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Abstract

Sorting in one of a set of fundamental problems in computer
saence. In this paper we present the first wait-free algorithm
for sorting an input array of size N using P s N proces-
eom to achieve optimal running time. Known sorting algo-
rithms, when made wait-flee through previously eskabliehed
trsmsformation techniques have complexity O(logs N). The
randomized algorithm we present here, when run in the
CRCW PRAM model executes in optimal O(log N) time
where P = N and O(N log N/P) otherwise. The wait-free
property guarantees that the sort will complete despite any
delays or failures incumed by the processors. This is a very
desirable property from an operating systems point of view,
since it allows oblivious thread scheduling as well as thread
creation and deletion, without fear of losing the algorithm’s
correctness. We further present a variant of the algorithm
which is shown to suffer no more than O(m) cent ention
when rust Sy’tlChrOnOUd~.

1 Introduction

Sorting is a basic algorithmic building block and hm at-
tracted the attention of many reeearchera. In this paper we
present a wait-i%ee algorithm for sorting an ssmay of N ele-
ments, in the CRCW PRAM model with processor failures
and undetectable restarts. Herlihy [17] defines a wait-free
data structure M one on which any operation by any proces-
sor is guaranteed to complete within a bounded number of
steps, regardless of the actions or failures of other proceesom.
By extension, a wait-free algorithm for some iixed-size prob-
lem is guaranteed to arrive at the solution within a bounded
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number of steps, even in the face of processor failures and de-
lays. Wait-free algorithms have the appealing property that
correct completion of the algorithm is assured despite any
problematic scheduling imposed by the system. Greenwald
and Chent on [16] note that such algorithms are well suited
for implementing operating system kernels since they free
the operating system from many book-keeping tasks. Con-
sider the case of sorting a large data set in the background of
other ongoing computations. Using the wait-tkee algorithm
given here we can begin the sort by spawning a thread for
each idle processor in the machine. If during the execution
a processor is needed elsewhere we can reap the thread asso-
ciated with it without fear of leaving the program’s internal
data structures in an inconsistent state. On the other hand
if other proceasom become ftee, we can spawn more threads
to speed up the sorting process. An int=esting epeaal case
is when one oft he sorting algorithm’s own threads must wait
for some time-consuming operation such as a page fault. We
can immediately spawn a new sorting threadfor the same
processor and continue working on available elements of the
array, soaking up otherwise wasted cycles. When the page
fault is handled, we can summarily destroy any such thread.
l%om the point of view of the operating system, wait-free al-
gorithms are desirable since they allow oblivious allocation
of proceesom to threads, creation of new threads, and de-
struction of redundant threads as needed, leading to bet t cr
utilization of system resources.

1.1 Related work

The number of articles dealing with sorting in a parallel en-
vironment is too large to allow mentioning them all, so we
will restrict discussion to those that are directly related to
our work. The sorting technique we use is based on Hoare’s
serial Quicksort [20] of which there have been a number of
parallel implementations. For the CRCW PRAM,there is
the result of Martel and Guafkld [28], with aIS O(log N)
running time that may require as much as O(iVs) memory.
This is improved upon by Chlebue and Vrto [10] to achieve
O(log N) time and O(N) space, using a method that is very
similar to the one we use here. For EREW PRAMs, Zhang
and Rao [33] present an algorithm with a running time of
O((log P + N/P) log N). This was later improved upon by
Brown and XIong [8] to achieve O((N/P) log IV) for the case
where P < N/log N. All of these algorithms work in the
PRAM model, making strong use of processor synchroniza-
tion, and are not wait-free.

