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Adaptations of the A* Algorithm for the Computation
of Fastest Paths in Deterministic Discrete-Time
Dynamic Networks

Ismail Chabini and Shan Lan

Abstract—This paper extends the A* methodology to shortest applications, there is usually a need to find a large number
path problems in dynamic networks, in which arc travel times —of shortest paths in networks the parameters of which are
are time dependent. We present efficient adaptations of the A* i gependent. Furthermore, to meet the real-time operational

algorithm for computing fastest (minimum travel time) paths from . t of ITS licati th uti lorith t
one origin node to one destination node, for one as well as multiple requirement o applications, the soluton algorithms mus

departure times at the origin node, in a class of dynamic networks Pe efficient enough in order to compute shortest paths in a
the link travel times of which satisfy the first-in—first-out property.  running time faster than real-time.

We summarize useful propertle_s_of dynamic negtworks and develop Past research in the area of dynamic shortest path problems
improved lower bounds on minimum travel times. These lower has mainly focused on the following two problem variants: the

bounds are exploited in designing efficient adaptations of the A* . L
algorithm to solve instances of the one-to-one dynamic fastest ©N€ Origin-node to all destination-nodes shortest paths problem

path problem. The developed algorithms are implemented and for a given departure time, and the all-nodes to one-destina-

their computational performance is analyzed experimentally. The tion-node shortest paths problem for all possible departure times

performalnce of the computer implementations of the adaptations (see [1]). In this paper, we examine the one origin-node to one

gf--the A" algorithm are compared to a dynamic adaptation of  joination-node problem variant, which is a topic that has been
ijkstra’s algorithm, stopped when the destination node is se- . . . .

lected. Comparative computational results obtained demonstrate farely studied in the literature. In this variant of the problem,

that the algorithms of this paper are efficient. Using a network One is interested in computing one-to-one shortest paths for a

containing 3000 nodes, 10000 links, and 100 time intervals, the given departure time, or for many (typically all) possible depar-
dynamic adaptations of the A* led to a savings ratio of 11, in tre times at the origin node.

terms of number of nodes selected, and to a savings ratio of five in Let us consider traffic networks where drivers seek a route
terms of computation time. The effect of the network size on the u : ! W w IV u

performance of these adaptations is also studied. It is shown that that minimizes their travel time. To support travelers in selecting
the computational savings in term of both the number of nodes “optimal” routes, one can provide them with dynamic informa-
selected and the computation time, increase with the size of the tion in the form of shortest paths. The dissemination of this in-
network topology. formation can be done in various ways, for instance through
Index Terms—A* algorithm, computer algorithms, dynamic net-  devices installed in cars or through variable message signs in-
works, intelligent transportation systems, network optimization, stalled at particular network nodes, such as major interchanges

time-dependent shortest paths. on a highway network. The computation of these shortest paths
may be done on-board or in a traffic management and informa-
l. INTRODUCTION tion center; note that the former approach is applicable only to

. . . vehicles equipped with on-board computing units.
HE computation of shortest paths in dynamic networks is In this paragraph and the next, we describe two route guid-

at the heart of the computational needs of transportau%rr\ice situations where the need to compute one-to-one shortest

appllcatlons |nvol\{|ng netW(_)rks equipped W.Ith |r_1format|0n aths in dynamic networks may arise. First, consider the fol-
technologies. For instance, in the context of intelligent trang-

portation systems (ITS) applications, the computation ociwmg case of on-board route guidance provision and com-

. . . utation. A traffic management and information center fore-
shortest paths is a fundamental component in route gu|da|I|)c 9

. . : (&%t traffic conditions and distributes time-dependent link travel
systems and in the development of solution algorithms f?r . ; : . . .
imes to in-vehicle guidance processing units. These units com-

