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ABSTRACT
We consider detection of signals encoded with orthogonal space-

time block codes (OSTBC), using multiple receive antennas. Such
signals contain redundancy and they have a specific structure, that
can be exploited for detection. We derive the optimal detector, in the
Neyman-Pearson sense, when all parameters are known. We also
consider unknown noise variance, signal variance and channel co-
efficients. We propose a number of GLRT based detectors for the
different cases, that exploit the redundancy structure of the OSTBC
signal. We also propose an eigenvalue-based detector for the case
when all parameters are unknown. The proposed detectors are com-
pared to the energy detector. We show that when only the noise
variance is known, there is no gain in exploiting the structure of the
OSTBC. However, when the noise variance is unknown there can be
a significant gain.

1. INTRODUCTION

Cognitive radio is a new concept of using spectrum holes, that occur
in licensed spectrum. Introducing cognitive radios in a primary net-
work inevitably creates increased interference to the primary users.
Secondary users must sense the spectrum and detect primary user
signals at very low SNR [1], to avoid causing too much interference.
Thus, spectrum sensing is one of the most essential elements of cog-
nitive radio.

One of the simplest and most widely used sensing schemes is the
energy detector [2]. This detector is optimal if both the signal and
the noise are Gaussian, and the noise power is known. It is known
that the structure imposed by modulation with a finite alphabet con-
stellation does not appreciably improve performance over energy de-
tection [3]. However, if the noise power is unknown, it is impossible
to set the detection threshold, and the energy detector does not work
at all. Even if the noise power is known, or estimated, to some ac-
curacy, it is known that the performance of the energy detector is
severely degraded with the noise uncertainty.

All manmade signals introduce redundancy to the signal in a
controlled manner, for example by modulation, channel coding and
space-time coding. Much literature is concerned with detectors that
exploit structure of signals, either to obtain better performance than
the energy detector, or to circumvent the known-noise power as-
sumption. Structure of the signal that results in periodic mean and
autocorrelation, for example channel coding and OFDM modula-
tion, introduce cyclostationarity to the signal. Detection based on
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the cyclostationarity property was proposed in [4]. Detectors based
on ratios of the eigenvalues of the sample covariance matrix were
proposed in [5], and shown to perform well when the signals to be
detected are highly correlated.

We are interested in detecting signals encoded with orthogonal
space-time block codes (OSTBC). Such signals contain redundancy
and they have a specific structure. We propose a number of detec-
tors that can exploit this structure, under different circumstances.
We first consider a genie detector, where all parameters are known.
This is an unrealistic scenario, but serves as an upper bound on the
detector performance. Then, we consider the cases of completely
unknown and partially unknown parameters. We propose detectors
based on a GLRT approach, that exploits the known structure of the
received sample covariance matrix. The GLRT is not necessarily op-
timal. Thus, for the case of completely unknown parameters we also
propose an alternative detector based on an eigenvalue ratio test.

2. MODEL AND PROBLEM FORMULATION

We consider a system where the signal is encoded with an OSTBC.
Assume that there are nr receive antennas and nt transmit anten-
nas. The OSTBC code matrix X ∈ C

nt×N is a linear function of
ns symbols s1, . . . , sns

and their complex conjugates. The coded
symbols (columns of X) are transmitted over N time intervals. Let
Y ∈ C

nr×N be the received matrix that consists of the space-time
coded signal plus noise, i.e.

Y = HX + E, (1)

where H ∈ C
nr×nt is the channel matrix, and E ∈ C

nr×N is a
matrix of noise. Here, we have assumed perfect time and frequency
synchronization. This is not practically feasible, but the detectors
that we will propose serves as an upper bound on detection perfor-
mance. The noise is assumed to be complex white zero-mean Gaus-
sian with variance σ2. That is, the real and imaginary parts of the
entries of E are i.i.d N

`
0, σ2/2

´
. For the special case of the well

known Alamouti code, (6.3.1) in [6], we have the following code
matrix

X =

»
s1 s∗2
s2 −s∗1

–
,

where s1 and s2 are the two (ns = 2) complex symbols transmitted
over two (N = 2) time intervals by two (nt = 2) antennas. Using
nr receive antennas, the channel matrix in this special case is

H =

26664
h11 h12

h21 h22

...
...

hnr1 hnr2

37775 ∈ C
nr×2.