In [17] Herlihy also gave a general method for the con-
struction of wait-free objects [18]. Unfortunately, trying to
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implement a “sorting-object” using this method (or theim-
provements of Afek et al. on it [1]) is liable to become ineffi-
cient. Processors wishing to update the shared object must
ftrst post the changes they are about to make. If they fail
before these changes are completed another processor can
complete them, ensuring the object remains consistent. This
can be detrimental to parallelism as often only one process
performs all pending work. For example, using the methods
of [1], the complexity of a wait-free operation is O(kf log ~),
where k is the number of processors accessing the object con-
currently, and ~ is the complexity of the update operation.
Using any straight-forward sorting algorithm, we can ex-
pect k = P, which will not yield good performance. Similar
objections apply to Herlihy and Moss’ transactional shared
memory [19], since Shavit and Touitou’s lock-free softwere
implement at ion [29] suffers the same drawbacks mentioned
above, and proposed hardware implementation are limited
in size [5]. Some special purpose wait-free data structures
have also been introduced, of which the most suitable for
sorting are heaps and priority queues. Both data stmc-
tures use a scheme for announcing pending operations sim-
ilar to the one proposed by Herlihy, and tend to perform at
least part of each pending operation in a serial manner. For
Barnes’ [6] wait-free heap the complexity is O(Mk log IV) for
performing M operations by k threads on a heap with N el-
ements. Israeli and Rappoport’s [21] priority queue besides
requiring a non-standard two word Compare&Swap oper-
ation also employs a “helping” method which limits con-
currency (this is discussed in [29]). In any event, simply
providing a wait-free data structure which can order its in-
puts does not immediately imply a wait-free solution to the
sorting problem, One must still allocate processors to val-
ues, handle duplicate insertions and deletions of the same
value, and make sure values aren’t lost even if the processor
assigned to them fails.

Another possible approach comes fkom research into fault
tolerant systems. For a fixed sized array, an algorithm which
sorts in a failure model which allows processors to fail, and
later possibly revive and proceed (in an undetectable man-
ner) would also sort under wait-free assumptions. It is pos-
sible to convert any PRAM algorithm to work in this failure
model. However such transformations are expensive. One
might start with an O(log N) sorting algorithm [2, 7, 11] and
aPPly a tr~sformation technique which zimulat es a reliable
PRAM on a faulty one. This idea was fit introduced by
Kanellakis and Shvartsman in [22], and later improved upon
by Kedem et al. [23]. Both of these results are for the fail-
stop model. In the general asynchronous model the results
of Anderson and Well [3] and Buss et al. [9] apply, and would
mean an increase in the complexity of the sort to at least
O(logs N), and cost a multiplicative log N factor in mem-
ory. The method of Martel et al. [25] would also work, and
would increase running time by only a log N factor. How-
ever, it supports only limited asynchrony through the use of
the non-standard FTS instructional The above simulations
would not be efficient, es was noticed by [3], since they re-
quire synchronization at the end of every PRAM step.

These results indicate the need to develop a sorting el-
gorithm designed specifically for the wait-free case. A previ-
ous result in fault-tolerant sorting is given by Yen et al. [32],
which employs the Batcher sorting network, giving a com-
plexit y of 0(log2 N). ThiE result supportB only the fail-stop
failure model and requires non-standard hardware compo-

1The FTS Fetch-’l%st-Store instruction it a stronger version of
Read-Modify-Write which can read one location and, based on the
value read, modify a difimwnt location.

nents. It is possible to transform this algorithm into a
wait-free sorting algorithm with a complexity of O(logs N),
but it would require an 0(log2 N) factor memory increase.
There has also been much study in fault tolerant sorting
networks [4, 24, 30]. This work deals with networks whose
comparator-gates may be faulty but whose connection do
not fail. This is akin to a computation model where proces-
sors do not fail, but may sometimes return the wrong result
for a comparison.

Related work has also been done on asynchronous com-
puting models. Cole and Zajicek [12] proposed the APRAM
model for designing parallel algorithms to work in an asyn-
chronous setting. Zhou et al. [34] present a sorting algo-
rithm for asynchronous machines that is not wait-free. Nei-
ther is the recent sorting algorithm of G1bbonn et al. [15]
for the QRQW asynchronous PRAM. While these models
avoid making any timing assumptions, they also do not al-
low processor failures, and hence do not produce wait-free
algorithms.