large-scale dynamic network flow models; such models are . L .
) . . - . Ute fastest paths given a vehicle’s current location in space and
useful in supporting effective ITS decision-making. In suc . L .
ime (current node and current time), and the driver’'s destina-
tion node. This computational task is a one-to-one shortest path
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for a compact representation of dynamic data. The bit-stredma given departure time at the origin node. When computing a
method to represent dynamic network data described in [2],9Bortest path for a departure tim@ne can exploit shortest path
an example of such method. results that would have been obtained for earlier departure time
Now we describe a second situation where the need to coimstants (i.e.t — 1). We take advantage of these past computa-
pute one-to-one shortest paths in dynamic networks may arigenal results by developing effective lower bounds on minimum
When routing information is disseminated via variable messatgavel times from a given node to a given destination node. As
signs installed at some nodes, such as major highway intiris shown in the section on experimental results, this has led
changes, one needs to compute shortest paths from these ntaleseaningful improvements in the overall computational effi-
to one or many major destination nodes. There are two pa$ency. This idea has some similarities with the idea of taking
sible ways to determine shortest paths for this application: fimalvantage of information from previous computations to speed
many one (guidance node)-to-one (destination node) shortegtthe search for an optimal path proposed in [5] in the context
paths, or find many all-to-one (destination node) shortest patbfsstatic networks to solve one-to-one shortest path problems.
for all departure times. The total number of nodes that are dikhe idea of this paper also has similarities with ideas behind the
ther a destination node or a node where information would bé&gorithm described in [6] to compute shortest paths from all
provided typically constitutes only a small fraction of the totahodes to one destination node in continuous-time dynamic net-
number of network. For instance in a model of the highways amebrks, where shortest paths are determined in decreasing order
parkways network of New York’s Lower Hudson Valley areagf departure time at origin nodes, and the results for a departure
the total number of destination and route guidance candidéitae ¢ are obtained using the results corresponding to later de-
nodes is approximately 100, while the total number of nodesirture times to reduce the overall computation time.
is in the order of several thousand nodes. Meeting the shortesThe main contributions of this paper are summarized as
path computational needs by solving many one-to-one shortigtows. We have extended the A* methodology to shortest
path problems, is therefore, in general, a more efficient approgudth problems to networks in which arc travels times are
than achieving the same objective by solving for each destirtane-dependent, by presenting efficient adaptations of the
tion-node an all-to-one shortest paths problem for all possibd algorithm computing fastest (or minimum-travel-time)
departure times. paths from one origin node to one destination node, for one
The A* algorithm, first proposed by [3], is an efficient al-as well as for multiple departure times at the origin node.
gorithm to solve the one-to-one shortest path problem in stalibe adaptations are valid for a class of dynamic networks the
networks. It is well-known in the literature that the A* algodink travel times of which satisfy the first-in—first-out (FIFO)
rithm generally outperforms traditional static shortest path algproperty. We identified properties of dynamic data in such
rithms, to solve this variant of the static shortest path problemetworks, and used them to develop improved lower bounds
The A* algorithm has been studied in the context of static netnh minimum travel times. These lower bounds are exploited in
works only. In a commentary in [4], the question of whether thithe design of the efficient adaptations of the A* algorithm. The
A* algorithm can be extended to solve one-to-one shortest patéveloped algorithms are implemented and their computational
problems in dynamic networks was posed. To the best of querformance is analyzed experimentally. Numerical results
knowledge, the question has not been addressed in the liteslasw that the adaptations of the A* algorithm developed in
ture, and the present paper contains first known results in thiis paper are more efficient than the dynamic adaptations
area. of Dijkstra’s algorithm stopped when the destination node is
Dynamic shortest path problems can be implicitly viewereached. The latter algorithm has been the fastest algorithm
as static shortest path problems in the time-space (or time-&rown in the literature to solve the one-to-one shortest path
panded) representation of a dynamic network (see [1]). Thpsoblem in dynamic networks. The computational results show
does not mean that one constructs a time-space network #mat an adaptation of the A* algorithm is five times faster
apply a static shortest path algorithm. It rather means that ahan the dynamic adaptation of Dijkstra’s algorithm (stopped
exploits the properties of time-space networks, as well as addihen the destination node is reached) for network containing
tional properties, to derive specialized algorithms for dynam8000 nodes, 10 000 links, and 100 time intervals. Furthermore,
networks, without explicitly working on time-space networkscomputational experiments show that these computation-time
The main objective of this paper is to develop efficient adaptaavings increase with the network size. To the best of our
tions of the A* algorithm by exploiting particular properties oknowledge, this is the first time that the A* algorithm has been
dynamic network data. Thus, the paper extends the A* methadudied in the literature in the context of dynamic network.
ology to shortest path problems in dynamic networks. This paper is organized as follows. In Section Il, a brief lit-
There are various criteria to define the cost of a path. In thésature review on the A* algorithm and on dynamic shortest
paper, the cost of a path is defined as its travel time. The tepath problems is presented. In Section lll, some definitions and
shortest path will then be interchangeably used to denote mitotation are provided. Section IV describes the static A* al-
imum-travel-time (or fastest) paths. gorithm. In Section V, some properties of dynamic networks
Consider the problem of computing fastest paths betweenane described. In Section VI, lower bounds on minimum travel
origin node and a destination node, for all possible departummes in dynamic networks are developed. Based on these lower
times. A main algorithmic development of this paper is basdmbund results, adaptations of the A* algorithm to solve some dy-
on the following idea. Assume that one solves this problem asmamic shortest path problems efficiently are shown. Section VI
series of one-to-one shortest path problems, each correspongiresents results from an experimental study of computer imple-
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mentations of the developed dynamic adaptations of the A* a@tep¢ the optimal labels for all nodes that correspond to de-

