase sequence sets 

introduces complex multiplications in the digital 

implementation of matched filters at the receiver. It is also 

commented in [3] that using polyphase sequences with 

number of phases       does not yield a significant 

improvement. 

MIMO radars allow phase shifts to be obtained for each 

transmit-receive antenna pair thereby increasing the degrees 

of freedom to    . However these phase shifts could be 

obtained only by transmitting noncoherent probing signals 

from each transmit antenna. These probing signals should 

have zero-lag orthogonality property (for uniform illumination 

of space), good autocorrelation properties (for high range 

resolution), good crosscorrelation (for multiple target return 

separability and low interference at matched filter), constant 

modulus (for high transmit power efficiency), large sequence 

length (for high transmit energy), large family size (for 

immunity from jamming attacks), simpler generation and high 

degree of randomness.  This paper presents the design of four 

phase pulse coded waveforms with large family size, simpler 

generation and good aperiodic correlation properties. The 

correlation properties of these sequences for MIMO radar 

systems have been studied in [9]. The scope of this paper is to 

present the construction and code optimization of these 

sequences for achieving zero-lag orthogonality property 

required for uniform illumination of transmit power in space. 

Section 2 presents the MIMO radar signal model and structure 

of phase coded pulse waveforms. Section 3 presents the 

construction of four phase pulse coded waveforms with good 

aperiodic correlation properties. Section 4 presents the code 

optimization procedure for achieving orthogonal pulse coded 

waveforms and also the numerical results. Section 5 

concludes the paper.  
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2. MIMO RADAR SIGNAL MODEL 
Consider a monostatic MIMO radar that contains   

transmitters with the antenna elements configured as uniform 

linear arrays. We assume a point target and also that the target 

and transmitters lie in the same 2-D plane (see Fig. 1).  

 
Figure 1: Transmitter Model 

Let    represent the spacing between consecutive 

transmitters. Let   be the target angle with respect to the 

broadside direction and λ is the carrier wavelength of the 

transmitted waveforms. Let                       
represent the   transmitter waveforms. All the transmit 

antennas transmit waveforms simultaneously in time. We 

further assume that the transmitter waveforms are narrowband 

and the baseband signal waveforms are not modified because 

of Doppler effect [16]. The correlation between two transmit 

waveforms       and         at zero time-lag is defined as 

                
 

  

 

      (1) 

and               represents the zero-lag correlation 

matrix of the   transmit waveforms. 

2.1 Phase Coded Pulse Waveforms  
The phase coded pulse waveform emitted by the     

transmitter can be represented as  
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where 
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Here   represents the number of pulses emitted by each 

transmitter. Here,      is the         element of the code 

matrix         and it can assume a value from the set 

   
  

 
    

  

 
      

  

 
                is the duration of each 

pulse and    is the duration of each subpulse. K is the phase 

number and represents the number of phases allowed by each 

polyphase waveform. Each row of the code matrix   

represents the phase code associated with each transmitted 

waveform. Each column of the code matrix corresponds to the 

phase code transmitted by each of the   transmitters during 

the     subpulse. As shown in Fig. 2, each transmitter 

waveform       consists of a stream of   identical 

pulses     .  Each pulse in turn contains   phase coded 

subpulses each having width    . For each of the transmitter 

waveforms       to be orthogonal (at zero Doppler and zero 

delay mismatch) i.e., 

          
                      

 

  

 (5) 

we require  

            (6) 

Orthogonal waveforms result in uniform illumination in all 

directions. For fixed    , these waveforms can be completely 

described by the code matrix              
and the pulse 

spacings (               ). 

 

Figure 2: Structure of Phase-Coded Pulse waveforms 

2.2 Correlation Metrics 
The aperiodic cross-correlation         at a discrete shift   

between the     phase code sequence              and 

the      phase code sequence                is defined as  
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where      denotes complex conjugate of the argument 
     The aperiodic autocorrelation       of              

at shift   is the aperiodic cross-correlation of        with itself 

     . 

