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Abstract—A type of closed exterior algebra in R3 under the cross
product is revealed to hold between differential forms from the three
Whittaker scalar potentials, associated with the fields of a moving
electron. A special algebraic structure is revealed in the context of
Clebsch reparametrization of these scalars, and a special prescription
for the construction of permutation invariant electromagnetic fields is
given as well as a superposition with parallel electric and magnetic
components.

1. INTRODUCTION

At 1904, Edmund Whittaker [1], based on a well known formula for
the integral solutions of wave equations by his former student Harry
Bateman [2], discovered that the overall electromagnetic field produced
by a moving electron in retarded coordinates, can be analyzed in three
scalar potential terms. These were showed to be able to reproduce the
vector potential of the moving electron, thus been cast later into the
generic class of so called, Superpotentials.

Later on, H. S. Ruse showed in two subsequent papers [3, 4]
the intrinsic geometric significance of these functions as the principal
directions of a covariant relativistic expression of Hertzian tensors
in general. Furthermore, Kawaguchi in a series of papers [5–
9], emphasized the significance of such superpotentials starting
from a Hertzian analysis of the Lienard-Wiechert potentials in the
effort of discovering an underlying geometrization of Maxwellian
electrodynamics.

In what follows we intend to provide examples of another source
of such superpotentials from a different decomposition of vector
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potentials that has been overlooked by modern engineering practice
in electromagnetism. This was fairly well known in hydrodynamicists,
and one can take this link further by noticing the important
correspondence of Maxwell’s theory with the theory of the ideal
Euler fluid [10, 11]. The initial Whittaker scalars will be used as
a source of a particular algebraic structure which then gives rise
to unusual configurations of the electromagnetic field. These might
prove important in certain areas of application like pulsed power,
“streamers”, discharges and lightning phenomena.

2. THE CLEBSCH REPRESENTATIONS OF
ARBITRARY SOLENOIDAL VECTOR POTENTIALS

The generic representation of arbitrary vector fields by Clebsch scalar
potentials, originated in 19th century hydrodynamics, in the effort to
classify the various solutions of the generally non-linear Navier-Stokes
equations and their many possible reductions into special cases [12–16].
It has since been used extensively only in various specialized areas,
like Magneto-hydrodynamics, Heliodynamics, Geophysics and plasma
physics. As such, its possible uses in Maxwellian electrodynamics have
been largely suppressed and the technique is not very popular in a more
general curriculum in the physics community. Most of all, it’s non-
uniqueness makes difficult the applicability of the method while it’s
connection with the general Helmholtz theory is not straightforward
and in fact is a non-linear one as we discuss in this section.

The Clebsch parametrization consists of the following very general
representation of arbitrary vector fields with three scalars in the form

F = ∇ϕ +∇× (ξ∇ψ) = ∇ϕ +∇ξ ×∇ψ (1)

In hydrodynamics literature, the two last scalars {ξ, ψ} are often
referred to as the “stream” and “flux” potentials. The above
representation is in a direct correspondence with the generic Helmholtz
decomposition usually given as

F = ∇ϕ +∇×A (2)

Apparently, the correspondence is not unique because of the inherent
non-linearity of the Clebsch representation. This can be shown by
writing the direct relationship of the initial field F and the stream and
flux potentials as

∇× F = ∇× (∇ξ ×∇ψ) (3)

Otherwise, if the vector potential can be found by a direct use of the
inverse curl or “Biot-Savart” integral operator, the correspondence is
given directly as A = ∇ξ ×∇ψ. Such correspondence though, results
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into a system of three coupled nonlinear PDEs of which no general
solution can be given in a unique form. This makes Clebsch forms
more difficult for everyday engineering practice and is perhaps one of
the reasons it has been overlooked.

Yet, there is one case where the introduction of such scalars may
adopt a special meaning. It is the case of super-potentials as irreducible
representations of an arbitrary field theory and its deeper geometrical
structure. Super-potentials have for long been discussed in association
with a possible complete geometrization of electrodynamics [8]. In fact,
the apparent plurality of possible Clebsch representations of 4-vector
potentials creates a unique problem on the types of symmetries hidden
in some functional group structures. As far as the author knows, such
a problem has not been exhaustively searched.