gorithm. Section VIII concludes this paper. parture timet are determined. This resulted in an algorithm
known as algorithm DOT, which has a running time complexity
Il. LITERATURE REVIEW of (nM + mM + SSP(n, m)), where SSP(n, m) is the

. i running time of an all-to-one shortest path algorithm. In [16],
.The A algorithm was f|rst proposed by [3] and further[l?], itgis shown that algorithm DOT hgs an gptimal runr[1ing];
discussed and extended in [7], [8], and [9]. Hattal. [3] {ime complexity is the sense that no algorithm with a better
pointed out that the A* algorithm is an admissible and optimglq,st_case running time complexity can be developed to solve
algorithm. Golden and Ball [10] empirically found that, on afne gjl-to-one dynamic shortest path algorithm for all possible

infinite lattice network with diagonal arcs, the A* a|9°”thmdeparture times.

searches less than 8.3% of the area that would be searcheghother most studied variant of dynamic shortest path prob-
by an optimal Label-Setting (LS) algorithm. Let and m, |ems is the computation of shortest paths from one node to all
respectively, denote the number of nodes and arcs in a netw@jther nodes for a given departure time. One of the celebrated
Sedgewick and Vitter [11] proved that the A* algorithm findgesults for this problem is: when the FIFO property (see Sec-
a shortest path in many Euclidean graphs with an averagsn 11l for the FIFO definition) is satisfied, any static shortest
computation effort inD(n) compared ta@((m + n) xlog(n)) path algorithm can be generalized to solve the one-to-all dy-
required by a heap implementation of a LS algorithm. Bandaamic shortest path problem, for a given departure time with
and White [12] presented algorithm IA* (interruptible A*).the same time complexity as the static one-to-all shortest paths
This algorithm makes use of information about a collectioproblem. Dreyfus [18] was the first to suggest this generaliza-
of nodes, obtained from experts, which are likely to be dion heuristically. Later, Ahn and Shin [19] and Kaufman and
the optimal or near optimal path from the origin node to &mith [4] proved that this generalization is valid only ifthe FIFO
destination node. Larkt al. [13] presented algorithm AG that property holds. In [16], [17] another shorter proof of this result
uses a heuristic seff, to guide the search. Such a set cal$ given, which is provided later in this paper.

represent natural language statements and bound informatiorfhabini and Dean [1] extended the results established in [16]
such as Euclidean distance. Bander and White [5] presented@Ré [17]. They present a complete framework for classifying,
adaptive A* (AA*) algorithm, which generalizes both AG andormulating, and solving different variants of shortest path
IA*. This algorithm uses previously determined paths that apfoblems in discrete-time dynamic networks. The framework
known to be optimal and all paths that experts have considef8gludes all problem variants previously studied in the literature
desirable (possibly optimal) to speed up the search. The ide8fSPecial cases. Extending algorithm DOT described in [16]
taking advantage of information from previous computatiordd [17], Chabini and Dean [1] designed easy to implement
to speed up the search for an optimal path has some similariﬁé%or'thms that have optimal theoretical worst-case running

with the basic ideas of the adaptations of the A* algorith me complexities. Chabini and Yadappanavar [2], [20] suggest

developed in this paper. Note that all the above deveIopmeﬁtg'emod fo represent dynamic data. in a compact form known

of the A* algorithm have focused on static networks only. S bit-streams, and developed algorithms that efficiently operate

this paper, we study dynamic networks and develo efﬁcie(r)ﬁ1 this compact form of data representation.
paper, y ay P The above literature review shows that most of the research