2.3 Problem Formulation 
The goal of orthogonal polyphase signal design problem is to 

design the       polyphase code set matrix    

           

      
      

 
   
   

   
          

  

where each row represents an individual polyphase sequence 

used to transmit the phase coded pulse waveform       . 
Each  column   represents the complex symbol transmitted in 

the     subpulse, subject to minimization of the following 

criteria (in addition to satisfying the requirements (5) and (6)).  

a) maximum AC peak sidelobe level  

  
   
   

        

 

   

 (8) 

b) maximum CC peak sidelobe level 

   
   
 

        

   

   

   

   

 (9) 

2.4 Transmit Beampattern 

The baseband signal at the target location can be described by 

the expression  

 

                       

   

   

 (10) 

where              is the spatial frequency of the target,  
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  (11) 

is the vector of   transmit waveforms and      is the array 

steering vector given by  

                                  (12) 

With typical transmitter spacing of       , the spatial 

frequency   is in       . The spatial distribution of power 

of the transmit signals is called the transmit beampattern and 

is given by [8], 

                                       

                   

   

    

   

   

 
(13) 

Consider      for a phased array radar case. The      

transmit signal vector      is given by                
where                with   denoting the steered 

direction. Then,          
      assuming unit power 

signal      and  

                 
      

                 
 
 (14) 

Note that the transmit gain attains maximum value in the 

direction    and is decreased at       Now, consider      
with orthogonal signals. Then,    , and  

                   (15) 

This implies that the beampattern is omnidirectional. Thus, 

the traditional beamforming results in a focused beampattern 

while the beampattern of MIMO with orthogonal signals is 

uniform in all directions. 

3. FOUR PHASE CODE GENERATION 

Sequences with good autocorrelation properties can be 

generated by using pseudo noise generators called maximal 

length sequences. When it is desired to generate a binary m-

sequence of period     , one looks up a table of binary 

irreducible polynomials of degree   and then selects from 

amongst the table, an irreducible polynomial that is also 

primitive. The procedure for generation of four-phase 

sequences is very similar. Given that it is desired to generate 

the family with size        of four phase sequences of 

period       , one proceeds as follows. First, identify 

polynomials with coefficients in                that are 

irreducible as binary polynomials when their coefficients are 

reduced modulo 2 (i.e. irreducible over Z2). It is easily shown 

that these polynomials are also irreducible over Z4. Next, from 

amongst these pick a primitive polynomial      ; An 

irreducible polynomial of degree   is said to be primitive if 

the smallest exponent   for which the polynomial      
divides      is       . Complete listings of all 

primitive polynomials having degree ≤ 10 are listed in [11]. 

Table-I below provides partial listing of primitive 

polynomials given in [11] for reference. Note: For degree 3, 

the entry 1213 represents the polynomial                  . 

Table 1: Partial Listing of Characteristic Polynomials for 

Linear Recurrence 

Degree 3 1213, 1323 

Degree 4 10231, 13201 

Degree 5 100323, 113013, 113123, 121003, 123133 

Degree 6 1002031, 1110231, 1211031, 1301121 

Degree 7 10020013, 10030203, 10201003 

Degree 8 100103121, 100301231, 102231321 

Degree 9 1000030203, 1001011333, 1001233203 

3.1 Signal Generation 
Given a primitive polynomial  

                   
         

       (16) 

with coefficients      , the     sequence             
         in the family   can be generated from the 

linear recursion associated with      given by 

                                   
            

(17) 

over   . By initializing the linear recursion with different 

initial states and evaluating the linear recursion we get 

       cyclically distinct sequences in family   each of 

length       .  The linear recurrence described above 

can be efficiently implemented using the shift register 

configuration shown in Fig. 3. 

 

 
Figure 3: Shift Register implementation of family A as generated 

by characteristic polynomial 

                  
         

      . All addition, 

multiplication and negation operations follow modulo-4 

arithmetic 

3.2 Example 
Consider the degree     polynomial               
    , primitive as a Z4 polynomial. By reducing the 

coefficients modulo 2, one obtains the binary primitive 

polynomial         .  We notice that              
          . This implies                      . 

The linear recurrence given by      is defined as  

                                           
                      

                                          
This linear recurrence can be implemented using the shift 

register configuration shown in Fig. 4. Cyclically distinct 

members of the family can be found by loading the shift 

register with 4-tuples not previously seen during the 

generation of prior sequences 

 

Figure 4: Shift Register implementation of family A as generated 

by characteristic polynomial                    

The above recurrence yields the family of Z4 sequences of 

size 17 (24+1) and signal length 15 (24-1).  
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Polyphase sequences   can now be obtained from the above 

sequences   by mapping the elements in Z4 to 

                      . 

4. CODE OPTIMIZATION AND 

NUMERICAL RESULTS 
The four phase codes discussed in the preceding section are 

shown [9] to have good aperiodic autocorrelation and 

aperiodic crosscorrelation properties. However the sequences 

are do not satisfy the orthogonality property. This results in 

non-uniform illumination of power in space. The property of 

orthogonality between the every pair of sequences is one of 

the key requirements of MIMO radars.  