1.2 Our algorithm

Our parallel Quicksort algorithm is the first wait-free al-
gorithm for the sorting problem to achieve optimal run-
ning time of O(N log N/P) or O(log N) in the case where
P = N. These running times are under the assumption
that all processors participate in the algorithm and incur
no delays. We are able to achieve these times by not uz-
ing a standard PRAM sorting algorithm which generally re-
quire O(log N) synchronized steps. As was previously noted,
the cost of simulating O(log N) PRAM steps in a wait-free
manner is O(logs N). In contrast, our algorithm comists of
three phases, each of which requires logarithmic time. Since
wait-freedom is inherently incorporated into the algorithm,
the log N cost of tracking completed work can be made ad-
ditive (as opposed to multiplicative when using simulation
techniques). After presenting the algorithm we turn our
attention to the issue of contention and show a simple low
contention work allocation scheme. This scheme, when com-
bined with low contention winner selection and approximate
write-all (actually, write-most) yields a wait-free sorting al-
gorithm with contention O(m).

2 A Wait Free Sorting Algorithm

One of the challenges of writing wait-free code for manipu-
lating a number of objects is to make sure that all objects
are dealt with. Since processors may fail, one cannot assume
that just because work has been assigned to a processor -
it will indeed complete that job. This situation is modeled
by the write-all problem of [22]: given an array B of N el-
ements and P fault-prone processors, devise an algorithm
that fills every element of B with “1”. A standard solution
iz to assign work to processors using binary trees.

2.1 Work assignment trees

Work Assignment Trees (WATS) are bhmry trees that store
jobs in the leaves and use the inner nodes to track progress
in subtrees rooted at those nodes. F@re 1 illustrates en im-
plementation of WATS. The first routine, undonamlernent
finds the next job to be done in the tree, starting the search
at at art. The routine propagate-done marks an element es
completed, and continues up the tree along the path to the
root, marking nodes whose subtrees are done. For simplicity
we assume that for the root of the tree the routine parent ( )
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returns a unique value EHPTYfor which leaf (EMPTY) E TRUE
and trem EMPTY] <> DOIIE.

function nndono.ol-cnt (troo: WAT(S),
stast : intogar

) : raturns integer
begin

i := stut
repeat

whil. tree [i]= DOHEdo
i := pamnt( i )

●id
=hilo not l~af(i) do

if txoo[ la ft-child(i) ] <> DO~ then
i := loft -ohild(i)

●180
i :x right-oh~la(i)

●ad
until troo[i] <> DOSE
return i

●nd

prooodoro propagate-doao (treo: UT(B) ,
i: intogm )

begin
troo [i] : = DOBE
if not root(i) and troo [ sibling(i) ] = DOIB
then

propagato-dono( trm, puont (i) )
●ndif

●nd

Figure 1: Work-Aooignmcnt-~ee algorithm

Since this method is well established we state the follow-
ing lemma without proof (see for example [3, 9, 22, 26]).

Lemma 3.1 Let S be the set of leavea in the WAT for which
done n # DOt?B,at the time the routine undonodemnt is
called. If S b not emptg the routine will return one of the
elements of S, otherwise it will return BHPTY.In either caae,
the routine runs in O(N) time.

proaodaro wait-free-algoritha
pros.ssor pri==%o wmrimbles

i: int~gor
shared mriablos

work: MAT(1)
begtn
i :=nadom-olaaant (work , START)
ropomt

func(i)
propegmto-doao (work, i)
i :- mndono-ol~nt(work, i)

ant il i = 811PTY
●ad

Figure 2: A skeleton wait free algorithm

The procedure propagatadono can take no more than
O(log N) iterationa since each iteration goes up one level in
the binary tree. Ghen this fact end Lemma 2.1 it is easy
to see that the algorithm of Figure 2 is wait-free, provided
the function f unc () is wait-free. If we replace the call to
f unc ( ) with the operation B[i] :=1 for some array B of sise
19,we get a solution for the write-all problem.