L . .
spzc;ghzaﬂo_ns of ;[hde A a!gorghm. h orobl G developments in the area of dynamic shortest paths have mainly
Irst variant of dynamic shortest path problems was fir§h 56 on one-to-all or all-to-one shortest path problems. Few

proposed in [14], where the computation of shortest paths rQM, 45 have been given to the one-to-one dynamic shortest path
all nodes to one destination node for all possible departure ti”lf'r%blem. Kaufman and Smith [4] suggest using static shortest
was studied. The algorithm proposed in [14] can be viewed g, aigorithm such as LS algorithms to solve the one-to-one
an extended application of the Bellman—Ford algorithm to th@,qtest path problems for one departure time. In a commentary
time-expanded network, where the label of a node is a vecigfne paper by Kaufman and Smith [4], Koutsopoulos posed the
of scalar labels rather than a single scalar label as is the casgi@stion of whether the A* algorithm can be extended to solve
static networks. In [15], another algorithm is introduced to solvyghe-to-one shortest path problems in dynamic networks. The
the same problem variant studied in [14]. This algorithm can resent paper reports on the first developments in this direction.
viewed as an extended application of a label correcting shortgsthows efficient adaptations of the A* algorithm to solve the
path algorithm in the time-expanded network where the labehe-to-one fastest path problem in dynamic networks.
of a node is a vector of scalar labels rather than a single scalar
label as is the case in static networks. Both algorithms in [14]
and [15], were proposed for the minimum-time path problem.
In [1], it is shown that these algorithms both have a worst-caseLet G = (N, A4, D) be a directed network, wher®y =
running time complexity o((M + n)(m +n)M), whered {1, ..., n} is the set of nodes, and = {1, ..., m} is the
is the number of discrete-time intervals in the dynamic networket of directed links. We denote by = {d,;(¢)|(%, j) € A}
Instead of constructing the vector of shortest path labels bye set of time-dependent link travel times. Functiehgt)
iterating on nodes as is done in previous algorithms, Chabtmave integer-valued domain and range. A functigiit) is then
[16], [17] observes that the vector of optimal shortest path costsdiscrete and time-dependent function which is assumed to
can be constructed in decreasing order of time, where at a titake a static value after a finite number of intervals T =

I1l. DEFINITIONS AND NOTATION
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{0, ..., M —1}is, hence, the set of departure time intervals fdravel time function of a path satisfies the FIFO property, we say
which link travel times are time-dependeB;:) denotes the set the path is a FIFO path. If every link in a network is a FIFO link,
of nodes having an outgoing link to nodand A(¢) denotes the then the network is said to be a FIFO network. Minimum-time
set of nodes that are the end of a link outgoing from nodet dynamic shortest path problems are easier to solve in FIFO net-
nodeo € N denote an origin node, and node= N denote a works, than more general dynamic shortest path problems in-
destination node. cluding minimum-time path problems in non-FIFO networks
The notation in this paragraph assumes a static network. Fgthich are defined as networks with at least one non-FIFO arc).
lowing are notation that we use in describing the A* algorithm The problem considered in this paper is to find fastest paths
(a more common notation can be found in [7] which gives faom an origin node to a destination node for one, or for mul-
generic description of the A* algorithm that is valid for a vatiple, departure times in a FIFO dynamic network. To solve this

riety of artificial intelligence applications): problem, one can use various dynamic shortest path algorithms
L;  minimum travel cost from origin nodeto nodei; that were developed in the literature. For instance, one can adopt
¢;j  minimum travel cost from nodéto nodey; any LS one-to-all shortest path algorithm in a FIFO network [4],

