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Abstract—The multiple-access interference (MAI) limits the 
performance of the DS-CDMA uplink transmission. 2 
dimensional (2D) spread/chip-interleaved DS-CDMA is an 
MAI-free system, where single-user coherent frequency-
domain equalization (FDE) can be used instead of 
complicated multiuser detection (MUD). However, 
coherent FDE needs channel estimation. Pilot-assisted 
channel estimation is not reliable in a fast fading 
environment. In this paper, we apply joint frequency-
domain differential detection and equalization (FDDDE) 
that requires no channel estimation to 2D spread/chip-
interleaved DS-CDMA in a multiuser/multipath 
environment. The filter coefficient used in FDDDE is 
updated by estimating the normalized Doppler frequency. 
Computer simulation results show that 2D spread/chip-
interleaved DS-CDMA using FDDDE is robust against 
fast fading. 

Keywords - Differential detection, DS-CDMA uplink 
transmission, chip interleaving, 2-dimensional spreading. 

I.  INTRODUCTION 
Direct sequence-code division multiple access (DS-CDMA) 

has been adopted as one of multiple access schemes in the 3rd 
generation (3G) wireless communication systems [1]. 
However, the next generation mobile communication systems 
are required to support a wide range of high data rate services. 
As the chip rate increases, the frequency-selectivity of a 
fading channel becomes severer due to the increasing number 
of resolvable propagation paths with different time delays. 
This makes rake combining ineffective due to severe interpath 
interference (IPI) and too complex to implement. Recently, 
frequency-domain equalization (FDE) has been proposed for a 
single-carrier transmission [2]. More recently, it has been 
shown in [3], [4] that the FDE based on the minimum mean 
square error (MMSE) criterion can replace rake combining to 
significantly improve the BER performance of multicode DS-
CDMA downlink transmissions in a severe frequency-
selective fading channel. 

However, in the uplink transmission, different users’ 
signals go through different channels and are asynchronously 
received, producing multiple-access interference (MAI), 
which limits the uplink capacity. Although multiuser 

detection (MUD) schemes [5], [6] can be used to mitigate the 
detrimental effects of MAI, the MUD algorithms are 
relatively complex and their computational complexity 
increases exponentially with the number of users. 

Chip interleaving has been proposed for DS-CDMA to 
remove the MAI for quasi-synchronous uplink transmissions 
[7]. In chip-interleaved DS-CDMA, the MUD problem is 
converted into a set of equivalent single-user equalization 
problems and single-user FDE can be used to provide good 
performance in a multiuser/multipath environment, provided 
that the propagation channel delays including transmit timings 
offsets of different users are within a guard interval (GI) [8]. 
Recently, we have introduced 2-dimensional (2D) spreading 
using orthogonal variable spreading factor (OVSF) codes [9] 
to the chip-interleaved DS-CDMA uplink transmission [10] to 
offer users flexible multirate/multi-connection services. 

Although single-user FDE can be used instead of MUD for 
the coherent reception of 2D spread/chip-interleaved DS-
CDMA signals, accurate channel estimation is necessary. 
Imperfect channel estimation significantly degrades the bit 
error rate (BER) performance. If the pilot-assisted channel 
estimation is used, the known pilot chip blocks need to be 
periodically transmitted. In order to track against fast fading, 
pilot transmission rate must be increased, reducing the 
transmission efficiency. To avoid the channel estimation, 
differential encoding/detection can be used. Recently, we 
have proposed a joint frequency-domain differential detection 
and equalization (FDDDE) scheme for single-user DS-CDMA 
[11]. FDDDE is attractive owing to its simplicity and 
robustness against fast fading. In this paper, we apply FDDDE 
to 2D spread/chip-interleaved DS-CDMA. The BER 
performance of uplink DS-CDMA with FDDDE is evaluated 
by computer simulation in a doubly selective (the time- and 
frequency-domain) fading channel. 

II. 2D Spread/chip-interleaved DS-CDMA 
The DS-CDMA uplink transmission model is illustrated in 

Fig. 1, where only the uth user is shown (this scheme can also 
be applied to DS-CDMA downlink transmissions). 
Throughout the paper, Tc-spaced discrete time representation 
is used, where Tc represents the chip duration. Here,  x  is 
the largest integer smaller than or equal to x and  x  is the 
smallest integer larger than or equal to x. In this paper, we 
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assume that the data rate is the same for all users and hence, 
the spreading factors for 2D spreading are also the same for 
all users. 
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Fig. 1. Transmitter and receiver structure for the uplink transmission. 

