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Abstract

Sorting is one of a set of fundamental problems in computer
science. In this paper we present the first wait-free algorithm
for sorting an input array of size N using P < N proces-
sors to achieve optimal running time. Known sorting algo-
rithms, when made wait-free through previously established
transformation techniques have complexity O(log® N). The
randomized algorithm we present here, when run in the
CRCW PRAM model executes in optimal O(log N) time
when P = N and O(Nlog N/P) otherwise. The wait-free
property guarantees that the sort will complete despite any
delays or failures incurred by the processors. This is a very
desirable property from an operating systems point of view,
since it allows oblivious thread scheduling as well as thread
creation and deletion, without fear of losing the algorithm’s
correctness. We further present a variant of the algorithm
which is shown to suffer no more than O(v/P) contention
when run synchronously.

1 Introduction

Sorting is a basic algorithmic building block and has at-
tracted the attention of many researchers. In this paper we
present a wait-free algorithm for sorting an array of N ele-
ments, in the CRCW PRAM model with processor failures
and undetectable restarts. Herlihy [17] defines a wait-free
data structure as one on which any operation by any proces-
sor is guaranteed to complete within a bounded number of
steps, regardless of the actions or failures of other processors.
By extension, a wait-free algorithm for some fixed-size prob-
lem is guaranteed to arrive at the solution within a bounded
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number of steps, even in the face of processor failures and de-
lays. Wait-free algorithms have the appealing property that
correct completion of the algorithm is assured despite any
problematic scheduling imposed by the system. Greenwald
and Cheriton [16] note that such algorithms are well suited
for implementing operating system kernels since they free
the operating system from many book-keeping tasks. Con-
sider the case of sorting a large data set in the background of
other ongoing computations. Using the wait-free algorithm
given here we can begin the sort by spawning a thread for
each idle processor in the machine. If during the execution
a processor is needed elsewhere we can reap the thread asso-
ciated with it without fear of leaving the program’s internal
data structures in an inconsistent state. On the other hand
if other processors become free, we can spawn more threads
to speed up the sorting process. An interesting special case
is when one of the sorting algorithm’s own threads must wait
for some time-consuming operation such as a page fault. We
can immediately spawn a new sorting thread for the same
processor and continue working on available elements of the
array, soaking up otherwise wasted cycles. When the page
fault is handled, we can summarily destroy any such thread.
From the point of view of the operating system, wait-free al-
gorithms are desirable since they allow oblivious allocation
of processors to threads, creation of new threads, and de-
struction of redundant threads as needed, leading to better
utilization of system resources.

1.1 Related work

The number of articles dealing with sorting in a paraliel en-
vironment is too large to allow mentioning them all, so we
will restrict discussion to those that are directly related to
our work. The sorting technique we use is based on Hoare’s
serial Quicksort {20] of which there have been a number of
parallel implementations. For the CRCW PRAM, there is
the result of Martel and Gusfield [28], with an O(log N)
running time that may require as much as O(N*) memory.
This is improved upon by Chlebus and Vrto [10] to achieve
O(log N) time and O(N) space, using a method that is very
similar to the one we use here. For EREW PRAMs, Zhang
and Rao [33] present an algorithm with a running time of
O((log P + N/P)log N). This was later improved upon by
Brown and Xiong [8] to achieve O((N/P)log N) for the case
where P < N/log N. All of these algorithms work in the
PRAM model, making strong use of processor synchroniza-
tion, and are not wait-free.

In {17] Herlihy also gave a general method for the con-
struction of wait-free objects [18]. Unfortunately, trying to