Now we will rewrite (1), so that we get the received data ex-
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pressed explicitly as a linear function of the symbols si. We denote
by vec (A), the vector obtained by stacking the columns of the ma-
trix A on top of each other. Furthermore, we denote the real and
imaginary parts of a matrix B by B and eB respectively. The same
notation (·) and (e·) is also used for vectors and scalars. Now, since
X is a linear space-time block code, we get from equation (7.1.8) in
[6] that there exists a matrix F ∈ C

nrN×2ns such that

vec (HX) = Fs, (2)

where
s =

ˆ
s1, . . . , sns

, es1, . . . , esns

˜T
∈ R

2ns×1.

When X is also orthogonal, then (7.4.14) of [6] states that the matrix
F has the property

Re
“
F

H
F
”

= ‖H‖2I.

Since s is real-valued, we can rewrite (2) as"
vec
`
HX

´
vec
“gHX

”# =

»
FeF
–
s.

Let

G �

»
FeF
–
∈ R

2nrN×2ns .

Then G has the property

G
T
G = F

T
F + eFT eF = Re

“
F

H
F
”

= ‖H‖2I.

Now, we can rewrite (1) as

y �

"
vec
`
Y
´

vec
“eY”

#
= Gs + e, y ∈ R

2nrN×1,

where

e �

"
vec
`
E
´

vec
“eE”

#
∈ R

2nrN×1.

Thus, G is a generator matrix for the space-time block code repre-
sented by the code matrix X. Returning to the Alamouti code, it can
be shown that the generator matrix in that case can be written

G =

26666666666666666666666664

h̄11 h̄12 −h̃11 −h̃12

...
...

h̄nr1 h̄nr2 −h̃nr1 −h̃nr2

−h̄12 h̄11 −h̃12 h̃11

...
...

−h̄nr2 h̄nr1 −h̃nr2 h̃nr1

h̃11 h̃12 h̄11 h̄12

...
...

h̃nr1 h̃nr2 h̄nr1 h̄nr2

−h̃12 h̃11 h̄12 −h̄11

...
...

−h̃nr2 h̃nr1 h̄nr2 −h̄nr1

37777777777777777777777775

∈ R
4nr×4.

Now consider K space-time blocks Yk, or equivalently K vec-
tors yk, received in a sequence. Moreover, we assume that the chan-
nel is slow fading, such that the generator matrix G remains the same

during the whole time of reception. In spectrum sensing we wish to
detect whether there is a signal present or not. That is, we want to
discriminate between the two hypotheses:

H0 : yk = ek, k = 1, . . . , K,

H1 : yk = Gsk + ek, k = 1, . . . , K.

We assume that the elements of sk are i.i.d. N
“
0, γ2

2

”
. The moti-

vation for this is that capacity optimal signals are Gaussian, and the
symbols will have zero mean and have equal variance in the real and
imaginary parts if they come from a modulation which is symmetric
in both the real and imaginary parts. This is the case for example
for M-PSK and M-QAM modulations, but not for BPSK. Then the
elements of yk are also zero-mean Gaussian and

yk|
˘
H0, σ

2
¯
∼ N

„
0,

σ2

2
I

«
yk|
˘
H1, σ

2, γ2,G
¯
∼ N

„
0,

γ2

2
GG

T +
σ2

2
I

«
.

Let Q0 � σ2

2
I and Q1 � γ2

2
GGT + σ2

2
I. The matrix G has low

rank (2ns), provided that nrN > ns. For the Alamouti code, this is
the case if nr ≥ 2. Thus, Q1 is a low rank matrix plus an identity
matrix and Q0 has full rank. We can write the likelihood functions
for the received vectors under both hypotheses as

p
`
y1, . . . ,yK |

˘
Hi, σ

2, γ2, G
¯´

=
KY

k=1

exp
`
− 1

2
yT

k Q−1

i yk

´p
2π det (Qi)

=
1

(2π det (Qi))
K/2

exp

 
−

1

2

KX
k=1

y
T
k Q

−1

i yk

!
.

3. SIGNAL DETECTION

In the following we will propose a number of detectors for the cases
of known, partially known and completely unknown parameters σ2,
γ2 and G.

3.1. Optimal Genie Detection

The optimal Neyman-Pearson test, when Q0 and Q1 are known, is
to compare the likelihood ratio with a threshold. That is,

L �
p
`
y1, . . . ,yK |H1, σ

2, γ2,G
´

p (y1, . . . ,yK |H0, σ2)

=

„
det (Q0)

det (Q1)

«K/2

exp

 
−

1

2

KX
k=1

y
T
k

`
Q

−1

1 −Q
−1

0

´
yk

!
H1

≷
H0

η,

(3)

where η is a detection threshold.