We introduce the technique of Clebsch decomposition by making
use of the Whittaker scalars due to an unexpected symmetry contained
in them. These were introduced in [1] as a triplet of scalars {F, G, ψ}
from which the corresponding electric and magnetic fields of an
electron moving in the z direction in retarded coordinates could be
reconstructed in the symmetric forms

E =
1
c
∇× [(∂tG)z] +∇×∇× (Fz)

B =
1
c
∇× [(∂tF )z]−∇×∇× (Gz)

(4)

In the above, c is as usual the speed of light and E and B the electric
and magnetic vectors in free space. The particular scalars where also
expressed in a simplified form by Ruse [4] as follows

F = tanh−1

(
z − z0

t− t0

)

G = tan−1

(
y − y0

x− x0

)

ψ =
1
2

ln
(
(x− x0)2 + (y − y0)2

)
(5)

In the original work of Whittaker and Ruse, these are used to derive
expressions for the scalar and vector electromagnetic potentials. When
introduced in the defining relations for the electric and magnetic
vectors, the ψ scalar disappears in the final expressions given by (4).

In the next section, we make a different use of the Whittaker
scalars as possible abstract generators of new solutions to Maxwell
equations via the Clebsch technique. Specifically, we treat all (2 3)
combinations of pairs as possible Clebsch potentials for the direct
construction of electric and magnetic vectors and we study the



100 Raptis

particularly simple and elegant algebraic structure that they obey. It
should be emphasized that the use of the particular scalars is not given
here as an alternative for the original fields of a moving electron but
rather as a special case of a general technique for deriving other types of
field configurations. It is only with respect to the particular geometric
structure that occurs from differentiation of the above that this choice
is justified here. The case of more general functions is discussed in the
last section.

3. THE EXTERIOR ALGEBRA OF FORMS DERIVED
FROM WHITTAKER SCALARS

At this section it is shown that the original Whittaker scalars have
some unusual properties if seen as functions of stationary coordinates
(x, y, z, t), such that they allow the construction of an entirely new
class of electromagnetic fields. We first rewrite them in the form

F = tanh−1(u(z, t))

G = tan−1(v(x, y))

ψ =
1
2

ln
(|kψ|2

) (6)

In the above we have introduced the auxiliary variables

u(z, t) =
z − z0

t− t0

v(x, y) =
y − y0

x− x0

kψ = (x− x0, y − y0, 0)

(7)

We then immediately derive

∇F =
1

1− u2
(∂zu)z =

1
(1− u2) (t− t0)

z

∇G =
1

1 + v2
∇(x,y)v =

1
(1 + v2)(x− x0)

(−v 1 0)

∇ψ =
1

2|kψ|2∇(x,y)|kψ|2 =
1

||kψ||2kψ

(8)

We then see that all derivatives can be re-expressed with the aid of
three characteristic vectors as

∇F = A(z, t)kF

∇G = B(x, y)kG

∇ψ = Γ(x, y)kψ

(9)



Progress In Electromagnetics Research Letters, Vol. 42, 2013 101

These are then given as

kF = (0 0 1)T

kG = (−(y − y0) x− x0 0)T

kψ = (x− x0 y − y0 0)

(10)

The particular pairs {kF , kG} and {kF , kψ} have a structure
resembling what is known in engineering electromagnetism as a
TE/TM pair. The two last also have the additional properties ∇·kG =
0, ∇ · kψ = 2,∇ × kG = ∇ × kψ = 0 while they are connected via a
linear transformation given by the 3× 3 matrix.

MJ =
(
J 0
0 1

)
, kG = MJ · kψ (11)

In the above we have used the 2× 2 symplectic “Darboux” matrix

J =
(

0 −1
1 0

)
, J2 = −I (12)

It is then possible to write the closed algebra of these vectors in the
form

kF × kG = −kψ

kF × kψ = kG

kG × kψ = γ(x, y)kF , γ = (x− x0)
(
v2 − 1

) (13)

If we now construct the three vector fields of the associated Clebsch
forms B1 = ∇F ×∇G, B2 = ∇F ×∇ψ, B3 = ∇G×∇ψ, these can be
reduced back to the simpler forms B1 = λ1∇ψ, B2 = λ2∇, B3 = λ3∇F
where λi appropriate proportionality scalar functions.