implement a “sorting-object” using this method (or the im-
provements of Afek et al. on it [1]) is liable to become ineffi-
cient. Processors wishing to update the shared object must
first post the changes they are about to make. If they fail
before these changes are completed another processor can
complete them, ensuring the object remains consistent. This
can be detrimental to parallelism as often only one process
performs all pending work. For example, using the methods
of [1], the complexity of a wait-free operation is O(k f log f),
where k is the number of processors accessing the object con-
currently, and f is the complexity of the update operation.
Using any straight-forward sorting algorithm, we can ex-
pect k = P, which will not yield good performance. Similar
objections apply to Herlihy and Moss’ transactional shared
memory [19], since Shavit and Touitou’s lock-free software
implementation [29] suffers the same drawbacks mentioned
above, and proposed hardware implementations are limited
in size [5]. Some special purpose wait-free data structures
have also been introduced, of which the most suitable for
sorting are heaps and priority queues. Both data struc-
tures use a scheme for announcing pending operations sim-
ilar to the one proposed by Herlihy, and tend to perform at
least part of each pending operation in a serial manner. For
Barnes’ [6] wait-free heap the complexity is O(Mk log N) for
performing M operations by k threads on a heap with N el-
ements. Israeli and Rappoport's [21] priority queue besides
requiring a non-standard two word Compare&Swap oper-
ation also employs a “helping” method which limits con-
currency (this is discussed in [29]). In any event, simply
providing a wait-free data structure which can order its in-
puts does not immediately imply a wait-free solution to the
sorting problem. One must still allocate processors to val-
ues, handle duplicate insertions and deletions of the same
value, and make sure values aren’t lost even if the processor
assigned to them fails.

Another possible approach comes from research into fault
tolerant systems. For a fixed sized array, an algorithm which
sorts in a failure model which allows processors to fail, and
later possibly revive and proceed (in an undetectable man-
ner) would also sort under wait-free assumptions. It is pos-
sible to convert any PRAM algorithm to work in this failure
model. However such transformations are expensive. One
might start with an O(log N) sorting algorithm (2, 7, 11] and
apply a transformation technique which simulates a reliable
PRAM on a faulty one. This idea was first introduced by
Kanellakis and Shvartsman in [22)], and later improved upon
by Kedem et al. [23]. Both of these results are for the fail-
stop model. In the general asynchronous model the results
of Anderson and Woll [3] and Buss et al. [9] apply, and would
mean an increase in the complexity of the sort to at least
O(log® N), and cost a multiplicative log N factor in mem-
ory. The method of Martel et al. [25] would also work, and
would increase running time by only a log N factor. How-
ever, it supports only limited asynchrony through the use of
the non-standard FTS instruction.! The above simulations
would not be efficient, as was noticed by [3], since they re-
quire synchronization at the end of every PRAM step.

These results indicate the need to develop a sorting al-
gorithm designed specifically for the wait-free case. A previ-
ous result in fault-tolerant sorting is given by Yen et al. [32],
which employs the Batcher sorting network, giving a com-
plexity of O(log? N'). This result supports only the fail-stop
failure model and requires non-standard hardware compo-

!The FTS Fetch-Test-Store instruction is a stronger version of
Read-Modify-Write which can read one location and, based on the
value read, modify a different location.

nents. It is possible to transform this algorithm into a
wait-free sorting nlgonthm with a complexity of O(log N},
but it would require an O(log? N) factor memory increase.
There has also been much study in fault tolerant sorting
networks [4, 24, 30]. This work deals with networks whose
comparator-gates may be faulty but whose connections do
not fail. This is akin to a computation model where proces-
sors do not fail, but may sometimes return the wrong result
for a comparison.

Related work has also been done on asynchronous com-
puting models. Cole and Zajicek [12] proposed the APRAM
model for designing parallel algorithms to work in an asyn-
chronous setting. Zhou et al. [34] present a sorting algo-
rithm for asynchronous machines that is not wait-free. Nei-
ther is the recent sorting algorithm of Gibbons et al. [15]
for the QRQW asynchronous PRAM. While these models
avoid making any timing assumptions, they also do not al-
low processor failures, and hence do not produce wait-free
algorithms.

1.2 Our algorithm

Our parallel Quicksort algorithm is the first wait-free al-
gorithm for the sorting problem to achieve optimal run-
ning time of O(Nlog N/P) or O(log N) in the case where
P = N. These running times are under the assumption
that all processors participate in the algorithm and incur
no delays. We are able to achieve these times by not us-
ing a standard PRAM sorting algorithm which generally re-
quire O(log N) synchronized steps. As was prewously noted,
the cost of slmulatmg O(log N) PRAM steps in a wait-free
manner is O(log® N). In contrast, our algorithm consists of
three phases, each of which requires logarithmic time. Since
wait-freedom is inherently incorporated into the algorithm,
the log NV cost of tracking completed work can be made ad-
ditive (as opposed to multiplicative when using simulation
techniques). After presenting the algorithm we turn our
attention to the issue of contention and show a simple low
contention work allocation scheme. This scheme, when com-
bined with low contention winner selection and approximate
write-all (actually, write-most) yields a wait-free sorting al-

gorithm with contention O(v/P).