2.2 The sosting ●lgorithm

typo Elam.ntis
koy : any-typo
parent: int.gor iaitidisod to 1
child: array [BIG,SXALLIof intogor

initialised to EHPTY
●ixo: iatog~r inithlixcd to O
plmlo : intogar iaitialimd to O

●nd

A: uray [1. .1] of Elamnt

F@re 3: Data structure used for sorting

We now present our wait-free algorithm for sorting an
array A of N elements using P processom in detail. The
algorithm is divided into three phases: tree building, tree
summation and element shufllhg. In the first phase we con-
struct a sorted bhmry tree whose nodes cent sin the records
of A. For thispurpose we attach two child pointers end one
parent pointer to each record. Initially, all pointers point to
the tit element of A, this will be the pivot element for the
root of the tree. The first phase is shown in F@re 4 end
proceeds so follows. Firat we note the fact that A[l], being
the first pivot need not be inserted into the tree (line 7.

{Initially, we assign the ~th processor to insert the [Np/P -
th element (line 8). A processor p which is inserting record
i f%at compares its key to the key of root element, setting
side to the result of the comparison. We assume that no
two keys are the same, which can easily be accomplished by
using an element’s index to break ties. Now p triee to ee-
tablioh i so the appropriate child of the root node (line 18).
Siice the comperetid~wap operation will succeed only if
the child is BMPTY,p can re-reed the child’. value after the
operation to check success. By now either p or some other
processor has managed to install its records so the child of
the root (line 20). If i was installed, (either by p or by some
other processor simultaneously working on i), p &es i’s par-
ent pointer (line 21), updates the Work tree to mark the fact
that i is done, end chooses enother element (lines 22-23). If
i wee not inst elled, it follows that some other processor, q
preceded p in installing its element, j, es the root’s child.
Sop must now tryto install i so a child of j. It does so by
updating its local parent pointer to j, end going through
the loop again. Eventually, p will installi somewhere in the
tree, and go on to the next element.

We make the following observations about the procedure
build.t roe.

1.

2.

3.

4.

AU processors begin the algorithm with the same value
for parant.

For a given pair of values of i end puent, the com-
parison in line 13 always yields the same reoults.

For a given pair of values of parent end aid. the read
operation in line 19 always returns the same value,
which is never EMPTY.

As a direct consequence of facts 1-3, we get that two
processors with the same value for i would follow the
same path down the tree. For this reason the same
value cannot be successthlly inserted twice into the
tree. Which also means that, for a given processor
and value of i, each iteration of the loop in lines 11-20
is done with a diHerent value of actual.
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1
2
3
4
6
6
7
8
9

10
11
12
13
14
15
18
17
18

19
20
21

22
23
24

25

procoduro build.tree
procossor privato variables

i ,actual ,paront ,aide: intogor

shared variables
work: WAT(M)

begin
propagat ●-done (work, 1)
i := undono-element (work , l* MY-llID/P+ 1)
repeat

actual := A[i] .paront
rapeat

parent := actual
if A[paront] .koy > A[i] key then

sido := SHALL
●lse

side := BIG
endif
compare. and-smap(A[parent]. child [sid~],

BHPTY,i)
actual := A[parent] .child[s id.]

until actual = i
A[i] .parent := parent
propagat ●-done (work, i)
a := undone-oloment (work, i)

untili = EHPTY
and

function treo-muu(i: int.gor) returns integer
processor privato variablea

sum: integer

begin
if i = EMPTYthan

return O
elso if A[il .saze > 0 then

raturn A[i] . six.
else if CoinTons = Eaads then

sum := troo-sum( A[i] .child[BIG] )
mm := sum + tree -aum( A[i]. ohild[SHALL] )