F;  minimum travel cost among all paths from origin nagde and stop the search when the label of the destination node is se-
to destination node constrained to go through node  lectedto be permanently set. These shortest path algorithms may
L;  upperbound on the minimum travel cost from origin nodbe improved, however, since some nodes may unnecessarily be

o to node; searched. The adaptations of the A* algorithm of this paper, aim
¢;;  lower bound on the minimum travel cost from nod®  at avoiding searching nodes that would not be on a shortest path.
destination nodg; A mechanism to achieve this is based on the following observa-
F;  estimate offj; F; = L; + &, tion: in a FIFO network, when one computes the shortest path
C set of nodes that have been reached and that are candidatéisne intervak, one can take advantage of the information ob-
for the selection of the next node; tained when computing a shortest path for time intetvall.

S set of nodes that have been selected, and that are nothiis information is used to develop improved lower bounds on

setC. A node may be removed from s8tand added to the fastest travel time from a nod¢o destination node.

setC if its label 7} decreases; this can happen only if the

consistency assumption, defined next, is not valid. IV. A* A LGORITHM

Consistency Assumptiorithe notion of consistency in the ) ) o

area of shortest path algorithms has been used to denote diflVé believe that typical readers of this journal are from the
ferent concepts. In this paper, for a given arbitrary destinatidi@nsportation area, and, hence, may not be familiar with the
nodeg, we say that the consistency assumption is valid if a/ftftails of the A* algorithm. Thus, before developing the adap-
only if, for any pair of nodes andj, the lower bounds on the Faﬂons of the A* algorithm, we first prpwd_e a relatively bl’lelf
minimum travel costs (times) from these nodes to a given dé_gt_roductlon to the A* algorithm. We flrst_lllus_trate the basic
tination satisfy the following inequalityz;; > é;, — é,,. That |glea of the A* alg(_)rlthm, and then desgrlbe it. Some proper-
is, the difference of the lower bounds for any pair of nodesti€s Of the A* algorithm are also summarized. Finally, we show
andj, is a lower bound on the minimum travel time frarto ;. that !f the con5|s:.tency assumptlon is vaﬁd, the A* algorlthm can
Some researchers in the transportation field (see [4]) also u§&dviewed as Dijkstra’s algorithm applied to an equivalent net-

the term consistency to refer to the FIFO property, which weork. This network has the same topology as the original net-
define later in this section. Note that if the former definitiofVork and has as link costs the reduced-costs derived using the

of consistency assumption is used, we haye> ¢, — é;,. original link cogts and the lower bounds that verify the consis-
This implies that for every linKi, j) € A, the (reduced) cost t€NCYy assumption.
di; = dij +¢&j4 — &iq IS nonnegative, ad;; > ¢;;. The relation- _ _
ship between the consistency assumption and the positivityAf Basic Idea of the A* Algorithm
the links’ reduced costs, will be used to alternatively interpret To solve a one-to-one static shortest path problem, one can
the A* algorithm as a classical LS algorithm if the consistenayse any traditional LS algorithm designed for one-to-all shortest
assumption is valid. This aspect is explained further later in thigith problems and stop it when the destination node is reached.
paper. These algorithms are, however, not the most efficient algorithms
FIFO Definitions: In a traffic network, at an aggregate levelpossible to solve a one-to-one shortest path problem. For ex-
link travel times are usually such that travelers arrive at the egghple, consider a city network where the origin node is located
of a link in the same order in which they depart the beginning the center of the city and the destination node is located at its
of the link. This is known as the FIFO property. More formallyfar east. An LS algorithm would typically put the same effort to
we say that a link travel time functiafy;(¢) satisfies the FIFO search to the east, to the south, to the west and to the north of the
property if the arrival time function+ d;;(¢) is nondecreasing. origin node. These algorithms may, hence, search areas through
In a discrete-time dynamic network, a |I(I’K J) € AisaFIFO which a shortest path would never pass.
link if and only if Since one knows the objective of the search which is to reach
the destination node, intuitively, the efficiency of a LS algorithm
Ediy(t) stH14diy(t+1) VEEd0 o, M=) may be improved if one takesyadvantage ofythis inforn?ation to
If the travel time function of alinK:, j) € A satisfies the FIFO guide the search. For instance, the shortest path search may be
property, we say that linki, j) is a FIFO link. Similarly, if the constrained within a certain subarea of the whole network. The
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Search area of a label note thatin animplementation of the algorithm, for a ngdene

setting algorithms can keep only label’; instead of both labels; andf; sinceF);

can be obtained as afunctiopﬂfonly (Fy = Li+dij+¢éj, =

Li+éig+dij+¢éjq — &g = I +dij + 24 — €i4). This would

lead to some savings in computation time and memory space.