2 A Wait Free Sorting Algorithm

One of the challenges of writing wait-free code for manipu-
lating a number of objects is to make sure that all objects
are dealt with. Since processors may fail, one cannot assume
that just because work has been assigned to a processor -
it will indeed complete that job. This situation is modeled
by the write-all problem of [22]: given an array B of N el-
ements and P fault-prone processors, devise an algorithm
that fills every element of B with “1”. A standard solution
is to assign work to processors using binary trees.

2.1 Work assignment trees

Work Assignment Trees (WATSs) are binary trees that store
jobs in the leaves and use the inner nodes to track progress
in subtrees rooted at those nodes. Figure 1 illustrates an im-
plementation of WATs. The first routine, undone_element
finds the next job to be done in the tree, starting the search
at start. The routine propagate_done marks an element as
completed, and continues up the tree along the path to the
root, marking nodes whose subtrees are done. For simplicity
we assume that for the root of the tree the routine parent ()
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returns a unique value EMPTY for which leaf (EMPTY) = TRUE
and tree [EMPTY] <> DONE.

function undone_element(tree: WAT(N),
start: integer
) : returns integer
begin
i 1= start
repeat
while tree[i] = DONEE do
i := parent( i )
end
while not leaf(i) do
if tree[ left_child(i) ] <> DONE then
i := left_child(d)
else
i = right_child(i)
ond
until treeli] <> DONE
return i
eond

procedure propagate_done(tree: WAT(N),
i: integer )
begin
tree[i] := DONE
if not root(i) end tree[ sibling(i) ] = DONE
then
propagate_done( tree, parent(i) )
endif
ond

Figure 1: Work-Assignment-Tree algorithm

Since this method is well established we state the follow-
ing lemma withoul proof (see for example (3, 9, 22, 26]).

Lemma 2.1 Let S be the set of leaves in the WAT for which
done[] # DONE, at the time the routine undone_slement s
called. If S is not empty the routine will return one of the
elements of S, otherwise it will return EMPTY. In either case,
the routine runs in O(N) time.

procedure wait-free-algoritim
Processor private variables
i: integer
shared variables
work: WAT(N)
begin
i := undone_element(vork , START )
repeat
func(i)
propagate_done(work, i)
i := undone_element(work, i)
until i = EMPTY
ond

Figure 2: A skeleton wait free algorithm

The procedure propagate done can take no more than
O(log N) iterations since each iteration goes up one level in
the binary tree. Given this fact and Lemma 2.1 it is easy
to see that the algorithm of Figure 2 is wait-free, provided
the function func() is wait-free. If we replace the call to
func() with the operation B[i] :=1 for some array B of size
N, we get a solution for the write-all problem.

2.2 The sorting algorithm

type Element is
key: any-type
porent: integer initialized to 1
child: array [BIG,SMALL] of integer
initialized to EMPTY
size: integer initialixzed to O
place: integer initimlized to 0
ond

A: array [1..¥] of Element

Figure 3: Data structure used for sorting

We now present our wait-free algorithm for sorting an
array A of N elements using P processors in detail. The
algorithm is divided into three phases: tree building, tree
summation and element shuffling. In the first phase we con-
struct a sorted binary tree whose nodes contain the records
of A. For this purpose we attach two child pointers and one
parent pointer to each record. Initially, all pointers point to
the first element of A, this will be the pivot element for the
root of the tree. The first phase is shown in Figure 4 and
proceeds as follows. First we note the fact that A[1}, being
the first pivot need not be inserted into the tree (line 7_{.
Initially, we assign the p-th processor to insert the [Np/P}-
th element (line 8). A processor p which is inserting record
i first compares its key to the key of root element, setting
side to the result of the comparison. We assume that ne
two keys are the same, which can easily be accomplished by
using an element’s index to break ties. Now p tries to es-
tablish i as the appropriate child of the root node (line 18).
Since the compare_and swap operation will succeed only if
the child is EMPTY, p can re-read the child’s value after the
operation to check success. By now either p or some other
processor has managed to install its records as the child of
the root (line 20). If { was installed, (either by p or by some
other processor simultaneously working on i), p fixes i’s par-
ent pointer (line 21), updates the work tree to mark the fact
that i is done, and chooses another element (lines 22-23), If
i was not installed, it follows that some other processor, ¢
preceded p in installing its element, j, as the root’s child.
So p must now try to install ¢ as a child of 7. It does so by
updating its local parent pointer to j, and going through
the loop again. Eventually, p will inatall i somewhere in the
tree, and go on to the next element.