01s0
sum := tree-snm( A[i] .child[SHALL] )
sum := sum + troo-sum( A[i] . child[BIG] )

cndif
A[i] , siza = sum+l
return sum+1

endif

Figure 5: Phase 2 of the sort: summing the subtrees

Figure 4: Phase 1 of the sort: building the Quicksort tree

5, Each time the comparo~d=uap in line 18 succeeds,
it is with a different value for i. This follows directly
from the fact that processors working on the same el-
ement follow the same path down the tree.

Lemma 2.2 The loop in lined 11-20 will be performed no
more than N —1 times.

Proofi The proof is by the pigeon-hole principle. At each
it erat ion a processor attempts the compare ~d~wap on a
different location (fact 4). There are Mpossible locations,
and only M-1 possible different values of i (no processor
is assigned i= 1). Since no value can be encountered twice
(facts 4 and 5), eventusdly either the comparemnd=irap suc-
ceeds, or a processor encounters its own value in the tree
and exits. 8

Lemma 2,3 When the first proceaaor completes the proce-
dure build-tree, after at moat 0(N2) operations, the tree
defined bg the child pointers will be a sorted binary tree
containing all the record~ of A.

Proof: A node’s child pointers, once set, are never changed.
This assures the comparison in line 13 is consistent for all
processors. Shce key values don’t change during the course
of the algorithm and all processors start by comparing their
key to the same value, the resulting tree is correctly sorted.
■

The previous two lemmas prove that the first phase of
the algorithm is wait-free and builds the pivot tree correctly.
Any processor that completes the first phase immediately
goes on to the second phase.

In the second phase of the algorithm we calculate the
size of the subtree rooted at each element. Since our bhary
trees are not complete we must count the elements directly.
The algorithm follows the standard tree summation method
except that it uses randomization to spread the processors
around the tree.

procodure f ind-placo ( i: integer, sub: integer)
processor privato variables

s: integer
begin

if i = HIPTY or A [i] place > 0 then
r.turn

andif
if A[i]. child [SHALLI<> EHPTYthen

s := A[ A[i] . child [SHALL]1 .eiza
else

S:=o
end if
A[i] .placo :=s+sub+l

if CoinToss = Heads then
f ind-placo ( A [i] . child [SHALL] , sub)
f ind_placo( A[i] . chald[BIG] , sub + s + 1)

01s0
f ind-placo ( A[i] . child [BIG], sub + s + I )
f lnd-place ( A[i] . child[SHALL] , sub)

endif
and

Figure 6: Phase 3 of the sort: putting the elements in their
right place
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Any processor which completes the mcond phase ad-
vances without delay to the third phase. Using the results
from the second phase, calculating the location of each ele-
ment in the sorted array is now a simple matter. We use the
following rule in the routine f lnd-place. Let j be some ele-
ment whose left and right children, l(j) and r(j) correspond
to the larger and smaller child respectively. We denote by
p’(j) j’s rank among the elements of A after sorting, and by
S(j) the size of the subtree rooted at j. Then P(l(j)) =
P(j) + S(r(l(j))) + 1 and P(r(j)) = P(j) – S(i(r(j))). The
routine f ind~laca ( ) is init idly called with i = O and aub
= o.

Since tree based algorithms have been dealt with exten-
sively in the literature, we state the following without proof.

Lemma 2.4 The second and third phase of the algorithm
are both wait-fie and require no more than O(N) operation
to complete.

2.3 Run-time melysic

We analyze the running time of the algorithm in the syn-
chronized case, where it is essentially running on a CRCW
PRAM. The fink phase of the algorithm is a simple parallel
Quickaort implementation similar to the one given in [10],
which is shown to run in optimal time on a CRCW PRAM.
The second and third phases require traversing a binary tree
of depth O(log N). For the synchronous cme, it is easy to see
that only O(log N) steps are required (e.g. [27]). We state
the following lemma leaving the proof for the fi.dl paper.