The termd;; + ¢;, — ¢;, is known as the reduced cost (in this

paper travel costs are the travel times).

Search area of Descriptions of Dijkstra’s shortest path algorithm can be

A* algorithm found in classical books on network algorithms. This algorithm
can be viewed as a particular case of the A* algorithm, where
the lower bounds are equal to zero. If link costs are nonnegative,
the zero lower bounds verify the consistency condition, and,
thus, there is no need to reconsider nodes that have been se-
lected in Step 2). We then omit providing a separate description

Fig. 1. Search area of A* algorithm and a LS algorithm. of the one-to-one Dijkstra’s shortest path algorithm, as it can

be easily derived from the description of the A* algorithm.

resulting search area would then be much smaller than the afeagme Properties of the A* Algorithm
examined by a traditional LS algorithm. ] ) ) .

Let us consider a traffic network where nodes are uniformly N this section, we present some properties of the A aLgo-
distributed in a given geographic area, and link travel distandd@im- These properties are useful for understanding the A* al-
are Euclidean distances. Assume that one needs to compu89@@hm and for developing the adaptations of the A* algorithm
shortest path from an origin nodeo a destination node (see of this paper..Slnce these properties appear in the literature, we
Fig. 1). If Dijkstra’s algorithm is used, at each new loop [in Stept@te them without proofs. _ ,

2)], it selects a node that is closest to the origin node, i.e., a nodd’"oPosition 1 [3, Lemma 2]:Suppose that the consistency
with minimum Z,;. The resulting search area of Dijkstra’s algo@SSUmption s satisfied. If nodes selected by the A*algorithm,
rithm is roughly a circle. The A* algorithm orders the nodes ifnenL; = Li; o o o

the candidate node set according to latiéls= L; + &;,, which If the consistency assumption is not satisfied, then it is pos-
is an estimate of the minimum travel cost among all paths froffP!€ that ther; label of a node: selected in earlier steps of

an origin node to destination nogeconstrained to go through the A* algorithm will be Iowere_d in later steps of the algorithm.
nodei. The A* algorithm selects a node with minimum labe[1€Nce; if thel’; label of a nodé is lowered, then this node needs

Fy = L;+¢é4,. Itwill be proven in Corollary 1 of Propositions 1 to_be put back to the candidate §&tProposition 1 however im-

and 2 that the A* algorithm selects only those nodes that satiéﬂ}ﬂs that, if the consistency assumption is satisfied, as soon as
L; + &, < F, = L,. If the lower bound used in the A* algo- & node is selected by the A* algorithm, a shortest path from the
i g = 4q — Hq-

rithm is the Euclidean distance, the search area correspondfigin node to that node has been identified. Therefore, nodes
to the latter inequality will then be an ellipse [10]. As shown ithat have been_selected will npt re-enter the candidate set. The
Fig. 1, the search area of the A* algorithm would then be mudpst statement in the A* algorithm need not be performed for

smaller than the search area of a traditional LS algorithm. ~ those nodes that are already in the set of selected nodes S.
Proposition 2 [3, Corollary of Lemma 3]:For any node

selected by the A* algorithn¥; = L, + é;, < Fi,.

o o ] o Proposition 3 [3, Theorem 1]:When the A* algorithm ter-
Following is a description of the A* algorithm. The (origin,minates, it always finds a shortest path from the origin node to

destination) node pair is denoted §). the destination node.

Step 1) Initialization: Proposition 3 shows the correctness of the A* algorithm.