We make the following observations about the procedure
build_tree.

1. All processors begin the algorithm with the same value
for parent.

2. For a given pair of values of i and parent, the com-
parison in line 13 always yields the same results.

3. For a given pair of values of parent and side the read
operation in line 19 always returns the same value,
which is never EMPTY.

4. As a direct consequence of facts 1-3, we get that two
processors with the same value for i would follow the
same path down the tree. For this reason the same
value cannot be successfully inserted twice into the
tree. Which also means that, for a given processor
and value of i, each iteration of the loop in lines 1120
is done with a different value of actual.
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1 procedure build_tree

2 processor private variables

3 i,actual ,parent,side: integer

4 shared variables

13 work: WAT(N)

6 begin

7 propagate_done (work,1)

8 i := undone_element(work , N*MY_MID/P + 1)

9 repeat

10 actual := A[i].parent

11 Tepeat

12 parent := actual

13 if A[parent] .key > A[i].key then

14 side := SMALL

15 else

16 side := BIG

17 endif

18 compare_and_swap(A[parent].child[side],
EMPTY, i)

19 actual := A[parent).child[side]

20 until actual = i

21 A[i) .parent := parent

22 propagate_done(vork, i)

23 i := undone_element{work, i)

24 until i = EMPTY

25 end

Figure 4: Phase 1 of the sort: building the Quicksort tree

5. Each time the compare_and_swap in line 18 succeeds,
it is with a different value for i. This follows directly
from the fact that processors working on the same el-
ement follow the same path down the tree.

Lemma 2.2 The loop in lines 11-20 will be performed no
more than N — 1 times.

Proof: The proof is by the pigeon-hole principle. At each
iteration a processor attempts the compare_and swap on a
different location (fact 4). There are N possible locations,
and only N-1 possible different values of i (no processor
is assigned i=1). Since no value can be encountered twice
(facts 4 and 5), eventually either the compare_and swap suc-
ceeds, or a processor encounters its own value in the tree
and exits. |

Lemma 2.3 When the first processor completes the proce-
dure build tree, after at most O(N?) aperations, the tree
defined by the child pointers will be a sorted binary tree
containing all the records of A.

Proof: A node’s child pointers, once set, are never changed.

This assures the comparison in line 13 is consistent for all
processors. Since key values don’t change during the course
of the algorithm and all processors start by comparing their
key to the same value, the resulting tree is correctly sorted.
n

The previous two lemmas prove that the first phase of
the algorithm is wait-free and builds the pivot tree correctly.
Any processor that completes the first phase immediately
goes on to the second phase.

In the second phase of the algorithm we calculate the
size of the subtree rooted at each element. Since our binary
trees are not complete we must count the elements directly.
The algorithm follows the standard tree summation method
except that it uses randomization to spread the processors
around the tree.
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function tree_sum(i: integer) returns integer
processor private variables

sum: integer
begin
if i = EMPTY then
return 0

else if A[i]l.size > O then
return A[i].size

else if CoinToas = Heads then
sum := tree_sum{ A[i].child[BIG] )
sum := sum + tree_sum{ A[i).child[SMALL] }
else
sum := tree_sum( A[i].child[SMALL] )
sum := sum + tree_sum( A[i].child(BIG] )
endif
A[i) .size = sum+i
return sum+i
endif

Figure 5: Phase 2 of the sort: summing the subtrees

procedure find_place(i: integer, sub: integer)
processor private varimbles
s: integer
begin
if i = EMPTY or A[i]l.place > O then
return
endif
it A[i}.child[SMALL] <> EMPTY then
s := A[ A[i).child[SMALL] ].size

else
s :=0
endif
A[i].place s + sub + 1

then
child[SMALL], sub)
child[BIG], sub + s + 1)

if CoinToss = Heads
find_place( A[i].
find_place( a[i].