Lemma 2,5 Aaauming that the elements in the initial array
are in random order, each oj the algorithm 8s three steps,
when running on a CRC W PRAM haa a running time of
O(zvlog N/P).

The assumption that elements in the initial array are in
random order is needed only for the first phase. We can elim-
inate this assumption by employing the following work allo-
cation strategy in the first phase of the algorithm. Instead of
calling undone -element a processor picks one of the elements
of Auniformly at random. if the element is not DONEthe pro-
cessor inserts it into the tree, and calls propagat edone as
usual. This process continues until a processor has randomly
chosen DONE elements log N times in a row. From this stage
elements are chosen using undone -elarnent. This change
guarantees that w.h.p. all nodes in the first log N –log log N
levels of the Quicksort tree are chosen uniformly at random.
Thus, w.h.p. all nodes at level log N – log log N are roots of
a subtree with O(log N) nodes, and the total sorting takes
O(log N) time.

3 Deeling with Contention

Contention is a phenomenon observed in multiprocessors
that occurs when several processors attempt to access the
same location in memory at the same time. Since current
hardware can only service a comtant number accesses per
cycle some processors might have their accesses deferred to
later cycles, forcing them to wait. Dwork et al. present
the first formal complexity model for contention [13], in
their model, if two or more processors attempt to access the
same memory location concurrently, one will succeed end
the others will stall, They differentiate between the con-
tention of an algorithm, defined as total number of stalls
which can be induced by an adversary scheduler divided by

the number of processors, and the variable- contentio~ de-
fined as the worst case number of concurrent accesses to
any single variable. They further prove that an adversary
scheduler can always cause the variable-contention of a wait-
free algorithm running on P processors to be O(P), so we
cannot use this measure directly. Also, for randomized al-
gorithms contention depends on the random choices made
by the processors. For these reasons we define contention as
the maximum number of concurrent accesses to any single
variable that occurs with non-negligible probabtity when
the algorithm is run on a CRC W PRAM. This is a natu-
ral measure since it makes no assumptions about how the
machine handles concurrent accesses, it simply asks “How
many are there likely to be?”

The algorithm presented in the previous section sfiers
O(P) contention, for example, at the very start when all
processors attempt to install the element they are work-
ing on at the root. Once the tree contains O(P) levels,
the random nature of element selection will reduce the ex-
pected contention at each element to O(l). If P < N initial
contention is less of an issue, even under QRQ W [14] as-
sumptions since the running time of the algorithm wiil be
dominated by N. As N approaches P contention begins to
play a greater role in determining running time. In this sec-
tion we try to overcome this to some extent by presenting a
method for lowering contention to O(@.

3.1 Low contention WATS

We begin by introducing low contention work assignment
trees (LC- WATS), which solve the write-all problem in time
O(log P) with expected O(log P/ log log P) contention.

IL*p*at fOr*ver
i = a random nodo of tho tree
Ifi isan unmarked loafThn

Do the work for i
Hark i DOIE

ills. If i is an nnmarkod inrmr node Thn
If both of i‘s children u. marked DOSE Then

Hark i DOEK
If i is the root of tho tr.o Thsn

Hmk tho root ALLD0113
Endif

Kndif
Else If i is am inner nod. marked ALLDOZEThen

Hark both of i‘s children ALLOOEE
Quit

Endif
Endrepoat

F@re 7: Low Contention Work Assignment

The code in F@re 7 follows the work allocation scheme
of [27], but has been modiiled for low contention. In the al-
gorithm of [27] processors must constantly check the root to
find out whether all the work of the tree has been done, this
causes the root to be a source of O(P) contention. We mod-
ify the algorithm by having the processor that would have
set the root to DONEset it instead to ALLDONE.This ALLOONE
value propagates down the tree, till in time O(log P) w.h.p.
most of the tree is marked ALLDONE.We thus trade an addi-
tive log factor in time for low contention completion discov-
ery.