A. Transmitted  signal 
At the uth user’s transmitter, a binary data sequence {du,m} 

is first modulated into the data symbol sequence {au,m} and 
then differentially encoded into {bu,m} as 

1,,, −= mumumu bab ,    (1) 

where |au,m|=1 and bu,0=1. Next, {bu,m} is spread by a 
spreading code }1~0);({ −=′′ f

SF
u SFttc f  with spreading 

factor SFf to obtain the chip sequence )}({ , ts mu ′  as 

)()( ,, tcbts fSF
umumu ′=′ .    (2) 

Next, the chip sequence )}({ , ts mu ′  is spread by an OVSF code  

)}1(~0);({ −= t
SF
u SFttc t [9] with spreading factor SFt. )(tc tSF

u  

has SFt times faster chip rate than )(tc fSF
u ′ . The OVSF code 

tree is shown in Fig. 2. 
The chip interleaving with a SFt-by-SFf matrix is 

performed with column-wise input and row-wise output, as 
shown in Fig. 3. The overall spreading factor of the uth user’s 
2D spreading is SF=SFtxSFf. The SFf spreading is the row-
wise spreading to fully exploit the frequency-selectivity. The 
SFt spreading is the column-wise spreading for orthogonal 
multiuser multiplexing. If there are U users,  U

tSF 2log2=  
can be used to allow them to access the base station without 
causing the MAI (if the channel is time-nonselective during 
SF chips) [10]. The tth block (corresponding to the tth row in 
Fig. 3) of the resulting 2D spread/chip-interleaved DS-CDMA 
signal can be expressed using equivalent lowpass 
representation as 

( ) )(mod2),( ,, tcSFtsTEtts tSF
ufmuccmu ′=′  (3) 

for )1(~0 −=′ fSFt , where Ec is the average chip energy. 
After an Ng-chip GI is inserted at the beginning of every SFf-
chip block to avoid inter-block interference (IBI), the 2D 
spread/chip-interleaved DS-CDMA signal is transmitted over 
a frequency- and time-selective fading channel.  
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   Fig. 2. OVSF code tree.            Fig. 3. 2D spreading for the mth symbol. 

B. Channel 
Assuming that the channel has L independent propagation 

paths, the uth user’s discrete-time impulse response hu,m(τ,t) 
for the reception of the mth symbol in the tth chip block is 
expressed as 

)()(),( ,

1

0
,,, lu

L

l
lmumu thth ττδτ −=∑

−

=
,   (4) 

where hu,m,l(t) and τu,l are respectively the complex-valued 
path gain and time delay of the lth path with 

1])([1
0

2
,, =∑ −

=

L
l lmu thE , and δ(x) is the delta function. We 

assume a block fading, where the path gain )(,, th lmu
 
remains 

constant over the tth block with block interval T=(Nc+Ng)Tc, 
but varies block-by-block. τu,l is assumed to be Tc-spaced time 
delays and equal to τu,λ=τu+l, l=0~L−1, where τu is the uth 
user’s  transmit timing offset. The maximum time delay of 
{τu,l} is assumed to be shorter than GI (we assume some 
transmit timing control). 

C. Received signal and despreading 
 The superposition of U users’ faded signals is received by 
a base station receiver. The received signal is sampled at the 
chip rate 1/Tc and the GI is removed first. The GI-removed 
received signal of the tth chip block of the mth symbol can be 
written as 
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where ),( ttnm ′  is the additive white Gaussian noise (AWGN) 
with zero-mean and the variance of 2N0/Tc (N0 is the single-
sided power spectrum density). Then, ),( ttrm ′  is chip-
deinterleaved and the SFt despreading is performed using the 
uth user’s OVSF code )(tc tSF

u  to remove the MAI as 
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for 1~0 −=′ fSFt . After despreading, an SFf-point FFT is 
applied to decompose )(ˆ , ts mu ′ into SFf frequency components 
as 
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for 1~0 −=′ fSFt . Substituting Eqs. (2)-(5) into Eq. (6) and 
then into Eq. (7), we get 
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where the 1st, 2nd and 3rd terms represent the desired signal, 
the residual MAI and AWGN components, respectively, with  
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Here, Hu,m(t,k) and Πm(t,k) are respectively the channel gain 
and the noise due to AWGN at the kth frequency in the  tth 
block  for the mth symbol. They are given by 
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for k=0∼SFf−1 and t=0∼SFt−1 with E[|Hu,m(t,k)|2]=1, 
E[|Πm(t,k)|2]= 2σ2

noise. If ),(, ktH mu′  remains constant for 
t=0∼SFt−1 (i.e., very slow fading), the MAI in Eq. (8) will 
disappear due to the orthogonality of the OVSF codes 

}1~0);({ −= Uutc tSF
u . The multiuser channel is transformed 

into a set of orthogonal single-user channels. If ),(, ktH mu′  is 
time-variant, the residual MAI is present. 
 Next, one-tap FDDDE [11] is applied (see Sect. III). The 
FDDDE structure is illustrated in Fig. 4. The sum of all 
frequency components after FDDDE, given by 
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is the decision variable to detect du,m. 
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Fig. 4. FDDDE structure. 