Popovic and  Suehiro [10] showed that there exist a “circular 

phase shift” for each of these sequences that result in zero-

delay crosscorrelation of any two distinct sequences in this set 

is -1. If a 1 is preprended to each sequence in this set, then the 

zero-delay crosscorrelation of any pair of distinct sequences in 

this set will be zero. The zero-delay autocorrelation of each of 

these sequences is however     (where   is the initial 

sequence length).  The generated four phase sequences are 

circular shifted to obtain a zero-delay correlation of -1 with all 

the other sequences in the matrix. The example of the shifted 

versions of the input sequences generated has been shown in 

the second column of Table-2. These shifted sequences are 

prepended with a 0 in order to obtain the zero-lag correlation 

matrix as zero. So the zero-lag correlation matrix will have 

the diagonal elements to be equal to the number of elements 

in each sequence and the other elements in the matrix to be 

zeros. This is illustrated in the zero-lag correlation matrix 

column as shown in Table-2. Therefore the correlation 

between any two sequences in the matrix is now zero. Hence 

the property of orthogonality has been achieved along with 

the good autocorrelation and crosscorrelation properties. The 

transmit beampattern (5) of MIMO radar transmit array with 

M=16 elements (waveforms) as a function of spatial direction 

(frequency   ) of initial sequences and code optimized 

orthogonal sequences is displayed in Fig. 5. We see that the 

transmit beampattern of waveforms using initial sequences 

generated using (17) is nonuniform whereas the code 

optimized sequences have a uniform beampattern which is 

desirable in MIMO radar systems. 

 

Figure 5: Transmit Beampattern 

5. CONCLUSIONS 
This paper presents the construction of four phase pulse coded 

waveforms for MIMO radar applications. The advantages of 

the proposed method includes large family size, constant 

modulus, near optimal auto and cross correlation properties, 

pair wise orthogonality of sequences for uniform transmit 

beampattern etc.  

This work can be further extended to identify eight phase 

sequence sets based on ML sequence generators and finite 

field theory.   Since MIMO radars suffer from directive gain 

loss each waveform emitted by each transmit antenna need to 

have long pulse width to maximize the transmit energy and 

further the received SNR. Sequences of any required length 

can be generated by selecting the primitive polynomial of 

appropriate order.  
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Table 2: a) Four Phase Sequences generated using the linear recursion of (6) b) Circular Shifted Sequences of (a) for optimal 

zero-delay crosscorrelation c) Orthogonal Sequences with a zero-delay cross correlation of 0 between any pair of distinct 

sequences d) Zero-Delay cross correlation matrix of each pair of sequences 

a) Four phase coded Input 

Sequences 

b) Circular Shifted Sequences c) Orthogonal Four Phase 

Sequences 

d) Zero-Lag Correlation Matrix 

M=8, Q=7 

 

1110302 

1121223 

1132100 

1230033 

1310120 

1332322 

2333010 

3130320 

M=8, Q=7 

 

1110302 

3112122 

1132100 

3312300 

1310120 

1332322 

3330102 

3130320 

M=8, Q=8 

 

01110302 

03112122 

01132100 

03312300 

01310120 

01332322 

03330102 

03130320 

 

R=I8X8 

 

80000000 

08000000 

00800000 

00080000 

00008000 

00000800 

00000080 

00000008 

M=16, Q=15 

 

111123231001022 

111301033023020 

112101302120213 

    112210021133012 

113123013203000 

113232132212203 

121231223220133 

121300302233332 

122213330303320 

123300120031310 

131303211003200 

132103120100033 

133230310232023 

222311101011203 

233110323322300 

333103011021020 

 

M=16, Q=15 

 

111123231001022 

111301033023020 

131121013021202 

113301211221002          

113123013203000           

311323213221220 

133121231223220 

333321231223222           

133303033201222 

313101233001200 

131303211003200 

331321031201000           

313323031023202 

311101011203222 

331103233223002 

333103011021020 

M=15, Q=16 

 

0111123231001022 

0111301033023020 

0131121013021202           

0113301211221002          

0113123013203000           

0311323213221220 

0133121231223220 

0333321231223222           

0133303033201222 

0313101233001200 

0131303211003200 

0331321031201000           

0313323031023202 

0311101011203222 

0331103233223002 

0333103011021020 

R=I15X15 

 