Lemma 3.1 Assuming 0(1) work per tree leaf. Under syn-
chronous ezecution aaaumptiona w.h.p the LC- WAT algo-
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rithrn given above terminates in O(log P) time, with mozi-
mum contention O(log P/ log log P).

Proofi We first bound the run-time of the algorithm. A
node can be marked DONEonly after its two children are
marked DOBE.Once the two children are marked the prob-
ability that the node is not marked in the next t steps is

1 ‘p. We bound the probability that thebounded by (1 - —y)
root was not mar ed after T steps using a delay seguence
argument similar to the one used in packet routing analyois
[31]. Let zo, .... Zlocp be a sequence of nodes such that (1)
zo is the root of the tree; (2) z; in the lest child to be marked
DONEamong the two children of ~i.l (ties are broken arbi-
trarily). Let ti be the time node zi was marked DONE,let
h.g P+I = O. If the root was not marked after T steps then

10# P

x ti – ti+l > T.
i=O

Let ai = ti– ti+l,then zi WWImarked Si steps after its two
children had been marked. If the root was marked after T
steps then there is a root to leaf path for which

i=O

The probabilityy that such a path exists for T = blog P is
bounded by

for a sufficiently large constant b. Similar argument bounds
the probability that dissemination the ALLDONEmark takes
more than b log P steps.

To bound the contention we observe that at each iter-
ation P processors choose randomly between 2P locations
causing en average of 0(1/2) contention per node per atep.
The probability that through the execution of the algorithm
any node experiences a contention of at least clog P/ log log P
is bounded by

4Pb log P
(

P

c log P/ log log P )

(+].wl.’w < +

for a sufficiently large constant c. w

3.2 Building the Quicksort tree

We now show how to deal with contention in the tree build-
ing phase of the algorithm, we assume that work is dis-
tributed using LC-WATS. The method we use is based on
splitting the sort into three major phases, the first and last
of which are based on the sort of the previous section and the
middle phase serves as a “gluen between them. For simplic-
ity we will present the algorithm for the case where P = N,
extending it to other cases is straightforward. Here is a high
level

1.

view of the sort.

Split the P processors into @ groups of@ proces-
sors each. Each group sorts a different slice of size @
of the original array in parallel, using the algorithm of
section 2.

2.

3.

One group, the winner, is selected, most likely the first
group to finish sorting its slice. This sorted slice is
transformed into a fat balanced bkmry tree with @
copies of the root node.

The entire array is sorted using the algorithm of sec-
tion 2, the only difference is t~at nod; values of ele-
ments with depth ~ log @ are read from the fat tree
of the previous phase (see also [15]).

The second phase of the algorithm has two new parts:
winner selection and fat t ening of the tree. Low cent ention
winner selection can be achieved using a balanced binary
tree (e.g. implemented as an array) whose nodes are all
initially set to ENPTY.Processors begin at the tree’s leaves

and advance towards the root till they reach a node with
a value (one that is not EMPTY),they then copy this value
to the node’s two children. If the root is reached, the pro-
cessor attempts to acquire it using compare-and-swap. Low
contention is achieved by having processors enter the tree
in waves with appropriate e constant spacing between them.
The first wave has a single processor, each successive wave
has twice es many processors es the lest, till the log P-th
wave has P/2 processors, If processors advance wit bout de-
lays, the root will be acquired by a single processor with
O(1) contention, who will also write its value to the root’s
two children. Each child will in turn be read by a single pro-
cessor who will continue the propagation towards the leaves.
In this way we can select the winner in O(log P) time with
0(1) contention, for the synchronous case.