III. FDDDE 

A. Removal of spreading modulation 
In order to perform FDDDE, we remove the chip 

modulation from )(ˆ
, kR mu as 
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where  )(~
, kmuΠ  can be treated as a new zero-mean Gaussian 

noise with variance 2σ2=2(σ2
noise+σ2

MAI) for given )(kC fSF
u , 

where 2σ2
noise and 22 MAIσ  are respectively the variances of the 

noise and the residual MAI. In this paper, the Zadoff-Chu 
sequence [12] is used for )(tc fSF

u ′ , given by 

{ }f
SF
u SFtutjtc f )2(exp)( 2 ′+′=′ π . Since the Zadoff-Chu 

sequence has a constant amplitude both in the time-domain 
and in the frequency-domain [12], that is, 

1)()( ==′ kCtc ff SF
u

SF
u , there is no noise enhancement in 

Xu,m(k). 

B. Delay time-domain windowing 
A delay time-domain windowing technique [13] is used to 
reduce the noise in Xu,m(k). Firstly, an SFf-point IFFT is 
applied to Xu,m(k) to obtain the delay time-domain sequence, 

)(, tx mu ′ , given by 
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which is a noisy instantaneous channel impulse response 
modulated by bu,m. Since real channel impulse response 

)(ˆ
, th mu ′  is assumed to be present only within the GI length 

(i.e., 1~0 −=′ gNt ); while the noise )(~
, tn mu ′  is distributed 

over the entire delay-time range (i.e., 1~0 −=′ fSFt ). 
Therefore, the noise can be suppressed by zero-padding 
beyond GI. Then, after applying an SFf-point FFT, the 
output )(~

, kX mu  is obtained as 

)(~)(ˆ2)(~
,,,, kkHbTEkX mumumuccmu Π′+= , (14) 

where )(~
, kmuΠ′  is a zero-mean Gaussian noise with reduced 

variance (Ng/SFf)2σ2. 

C.  Improved reference signal 

Remembering au,m=bu,mb*
u,m−1 from Eq. (1), )(~

1, kX mu −  can 

be used as the reference for FDDDE. However, )(~
1, kX mu −  is 

still noisy due to )(~
1, kmu −Π′  and we apply a simple infinite 

impulse response (IIR) filter to reduce the noise. As shown in 
Fig. 4, a first-order IIR filter with forgetting factor β 
( 10 ≤≤ β ) is used to improve the reference signal. The filter 

output )(1, kX mu −  to be used as the improved reference signal 
is given by 



)(~)1(~)()( 1,1,2,1, kXakXkX mumumumu −−−− −+= ββ , (15) 

where 1,
~

−mua  is the feedback from the previous decision on 

the (m−1)th symbol and )(~)( 0,0, kXkX uu = . Here, β is an 
important design parameter to trade off between the noise 
reduction and the tracking ability against fading. There exists 
the optimum value in β, which depends on the received SNR 
and the Doppler spread. 

Finally, the FDDDE output is given by 

)()(~)( 1,,, kXkXkD mumumu
∗

−= .   (16) 

D. Doppler Frequency Estimation 
Assuming that the maximum Doppler frequency fD is the 

same for all users, we can find the optimum β that minimizes 
the average BER as a function of the normalized Doppler 
frequency fDTc and SNR by computer simulation (in Sect. V). 
The normalized Doppler frequency fDTc can be estimated as 
follows. Assuming the Jake’s fading model [14], the 
correlation function of hu,m,l(t) and  hu,m−1,l(t) is given by 
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where )(0 ⋅J is the zeroth-order Bessel function of the first 
kind. According to Eq. (17), we can use )(, tx mu ′  in Eq. (13) 
to estimate ρ as 
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      (18) 

where  2σ̂  is the estimate of the noise variance, given as [15] 
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Since J0(2πx) ≈ 1−(πx)2 if x<0.1, the estimate of fDTc, cDTf̂  is 
obtained as 

 ρπ ˆ1)]([ˆ 1 −+= −
gftcD NSFSFTf ,  (20) 

which is used to update β for FDDDE. 