B. Description of the A* Algorithm

Seti = o, L; = 0, F; = &, L; = 00, F; = o0, Proposition 4 [3, Theorem 2]:Consider the set of lower
Vi#£4,C={i}; S=¢. bounds verifying the consistency assumption. If a node is
Step 2) Node selection: . selected by the A* algorithm for a given a lower bound, then
Choosei € Argminjec £, S = S U {i}, O = this node will be selected by the A* algorithm using any smaller
C\{¢}. lower bound.
Step 3) Stopping rule: The nodes selected in Step 2) of the A* algorithm, determine
If ¢ = g, then stop. Otherwise, continue. the arcs that will be explored in Step 4). Assuming that the ef-
Step 4) Updatd’; and distance labels;: A fort to compute lower bounds are similar and that the number
For eachj € A(i): If L; + d;; + ¢;, < F; then of arcs leaving a node is evenly distributed among nodes, the
Ly=Li+dj; Fy = L + dij + &5 overall computational effort is an increasing function of the
If j ¢ C, C =Cu{j}, Go back to Step 2). overall number of nodes selected in Step 2) of the A* algorithm.

In Step 4) of the algorithm, labels; andﬁj are updated for Proposition 4 implies that if the lower bounds satisfy the con-
everyj € A(¢). If the consistency assumption is satisfied by theistency assumption, then the total number of nodes selected by,
lower bounds, one does not need to reconsider those rjodesd consequently the overall computational effort of, the A* al-
belonging to the selected node set (S) (see Proposition 1). Atgrithm is a nonincreasing function of the valuegf
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The next two corollaries further show the relationship bexlgorithms will not be decreased in later stages. The statements
tween the number of nodes selected by the A* algorithm aiulthe last step of the A* algorithm are then identical to the last

the quality of a lower bound o#;,. step of Dijkstra’s algorithm which considers only the nodes that
Corollary 1: If the consistency assumption is satisfied, theRave been reached but have never been selected. ¢
the A* algorithm selects only those nodes with+ ¢;, < Fy,. The above equivalency in the statements of the algorithms

_ Proof: Since the consistency assumption is satisfied, theBuld also serve as a basis for yet another proof of the validity
using Proposition 1 we havé, = L,. Using Proposition 2, if ofthe A* algorithm if the consistency assumption is valid. Since
nodes is selected by the A* algorithm, theb; + ¢, < Fy-  replacingd;; by d7; or replacingd;; by d;; does not affect the
Thus, we havel; + ¢;, < Fy. . ¢ Sshortest paths between any pair of nodes (see [21]), a shortest

_ Corollary 2: If &, = ¢; for every node, then the A*algo- o, found by Dijkstra’s algorithm in the network with link
rithm selt-;.cts only those nOdiS OUﬁa shortesg path. q travel timesd;; is also a shortest path found in the original net-
L PO bt e e Tt appyna pe A o
rﬁinimuiﬁ travel ime from to g, for any two nodes and; we network with I|_nk travgl timesl;; to solve_a one-to-one shortes_t
havec, < cis + c... Hence we have. > ¢ — co path problem is a valid algorithm and is the same as applying
A ’ o= [Bjikstra’s algorithm in a network with the same topology but

Since the consistency assumption is satisfied, then, by Co

lary 1, the A* algorithm selects only those nodes with-¢;, <  With link travel timesd;;; instead ofd;;.