Once a winner is selected, wc use its sorted dice as the
base for a fat balanced binary tree which will serve for the
top levels of the Quicksort tree. A balanced binary tree is a
bkry tree, where each node has two chiklren. The tree is
made fat by duplicating the values at its nodes. We make
k copies of the value at the root node, ck copies of each of
the values at the root’s children, and Cik copies of the values
of the children at the i-th level. We choose k = @ and c
such that the total number of values in the tree is approx-
imately P. Recall that the total number of nodes in the
tree is @. To fill the fat tree with values we will use an
approximation of the write-all problem, write-most. Each
processor reaching this stage will choose log P values of the
fat tree at random, and write into them values taken from
the sorted slice of A chosen in the previous stage (the win-
ning dice). Any two processor choosing the same node of
the fat tree, even if they choose different duplicate values in
that node must read from the same element of A. Since the
largest node has @ values, the expected number of proces-
sors choosing that node at any one time is P/@ = @.
Thus the greatest expected read contention for any value in
A is also @. This way we can fdl the fat tree w.h.p in time
log P, with contention m. The main difference between our
fat-tree and that of Gibbons et al. [15] (other than the fact
that the sizes are different ), is that they use binary broad-
cast to fill the tree, a method that is not wait-free, while
we employ randomized write-most to ensure independence
between processors.

We can now apply the first stage of the sorting algo-
rithm, build-tree, to the entire array end construct the
Quicksort tree with expected contention at most ~. Pro-
cessors reading the fat tree have access to multiple copies,
which reduce contention. The value of c must satisfy the

equation (2c)1*S‘+1 -1 = 2cP, which can be shown to
imply c > $. Therefore the node with the largest ratio of
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processors to duplicate values will be the root which is ec-
cessed by P processors and has @ duplicates, leading to
@ contention. Once out of the fat tree, the processors have
been split into groups of expected size @ with each group
operating on a different node.

3.3 Completing the sart

Rap.&t forcvor
i . a r~d~ nede of the trao

If i is not marked
If i is tho root, or

i ~s Parent Jc PLACEis sot Than
Set i ~s PLACE baaed on tho parent
If i is * loaf

ISssk i u DOBE
En&if

Wif
If both i] s ~hildran ara marked DOIETbn

Hark i u DOIE
If i is tho root Than

Hark tho root ALLDOIE
Emdif

Endif
Else If i aerked ALLDOIK ThorI

Hark both
Qzit

Endif
EBdrepemt

Figure

of i Js ohildron ALLDOXE

8: Low Contention Place Finding

We complete the sort by giving low contention versions
of the second and third phases of the sort: t roemm and
f ind~lace. Tree mrnmation follows the algorithm for LC
WATS in figure 7, with the following minor changes:

1. The work for each leaf is simply setting its S~ value
to 1.

2. Before marking an inner node as DDME we set its SW
vahe to the Bum of each of its children’s SUMvalues
plus 1.

We can fmd an element’s location using a similar method
as detailed in figure 8. We set a node’s PLACEbased on its
parent’s location using the equations in section 2. When
processors are all participating, thin phase takes O(log P)
time, in three passes: first PLACEvalues are written going
down the tree, then DOMEvalues propagate up the tree, and
finally, ALLDONEvalues spread back down the tree.

4 Conclusions

This paper prenented the first run-time optimal wait-free
sorting algorithm. The algorithm, which employs random-
ization, completes the sort in O(IV log N/P) time when run
on a CRCW PRAM end is guaranteed to complete the sort
in the face of any adversary scheduler. A detailed analysis
of the work performed by the algorithm in the asynchronous
case is still required. Using low contention randomized solu-
tions for winner selection and work allocation we have shown
how to reduce the contention stiered by the algorithm to
O(@) in the synchronous case. In the asynchronous case
it has been shown that en omnipotent adversary can always
cause a wait-free algorithm to suffer O(P) contention [13].
Still, it would be interesting to present en analysis of our

cent ention reduced variant in the face of a weaker adver-
sary.
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