olse
find_place( A[i].
find_place( A[i].

endif

end

child[BIG], sub + s + 1)
child[SMALL), sub)

Figure 6: Phase 3 of the sort: putting the elements in their
right place



Any processor which completes the second phase ad-
vances without delay to the third phase. Using the results
from the second phase, calculating the location of each ele-
ment in the sorted array is now a simple matter. We use the
following rule in the routine find place. Let j be some ele-
ment whose left and right children, I(j) and r(;) correspond
to the larger and smaller child respectively. We denote by
P(3) 3’8 rank among the elements of A after sorting, and by
S(j) the size of the subtree rooted at j. Then P(i(j)) =
P(3) + 5(r(1(3))) + L and P(r(3)) = P(3) — S((r(7)))- The
routine find place() is initially called with i = 0 and sub
= 0,

Since tree based algorithms have been dealt with exten-
sively in the literature, we state the following without proof.

Lemma 2.4 The second and third phase of the algorithm
are both wait-free and require no more than O(N) operations
to complete.

2.3 Run-time analysis

We analyze the running time of the algorithm in the syn-
chronized case, where it is essentially running on a CRCW
PRAM. The first phase of the algorithm is a simple parallel
Quicksort implementation similar to the one given in [10],
which is shown to run in optimal time on a CRCW PRAM.
The second and third phases require traversing a binary tree
of depth O(log N). For the synchronous case, it is easy to see
that only O(log N') steps are required (e.g. [27]). We state
the following lemma leaving the proof for the full paper.

Lemma 2.5 Assuming that the elements in the initial array
are in random order, each of the algorithm’'s three steps,
when running on a CRCW PRAM has a running time of
O(N log N/ P).

The assumption that elements in the initial array are in
random order is needed only for the first phase. We can elim-
inate this assumption by employing the following work allo-
cation strategy in the first phase of the algorithm. Instead of
calling undone_slement a processor picks one of the elements
of A uniformly at random. If the element is not DONE the pro-
cessor inserts it into the tree, and calls propagate. done as
usual. This process continues until a processor has randomly
chosen DONE elements log N times in a row. From this stage
clements are chosen using undone._element. This change
guarantees that w.h.p. all nodes in the first log N —loglog N
levels of the Quicksort tree are chosen uniformly at random.
Thus, w.h.p. all nodes at level log N — log log N are roots of
a subtree with O(log N) nodes, and the total sorting takes
O(log N) time.

3 Dealing with Contention

Contention is a phenomenon observed in multiprocessors
that occurs when several processors attempt to access the
same location in memory at the same time. Since current
hardware can only service a constant number accesses per
cycle some processors might have their accesses deferred to
later cycles, forcing them to wait. Dwork et al. present
the first formal complexity model for contention {13]. In
their model, if two or more processors attempt to access the
same memory location concurrently, one will succeed and
the others will stall. They differentiate between the con-
tention of an algorithm, defined as total number of stalls
which can be induced by an adversary scheduler divided by
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the number of processors, and the variable-contention, de-
fined as the worst case number of concurrent accesses to
any single variable. They further prove that an adversary
scheduler can always cause the variable-contention of a wait-
free algorithm running on P processors to be O(P), so we
cannot use this measure directly. Also, for randomized al-
gorithms contention depends on the random choices made
by the processors. For these reasons we define contention as
the maximum number of concurrent accesses to any single
variable that occurs with non-negligible probability when
the algorithm is run on a CRCW PRAM. This is a natu-
ral measure since it makes no assumptions about how the
machine handles concurrent accesses, it simply asks “How
many are there likely to be?”

The algorithm presented in the previous section suffers
O(P) contention, for example, at the very start when all
processors attempt to install the element they are work-
ing on at the root. Once the tree contains O(P) levels,
the random nature of element selection will reduce the ex-
pected contention at each element to O(1). If P « N initial
contention is less of an issue, even under QRQW [14] as-
sumptions since the running time of the algorithm will be
dominated by N. As N approaches P contention begins to
play a greater role in determining running time. In this sec-
tion we try to overcome this to some extent by presenting a
method for lowering contention to O(v/P).

3.1 Low contention WATs

We begin by introducing low contention work assignment
trees (LC-WATSs), which solve the write-all problem in time
Of(log P) with expected O(log P/loglog P) contention.