3.2. Unknown Parameters, GLRT Approach

In general the parameters G, σ2 and γ2 are unknown. In that case
we can construct a generalized likelihood ratio test (GLRT):

LGLRT �
p
“
y1, . . . ,yK |H1, cQ1

”
p
“
y1, . . . ,yK |H0, cQ0

” H1

≷
H0

ηGLRT, (4)

where cQ1 and cQ0 are the maximum-likelihood (ML) estimates of
Q1 and Q0 under H1 and H0 respectively. It is generally hard to find
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the ML-estimates of Q0 and Q1. However we will propose a few
methods to obtain near-ML estimates of these covariance matrices.

Estimation of Q1: We know that the matrix G has low rank
(2ns), provided that nrN > ns. Thus, under H1, the covariance

matrix Q1 will have 2ns eigenvalues equal to σ2+‖H‖2γ2

2
and the

rest 2nrN − 2ns equal to σ2

2
. This structure can be used to obtain

near-ML estimates of Q1 under H1. More specifically, we can write
the eigenvalue decomposition of the covariance matrix as

Q1 = UΛU
T , (5)

where

Λ � diag

0BB@σ2 + ‖H‖2γ2

2
, . . . ,

σ2 + ‖H‖2γ2

2| {z }
2ns

,
σ2

2
, . . . ,

σ2

2| {z }
2nrN−2ns

1CCA
(6)

is a diagonal matrix, and U is orthonormal so that UUT = UT U =
I. The diagonal of Λ contains the eigenvalues sorted in descending
order. This property will be used to estimate the covariance matrix.
Let bQ �

1

K

KX
k=1

yky
T
k ,

be the sample covariance matrix of {yk}. This is an unbiased and
consistent estimate of E

ˆ
yky

T
k

˜
. In fact, if there is no further prior

information about the structure of the covariance matrix, bQ is the
ML-estimate of Q1. We write the eigenvalue decomposition of the
covariance matrix estimate:bQ = bUbΛbUT ,

where the eigenvalues bλi in bΛ are sorted in descending order, andbUbUT = bUT bU = I. To estimate Q1, we will use the estimated
eigenvectors contained in bU but smoothen the eigenvalues. Now, let

λ+ �
1

2ns

2nsX
i=1

bλi and λ− �
1

2 (nrN − ns)

2nrNX
i=2ns+1

bλi. (7)

Then λ+ is an estimate of σ2
+‖H‖2γ2

2
and λ− is an estimate of σ2

2
.

Because of the property (6), we can now estimate the covariance
matrix under H1, near-ML [7], by

cQ1 � bUcΛ1
bUT , (8)

where

cΛ1 � diag

0B@λ+, . . . , λ+| {z }
2ns

, λ−, . . . , λ−| {z }
2nrN−2ns

1CA . (9)

The matrix cΛ1 contains the smoothened eigenvalue estimates on the
diagonal.

If the noise variance σ2 is known, the correct value should be
used in the covariance matrix estimate. A straight-forward approach
is to simply insert the correct value instead of the estimated value
into cΛ1. That is,

cΛ1 � diag

„
λ+, . . . , λ+,

σ2

2
, . . . ,

σ2

2

«
. (10)

Estimation of Q0: Under H0, the covariance matrix is Q0 =

σ2

2
I. Thus, we only need to estimate the noise variance σ2. We will

propose two possible estimatescσ2 of σ2. Then, we take

cQ0 =
cσ2

2
I. (11)

The first proposal is to use the ML-estimate under H0:

cσ2

2
=

1

2nrNK

KX
k=1

‖yk‖
2. (12)

In the second proposal, we also consider the structure of the covari-
ance matrix. More specifically, when there is a signal present (H1)
we know that the expected value of the 2ns largest eigenvalues is

equal to σ2
+‖H‖2γ2

2
. Thus, the ML-estimate of σ2 will be contam-

inated with the signal. We also know that the expected value of all
other eigenvalues is equal to σ2

2
, whether there is a signal present or

not. Thus, using cσ2

2
= λ−, (13)

would yield a better estimate if there is a signal present, and only
incurs a small loss in accuracy if there is only noise since we use
only 2nrN − 2ns samples instead of 2nrN .