IV. SIMULATION MODEL 
For computer simulation, an L=16-path frequency-

selective block Rayleigh fading channel having the uniform 
power delay profile is assumed for each user. The transmit 
timing offsets {τu; u=0∼U−1} are uniformly distributed over 
[−∆/2,∆/2] with ∆<(Ng−L) so that the maximum time delay 
difference is less than Ng=32. In the computer simulation, the 
BER performance is evaluated for different values of fDTc 
ranging from 3.5x10−7 to 3.5x10−5 (corresponding to the 
vehicle speed of about 7.5km/h and 750km/h, respectively, 
with a carrier frequency of 5GHz and a chip rate of 100Mcps).  
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Fig. 5. BER performance in slow fading. 
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Fig. 6. Impact of β. 

We first show in Fig. 5 the BER performance of 2D 
spread/chip-interleaved DS-CDMA as a function of Eb/N0 for 
a slow Doppler fading, i.e., fDTc=3.5x10−7. Here, the 
forgetting factor β is set to 0.975 for FDDDE with IIR 
filtering. The average received bit energy-to-the AWGN 
power spectrum density ratio Eb/N0 is defined by 
Eb/N0=0.5(Ec/N0)(SFtSFf)(1+Ng/SFf). We assume the overall 
spreading factor SF=SFtxSFf=256 for all users. If SFt<U, 
users are partitioned into SFt groups. Users in each group are 
interference-free from other groups; but the MAI is present in 
each group and an error floor is produced when SFt<U. It can 
been seen that 2D spread/chip-interleaved DS-CDMA with 



(SFt,SFf)=(U,256/U) gives the best BER performance, since 
the MAI is removed completely when channels are time-
invariant. For comparison, the BER performance of coherent 
FDE with ideal channel estimation (CE) for the single-user 
case (U=1) is also plotted. When U=1, the Eb/N0 degradation 
of FDDDE with IIR filtering from coherent FDE with ideal 
CE is as small as 0.4dB at BER=10−5. However, the Eb/N0 loss 
due to the insertion of GI, equal to 10log(1+Ng/SFf) dB, gets 
larger as SFf=SF/U decreases. 

Fig. 6 shows the impact of β on the BER performance of 
2D spread/chip-interleaved DS-CDMA with (SFt,SFf)= 
(U,256/U) using FDDDE with IIR filtering when 
Eb/N0=12dB. It can be seen that the optimum β is different for 
different fDTc but not sensitive to U. According to the 
simulation results, the optimal β is found to be 

cDgft TfNSFSF ˆ)(10975.0 +−=β  if 

02.0ˆ)(10 4 ≤+<−
cDfgt TfSFNSF , where cDTf̂  is the 

estimate of fDTc (see Eq. (20)). 
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Fig. 7. Impact of U. 

Fig. 7 compares the BER performances of 1D 
spread(conventiaonl) DS-CDMA and 2D spread DS-CDMA 
using FDDDE when Eb/N0=12dB. It is observed that for 1D 
spread DS-CDMA using FDDDE with SF=256, which 
corresponds to the 2D spread/chip-interleaved DS-CDMA 
with (SFt,SFf)=(1,256), the BER performance degrades 
significantly when U increases due to large MAI. However, 
since 2D spread DS-CDMA with (SFt,SFf)=(U,256/U) is an 
MAI-free system in a slow fading channel, i,e., fDTc=3.5x10−7 
(7.5km/h), about U=16 users can be accommodated at 
BER=10−2. The BER degradation for large U is the 
consequence of the increasing Eb/N0 loss due to the GI 
insertion. As U increases, SFf (=256/U) decreases and the 
Eb/N0 loss, which is equal to 
10log(1+Ng/SFf)=10log(1+NgU/256) dB, increases. In the case 
of fast fading, i.e., fDTc=1.7x10−6 (375km/h), 2D spread DS-

CDMA using FDDDE with the optimum β can still 
accommodate U=16 users at BER=10−2. In addition, only 
single-user FDDDE is required and the complexity is the 
same irrespective of the number U of users. 

V. CONCLUSIONS 
In this paper, we presented an application of joint 

frequency-domain differential detection and equalization 
(FDDDE) to 2-dimensional (2D) spread/chip-interleaved DS-
CDMA in a quasi-synchronous uplink transmission. Relying 
on chip-interleaving and 2D spreading, a multiuser detection 
(MUD) problem is converted into a set of equivalent single-
user equalization problems. Single-user FDDDE with an IIR 
filter using decision feedback is applied and the filter 
coefficient is updated by estimating the normalized Doppler 
frequency. The BER performance in a time- and frequency-
selective Rayleigh fading channel was evaluated by computer 
simulation. 2D spread DS-CDMA with FDDDE was 
confirmed to yield much better BER performance than 1D 
spread DS-CDMA with FDDDE. In this paper, transmit power 
control was not considered. This is left for future study. 
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