Repeat forever
i = a random node of the tree
If i is ean unmarked leaf Then
Do the work for i
Mark i DONE
Else If i is an unmarked inner node Then
If both of i’s children are marked DONE Then
Mark i DORE
If i is the root of the tree Then
Mark the root ALLDONE
Endif
Endif
Else If i is an innexr node marked ALLDONE Then
Mark both of i’s children ALLDONE
Quit
Endif
Endrepeat

Figure 7: Low Contention Work Assignment

The code in Figure 7 follows the work allocation scheme
of [27}, but has been modified for low contention. In the al-
gorithm of [27] processors must constantly check the root to
find out whether all the work of the tree has been done, this
causes the root to be a source of O(P) contention. We mod-
ify the algorithm by having the processor that would have
set the root to DONE set it instead to ALLDONE. This ALLDONE
value propagates down the tree, till in time O(log P) w.h.p.
most of the tree is marked ALLDONE. We thus trade an addi-
tive log factor in time for low contention completion discov-
ery.

Lemma 3.1 Assuming O(1) work per tree leaf. Under syn-
chronous erecution assumptions w.h.p the LC-WAT algo-



rithm given above terminates in O(log P) time, with mazi-
mum contention O(log P/loglog P).

Proof: We first bound the run-time of the algorithm. A
node can be marked DONE only after its two children are
marked DONE. Once the two children are marked the prob-
ability that the node is not marked in the next ¢ steps is
bounded by (1~ 35)*F. We bound the probability that the
root was not marked after T steps using a delay sequence
argument similar to the one used in packet routing analysis
[31]. Let zo,...,@10 P be a sequence of nodes such that (1)
T is the root of the tree; (2) z; is the last child to be marked
DONE among the two children of z;_, (ties are broken arbi-
trarily). Let ¢; be the time node z; was marked DOXE, let
tiog P+1 = 0. If the root was not marked after T steps then

log P

Y ti—tina 2T
=0

Let 8; = t; — ti41, then z; was marked s, steps after its two
children had been marked. If the root was marked after T
steps then there is a root to leaf path for which

log P
E 5 >T.
i=0

The probability that such a path exists for T = blog P is
bounded by

blog P -1 _ Y pep-nygr o 1
( log P >(1 2P) SP
for a sufficiently large constant b. Similar argument bounds
the probability that dissemination the ALLDONE mark takes
more than blog P steps.

To bound the contention we observe that at each iter-
ation P processors choose randomly between 2P locations
causing an average of O(1/2) contention per node per step.
The probability that through the execution of the algorithm
any node experiences a contention of at least clog P/ log log P
is bounded by

[
clog P/loglog P

for a sufficiently large constant c.

1

2P)clo‘ P/loglog P < l

4Pblog P (

3.2 Building the Quicksort tree

We now show how to deal with contention in the tree build-
ing phase of the algorithm, we assume that work is dis-
tributed using LC-WATs. The method we use is based on
splitting the sort into three major phases, the first and last
of which are based on the sort of the previous section and the
middle phase serves as a “glue” between them. For simplic-
ity we will present the algorithm for the case where P = N,
extending it to other cases is straightforward. Here is a high
level view of the sort.

1. Split the P processors into /P groups of +/P proces-
sors each. Each group sorts a different slice of size /P
of the original array in parallel, using the algorithm of
section 2.
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2. One group, the winner, is selected, most likely the first
group to finish sorting its slice. This sorted slice is
transformed into a fat balanced binary tree with P
copies of the root node.

. The entire array is sorted using the algorithm of sec-
tion 2, the only difference is that node values of ele-
ments with depth < log v/P are read from the fat tree
of the previous phase (see also [15]).

The second phase of the algorithm has two new parts:
winner selection and fattening of the tree. Low contention
winner selection can be achieved using a balanced binary
tree (e.g. implemented as an array) whose nodes are all
initially set to EMPTY. Processors begin at the tree’s leaves
and advance towards the root till they reach a node with
a value (one that is not EMPTY), they then copy this value
to the node’s two children. If the root is reached, the pro-
cessor attempts to acquire it using compare-and-swap. Low
contention is achieved by having processors enter the tree
in waves with appropriate constant spacing between them.
The first wave has a single processor, each successive wave
has twice as many processors as the last, till the log P-th
wave has P/2 processors. If processors advance without de-
lays, the root will be acquired by a single processor with
O(1) contention, who will also write its value to the root’s
two children. Each child will in turn be read by a single pro-
cessor who will continue the propagation towards the leaves.
In this way we can select the winner in O(log P) time with
O(1) contention, for the synchronous case.