If the noise variance σ2 is known, clearly the covariance matrixcQ0 = σ2

2
I is completely known.

3.3. Unknown Parameters, Eigenvalue-Based Detection

The GLRT is not optimal. Here we propose an alternative approach,
based on comparisons between the eigenvalues of bQ. Our approach
is inspired by [5], who considered the detection of a completely un-
known, but correlated signal. Reference [5] used the ratio between
the largest and smallest eigenvalue of the sample covariance matrix
as a test statistic, and as an alternative, the ratio of the average eigen-
value to the smallest one. This performed well when the signal to be
detected had a significant correlation structure. Signals encoded by
an OSTBC are strongly correlated. Additionally, we know the eigen-
value structure of Q explicitly under both H0 (Q = σ2

2
I) and H1

(see (5)-(6)). Hence, we can exploit much more information about
the signal than what a direct application of the detectors in [5] would
do. We propose the test

Leig �
λ+

λ−

H1

≷
H0

ηeig, (14)

where λ+ and λ− are given by (7). This detector does not require
any knowledge about the parameters σ2, γ2 and G.

3.4. Energy Detection

The energy detector [2] measures the energy of the received signal,
and compares it to a threshold:

Lenergy �
KX

k=1

‖yk‖
2

H1

≷
H0

ηenergy. (15)

One drawback with the energy detector is that the noise variance σ2

must be known at the detector, to set the threshold. On the other hand
it does not require, and therefore does not exploit, any knowledge
about the signal. The energy detector will serve as a baseline for
detector performance.
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Detector Statistic Q0 (σ2) Q1 (σ2, γ2, G)
(i) Optimal Genie (3) known known
(ii) Energy (15) known not needed
(iii) GLRT (4) known (8),(10)
(iv) GLRT (4) (11), (12) (8)-(9)
(v) GLRT (4) (11), (13) (8)-(9)
(vi) Eigenvalue (14) requires only (7)

Table 1. Summary of proposed detectors.
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Fig. 1. Probability of missed detection PMD versus SNR for different
schemes. PFA = 0.05, K = 100, nr = 4.

4. NUMERICAL RESULTS

We show some numerical results for the proposed detection schemes,
exemplified by the Alamouti code. All results were obtained by
Monte-Carlo simulation. All simulations were run for 50000 re-
alizations at each SNR value. The SNR in dB is defined as
10 log10(γ

2/σ2). Performance is given as the probability of missed
detection, PMD, as a function of SNR. The noise variance was set
to σ2 = 1 and the SNR was varied. The channel coefficients were
drawn from a complex circularly symmetric N (0, 1) distribution.
The probability of false alarm PFA was fixed to decide the decision
threshold. Then, the probability of missed detection PMD was com-
puted based on this threshold for each SNR value. A summary of the
proposed detectors is given in Table 1.

Figure 1 shows the results for PFA = 0.05, K = 100 and nr =
4. In terms of performance, we observe three groups of detectors.
Firstly, it is shown that the optimal genie detector is significantly
better than the other detectors. Thus, knowing the channels would
yield a significant gain. Secondly, we note that the schemes that
assume known noise variance, (ii) energy detection and (iii) GLRT
with known σ2, perform almost identically. Thirdly, the detectors
which do not know the noise variance ((iv)-(vi)) perform worst, and
almost identically.

Figure 2 shows the same as Figure 1, but the number of receive
antennas is increased to nr = 8. The performance relation of the
different detectors is similar to the previous case. We observe a gain
of approximately 3−5 dB SNR for all detectors by using 8 antennas
instead of 4. It is worth noting that the gain in using more antennas
is larger for the detectors that exploit the signal structure ((i) and
(iii)-(vi)), than for the energy detector (ii). This is owing to the fact
that the more receive antennas there are, the more correlated is the
received signal.
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(i) Genie
(ii) Energy
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Fig. 2. Same as Figure 1, but with nr = 8.

We have compared the performance of the eigenvalue-based de-
tector in Section 3.3 with a detector that uses the eigenvalue ratios
proposed in [5] instead of (14). We observed that using our proposed
eigenvalue ratio (14) outperforms the eigenvalue ratios proposed in
[5] with about 1− 5 dB SNR, for the cases in Figures 1-2. The rea-
son is that our detectors exploit more information about the structure
of the signal. We omit more detailed results due to space limitations.

5. CONCLUDING REMARKS

In this work we assumed perfect time and frequency synchroniza-
tion. This is not realistic in practice, so the results are an upper
bound for the detector performance. The problem of imperfect syn-
chronization is a topic for future studies.

Moreover, in this work we proposed to estimate the unknown pa-
rameters. Perhaps the problem of unknown parameters could also be
dealt with using a Bayesian approach, imposing a prior distribution
on the unknown parameters.
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