We see that the above field has the character of a time-dependent
magnetic field as every Clebsch form is solenoidal. For simplicity we
write directly its explicit dependence for easier use in what follows as

B = αkF − βkG + γkψ

α =
v2 − 1
v2 + 1

, β =
t− t0

|kZ |2|kψ|2 , γ =
(x− x0)(t− t0)|
|kZ |2|kψ|4

kZ = (z − z0, i(t− t0))

(14)

At this point, we emphasize that the parameters (xi
0, t0) are not of

particular importance in the subsequent derivation and can be omitted
in the final result but we kept them for generality. The poles appearing
near the origin limit their validity outside of the appropriate boundary
conditions that should be put on the sources.
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Next, we check whether we could associate with the above field
a complementary electric field given that the following equations can
have at least one solution

∇×E = −∂tB = −(∂tβ)kG − (∂tγ)kψ

1
c2

∂tE = ∇×B− µ0j

∇ ·E = ρ/ε0

∇ · j = ∂tρ

(15)

Since the first of the above is an independent relation, we can take
twice the curl to end up with a Poisson equation

∇2E =
1
ε0
∇ρ +∇(∂tβ)× kG −∇(∂tγ)× kψ (16)

We can also find the appropriate current directly from the second
equation in the form

j =
1
µ0
∇×B− ε0∂tE (17)

To ease the construction of the electric part we consider again the
closed algebra of the characteristic vectors. In particular for the
vorticity of the electric field to have a projection solely into the last
two vectors we may choose a Clebsch parametrization of the form
E = ∇Φ + g1∇h1 + g2∇h2. Then the first of (15) becomes

∇g1 ×∇h1 +∇g2 ×∇h2 = −(∂tβ)kG − (∂tγ)kψ (18)

The above can be greatly simplified by a reduction of the unkown
functions which is possible with the introduction of two arbitrary
vectors such that ∇gi = ki =

(
ki

x0() ki
y0() 0

)
. Then, the two pairs

of unknowns can be separated to give the conditions

∇h1 × k1 = (∂tβ)kG

∇h2 × k2 = (∂tγ)kψ
(19)

From the resulting linear system we get the final conditions in the form

∂zhi = −
(

x− x0

∂xgi

)
∂tβ = −

(
y − y0

∂ygi

)
∂tβ

∂yhi − v∂xhi = 0
∂ygi − v∂xgi = 0

(20)

The above conditions reveal a whole class of possible solutions. Last
but not least, we mention that it is possible to create such a solution
with a solenoidal current satisfying ∇ · J = 0 for a static charge
distribution if a class of functions gi, hi can be found that satisfies
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∂t∇ · E = 0. This is then equivalent to the symmetry condition
∂t∇ · (g1∇h1) = −∂t∇ · (g2∇h2) which should be added to (19) to
constraint the four initial degrees of freedom represented by the scalars
{gi, hi}.

Next, we expose the most important properties of the fields
constructed from the above prescribed Clebsch algebras, which is their
invariance under permutations and we discuss their possible physical
significance.

4. DISCUSSION AND CONCLUSIONS

In the previous section, it was shown that there exist closed
distributions of charges and current volumes that give rise to a peculiar
class of quasi-static electromagnetic fields. The particular class appears
to be a hybrid mode, composed of a static longitudinal near field in the
z-direction, while it has a pair of hyperbolically varying components
in both spatial and temporal dimensions, resembling a “leakage” field
which could be akin to plasma discharge and lightning phenomena.
Additionally, one can find areas of applications in near field optics
where such components appear to be of importance as in the case of
inductive energy transfer as well as in microcircuits inductive coupling.

It appears that due to the freedom in the choice of the Clebsch
superpotentials for the electric field, one can find situations where
a closed current distribution could be used to form and sustain
such electromagnetic configurations in the form of slowly decaying
pulses or “streamers”, a fact that makes the above attractive for
the case of the so called, “ball lightning”. One should also notice
the possibility of such current distributions to be attributed solely
on a particular type of internal polarization and/or magnetization,
assuming a linear, non-isotropic material. It is of course entirely
possible to generalize the previously found configurations with a little
more effort into the context of Clebsch analysis for generally anisotropic
and inhomogeneous materials but this goes beyond the scope of the
present short report.