Once a winner is selected, we use its sorted slice as the
base for a fat balanced binary tree which will serve for the
top levels of the Quicksort tree. A balanced binary tree is a
binary tree, where each node has two children. The tree is
made fat by duplicating the values at its nodes. We make
k copies of the value at the root node, ck copies of each of
the values at the root’s children, and c*k copies of the values
of the children at the i-th level. We choose k = v/P and ¢
such that the total number of values in the tree is approx-
imately P. Recall that the total number of nodes in the
tree is v/P. To fill the fat tree with values we will use an
approximation of the write-all problem, write-most. Each
processor reaching this stage will choose log P values of the
fat tree at random, and write into them values taken from
the sorted slice of A chosen in the previous stage (the win-
ning slice). Any two processors choosing the same node of
the fat tree, even if they choose different duplicate values in
that node must read from the same element of A. Since the
largest node has +/P values, the expected number of proces-
sors choosing that node at any one time is P/v/P = VP.
Thus the greatest expected read contention for any value in
Ais also v/P. This way we can fill the fat tree w.h.p in time
log P, with contention +/P. The main difference between our
fat-tree and that of Gibbons et al. [15] (other than the fact
that the sizes are different), is that they use binary broad-
cast to fill the tree, a method that is not wait-free, while
we employ randomized write-most to ensure independence
between processors.

We can now apply the first stage of the sorting algo-
rithm, build.tree, to the entire array and construct the
Quicksort tree with expected contention at most /P. Pro-
cessors reading the fat tree have access to multiple copies,
which reduce contention. The value of ¢ must satisfy the

equation (2¢)*8VP+' — 1 = 2cP, which can be shown to
imply ¢ > % Therefore the node with the largest ratio of



processors to duplicate values will be the root which is ac-
cessed by P processors and has VP duplicates, leading to
+/P contention. Once out of the fat tree, the processors have
been split into groups of expected size +/P with each group
operating on a different node.

3.3 Completing the sort

Repeat forever
i = a random node of the tree
If i is not marked
If i is the root, or
i’s parent’s PLACE is set Then
Set i’s PLACE based on the parent
If i is a leaf
Mark i as DONE
Endif
Endif
If both i’s children are marked DONE Then
Mark i as DONE
If i is the root Then
Mark the root ALLDONE
Endif
Endif
Else If i marked ALLDONE Then
Mark both of i’s children ALLDONE
Quit
Bndif
Endrepeat

Figure 8: Low Contention Place Finding

We complete the sort by giving low contention versions
of the second and third phases of the sort: tree.sum and
find_place. Tree summation follows the algorithm for LC-
WATS in figure 7, with the following minor changes:

1. The work for each leaf is simply setting its SUM value
to 1.

2. Before marking an inner node as DONE we set its SUM
value to the sum of each of its children’s SUM values
plus 1.

We can find an element’s location using a similar method
as detailed in figure 8. We set a node’s PLACE based on its
parent’s location using the equations in section 2. When
processors are all participating, this phase takes O(log P)
time, in three passes: first PLACE values are written going
down the tree, then DONE values propagate up the tree, and
finally, ALLDONE values spread back down the tree.

4 Conclusions

This paper presented the first run-time optimal wait-free
sorting algorithm. The algorithm, which employs random-
ization, completes the sort in O(N log N/P) time when run
on a CRCW PRAM and is guaranteed to complete the sort
in the face of any adversary scheduler. A detailed analysis
of the work performed by the algorithm in the asynchronous
case is still required. Using low contention randomized solu-
tions for winner selection and work allocation we have shown
how to reduce the contention suffered by the algorithm to
O(v/P) in the synchronous case. In the asynchronous case
it has been shown that an omnipotent adversary can always
cause a wait-free algorithm to suffer O(P) contention [13].
Still, it would be interesting to present an analysis of our
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contention reduced variant in the face of a weaker adver-
sary.
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