15000000000000000 

01500000000000000 

00150000000000000 

00015000000000000 

00001500000000000 

00000150000000000 

00000015000000000 

00000001500000000 

00000000150000000 

00000000015000000 

00000000001500000 

00000000000150000 

00000000000015000 

00000000000001500 

00000000000000150 

00000000000000015 

 

M=31, Q=31 
 

1111120330320122021210133013000 

1111322312122322003032131211002 

1112112001333300312300102021012 

1112231010210002103231303102013 

1112310023131100330122100223010 

1113100112302122203030111033020 

1113302130100322221212113231022 

1121203022210101310332221331122 

1121322031131203101223022012123 

1122231133223323201022230303130 

1123223200232101132112203311102 

1123302213113203323003000032103 

1131322110100120203010313213200 

1133100310320320003012333031222 

1133302332122120021230331233220 

1213101302031333221303023000230 

1213303320233133203121021202232 

1221323221220010123132330023333 

1222232323312130223331102310300 

1223303003202010301312312003313 

1232113033000313130231232030020 

1233101100013131021321201002032 

1313300110322300221030333213002 

1322233113001301201200010321110 

1331201121001000012301332110223 

1331320130322102203232133231220 

1333102330102302003230113013202 

2311130211030210200121033103120 

2322201010333011020333130033210 

2333233200311110013210030202303 

3333201101203220232303110310003 

 

 

M=31, Q=31 
 

1111120330320122021210133013000 

1111322312122322003032131211002                 

1333300312300102021012111211200          

1311122310102100021032313031020                   

3131100330122100223010111231002          

1113100112302122203030111033020           

1113302130100322221212113231022           

1331122112120302221010131033222           

3113120310122302201212311213220            

3113322332320102223030313011222           

3311102112322320023210113211220                

1311320332300300003210311233022               

1131322110100120203010313213200             

1133100310320320003010313213222                

1133302332122120021230331233220                  

3133322130302300023012131013020               

3313320312102120223212133033202                 

3333122132322122001012313233002                 

3331102310300122223232331213022                  

3313122330300320201030131231200               

3131302312320300201232113033000                  

1313102132120100203212331011000                 

1313300110322300203210333213002                 

3311300130120100221032111013222                

3133120112100100001230133211022                 

1331320130322102203232133231220               

1333102330102302003230113013202                  

3111302110302102001210331031202              

3331300332102322201010333011020                

3111100132100302023032333233200                

3333320110120322023230311031000   

M=31, Q=32 
 

01111120330320122021210133013000 

01111322312122322003032131211002                 

01333300312300102021012111211200          

01311122310102100021032313031020                   

03131100330122100223010111231002          

01113100112302122203030111033020           

01113302130100322221212113231022           

01331122112120302221010131033222           

03113120310122302201212311213220            

03113322332320102223030313011222           

03311102112322320023210113211220                

01311320332300300003210311233022               

01131322110100120203010313213200             

01133100310320320003010313213222                

01133302332122120021230331233220                  

03133322130302300023012131013020               

03313320312102120223212133033202                 

03333122132322122001012313233002                 

03331102310300122223232331213022                  

03313122330300320201030131231200               

03131302312320300201232113033000                  

01313102132120100203212331011000                 

01313300110322300203210333213002                 

03311300130120100221032111013222                

03133120112100100001230133211022                 

01331320130322102203232133231220               

01333102330102302003230113013202                  

03111302110302102001210331031202              

03331300332102322201010333011020                

03111100132100302023032333233200                

03333320110120322023230311031000   

R=I31X31 
 

31000000000000000000000000000000 

03100000000000000000000000000000 

00310000000000000000000000000000 

00031000000000000000000000000000 

00003100000000000000000000000000 

00000310000000000000000000000000 

00000031000000000000000000000000 

00000003100000000000000000000000 

00000000310000000000000000000000 

00000000031000000000000000000000 

00000000003100000000000000000000 

00000000000310000000000000000000 

00000000000031000000000000000000 

00000000000003100000000000000000 

00000000000000310000000000000000 

00000000000000031000000000000000 

00000000000000003100000000000000 

00000000000000000310000000000000 

00000000000000000031000000000000 

00000000000000000003100000000000 

00000000000000000000310000000000 

00000000000000000000031000000000 

00000000000000000000031000000000 

00000000000000000000000310000000 

00000000000000000000000031000000 

00000000000000000000000003100000 

00000000000000000000000000310000 

00000000000000000000000000031000 

00000000000000000000000000003100 

00000000000000000000000000000310 

00000000000000000000000000000031 

Note: Polyphase sequences   can now be obtained from the above sequences   by mapping the elements in Z4 to                        