In order to completely cover the issue of the particular symmetry
involved in the choice of the initial superpotentials from the Whittaker
scalars, one should proceed to a closer examination of its symmetry
properties. In particular, the characteristic separation between the
(x, y) and (z, t) spatial degrees of freedom is akin to permutations
that leave the vector potential in (4) invariant with only modifying the
unit vector to a new direction. Hence, if we use a symbolic operator π̂:
π̂{(x, y), (z, t)} → {(y, z), (x, t)} then the action of this on the vector
potential will just be a shift of the unit vector ẑ → x̂ in (4).
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This property is generic and holds true even for the electromag-
netic fields produced from the Clebsch decomposition of Section 3.
That is, if one denotes the pair of resulting fields with the symbolic
notation {E,B}(x, y; z, t) then the action of the π operator on their
arguments will produce equally valid fields. This action would then
produce permutations of the elements of the three characteristic vec-
tors {kF , kG, kψ} involving exchange of pairs as implied by the first
part of the action of the π̂ operator. Hence, one ends with a triplet of
possible electromagnetic configurations differently oriented.

Apparently, this allows the construction of a special superposition
of all three of them in the form of total fields

{E′,B′} =
3∑

i=1

{E(i),B(j)} (
π̂i(xi, xi+1;xi+2, t)

)
(21)

If we check the electromagnetic invariant E · B for such fields we see
that taking into account all terms it depends on 27 products given
as {kj

i · ∇Φ,kj
i · ∇h1,2}i∈{F,G,ψ}

j=1,...,3

. In general, we are dealing with non-

transverse or as is otherwise known, non-null radiation. To see the
exact nature of this geometry for the total superposition, we express
each term in the Cartesian system. With the aid of (10) and (14) this
takes the simple form

B(i) =
(
π̂i(γx + βy), π̂i(γy − βx), π̂i(α

)
(22)

Whatever the angle with the corresponding electric vector E, the
three angles corresponding to the three exchanges of coordinates, will
necessarily produce a symmetric arrangement of them around the
diagonal of the Cartesian frame with the three total vectors for each
total field making a symmetric tetrahedron with its major apex at the
origin of the Cartesian frame and its base formed from the edges of the
three total electric or magnetic vectors. Therefore, by simple geometric
reasoning, the final field from such a superposition will necessarily
have the total electric and magnetic vectors aligned with the height
of the tetrahedron of the particular Cartesian frame as shown in the
schematic of Fig. 1.

Theoretical evidence for the existence of such configurations in
hybrid modes has first been given by Uehara et al. [17] and Shimoda
et al. [18] and they were later justified as special solutions of Maxwell
equations [19]. In the case presented, the overall configuration would
be easier to set up in an actual experiment by simply crossing three
specially devised discharge mechanisms along each of the three axes in
a Cartesian system in the lab frame.

A separate, interesting question concerns the possibility of an
overall rotation of the reference frame upon which the electric and
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Figure 1. A schematic showing the symmetric tetrahedron formed by
the permutation of the coordinates of either the electric or the magnetic
field components. Their common summand must then lie on the height
of the tetrahedron drawn from the origin of the coordinate system.

magnetic vectors are located. There are two cases of special interest,
one being that of the corresponding angular momentum vector being
parallel to the diagonal where the electric and magnetic vectors reside
and the other concerns the case of the angular momentum vector being
normal to any plane containing the said diagonal. Combination of the
two is of course a more general possibility. Treatment of such a problem
in the short space of this report is not possible and may be given in a
subsequent article.

Last but not least, is should be mentioned that the use of the
particular Whittaker scalars was chosen only for their interesting
internal symmetry of the resulting vector algebra. One could introduce
for example a simpler harmonic dependence by choosing arbitrary
functions F (z) cos(ωt), G(x, y), ψ(x, y) although not necessarily with
exactly the same vector algebra. Nevertheless the particular property
of parallelism of electric and magnetic vectors from the 9 occurring
independent fields under the action of the π̂ operator could still
hold true. Hence, the author believes that this particular technique
offers significant advantages in the search for unusual electromagnetic
configurations that are difficult to treat analytically by other existing
methods.
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