F,. Sinceé;, = e;,, the A* algorithm selects only those nodes In th_e case when the consistency assumption is valid_, Lemma
that verify the inequalityL; + ¢;, < F,. Since we know that 1 also implies that one does not nece;sanly need to write a sep-
any node verifies L; + ¢;, > Fy, if é;, = e;, for all nodes, the arate computer code for the A* algorithm if one already has a
A* algorithm selects only those nodes that verify the equali§omputer code of Dijkstra’s algorithm. One can run Dijkstra’s
L; + ¢;4 = Fy. This means that any selected nadis on a algorithm on a network by replacing link travel timég byd;’j.
shortest path from the origin node the destination node. TheNote, however, that replacing; by d;; for all links will in-
fore, if &, = e;, for every node, the A* algorithm selects only duce extra computational time. In fact, to solve the one-to-one
those nodes on a shortest path. 4 shortest path problem, one does not need to search all the links
In summary, the efficiency of the A* algorithm depends oin a network. Thus, itis not necessary to repldgeby d;; for all
the quality of the lower bound on,. If ¢;, = 0 for every node links prior to applying Dijkstra’s algorithm. Instead, one needs
i, thenF; = L;. This means that the A* algorithm is identical toto do so only when one needs to access an arc. This observa-
Dijkstra’s algorithm. Ifé;, = ¢;,, the A* algorithm selects only tion is of particular interest in the context of dynamic networks
those nodes on a shortest pathd K ¢é;, < ¢;,, the number of for the following reason. As it is shown later in this paper, the
nodes selected by the A* algorithm is a nonincreasing funCtiQi'fhe-expanded network contaimsM arcs, at mostn arcs of
of ¢4, ifthe consis?ency assumptionis valid. Therefore, in Odehich will be searched by a dynamic adaptation of LS algo-
to make the algorithm select fewer nodes, one needs to fingi@m . Since the LS algorithm is stopped when the destination
tighter lower bound om;, . node is selected, an even smaller number of arcs will be searched
to solve the one-to-one fastest path problem in a dynamic net-
) ) ) work. Hence, one should comput for only those links actu-
~ The A* algorithm is generally stated as shown in Segyy searched by the algorithm. This means that if computational
tion IV-B. We now show that the A* algorithm is identical t0eficiency is sought, one needs to change a computer code of
Dijkstra’s shortest path algorithm, if _the original I|n_k travelDi'kstra’s algorithm in such a way that a link reduced cost is
costs are replaced by ;he_reduced link _costs obtained u_sgg?nputed only when a link is accessed to update nodes not yet
the lower bounds satisfying the consistency assumpt'%élected.
For all (i, j) € A, the expression of the reduced cost is A* algorithm can be viewed as an algorithm that perturbs

d. = d;; + é;4 — ¢&,. The following lemma establishes a. . R R
1] (9 39 q - ;
relationship between A* algorithm and Dijkstra’s algorithm. | ink co§t§, by afjdmg-ﬁm Ciq 10 _the _COSt of each ar@, j).
s, ifé;, < é;,, the perturbation increases the cost of arc

is assumed that Dijkstra’s algorithm is stopped as soon as the", g~ RO N
destination node is selected. i, 7), while it increases the cost of a(¢, j) if ¢;, > ¢;,. If

Lemma 1: If the consistency assumption is satisfied, then aff2€ node lower bounds are a measure of closeness to the desti-
plying the A* algorithm in a network with link travel timeg; to ~ nation node, the arcs that are pointing closer to the destination
solve a one-to-one shortest path problem is the same algorith@ve their costs decrease, while the nodes pointing away from
(however stated “differently”) as applying Dijkstra’s algorithrﬁ-he destination have their costs increase. This leads to possible

D. Reduced Cost Presentation of A* Algorithm

in the same network with link cost). re-ordering in the selection of nodes in Step 2). Hence, nodes
Proof: If the consistency assumption is satisfied, for almight not be selected, or even not reached before the destina-
(i, j) € A, we haved;; > ¢;; > é;q — é4. Thereforegds;; = tion node is selected.

d;; + €;4 — €4 IS NONNegative. Hence, we can apply Dijkstra’s
algorithm in the network with link travel timed;; to solve a
one-to-one shortest path problem. Note that Dijkstra’s algorithm
is stopped when the destination node is selected. This section presents some fundamental results and proper-
Except at their last step, the A* algorithm and Dijkstra’s alties of dynamic networks upon which the adaptations of the
gorithm follow the same steps. Since the reduced costs are ndh-algorithm of this paper are based. First, we show that dy-
negative, the label of a node selected in earlier stages of thegsenic networks can be viewed as static networks by using the

V. SOME PROPERTIES OFDYNAMIC NETWORKS
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time-expanded network representation. Then some propertietworks, such as, the FIFO property. Below, we describe some
of time-expanded networks are highlighted. Finally, we preseinteresting consequences of the FIFO property, which are very
some FIFO properties that will be used to develop lower boundseful in developing efficient adaptations of the A* algorithm.
on minimum travel times for the dynamic adaptations of the A* Lemma 2: If every link on a path is a FIFO link, then the path

algorithm. is a FIFO path.
Proof: We prove this lemma by induction. Assume that
A. Time-Expanded Network the path hag: links, and that the departure time index at the

first node in this path is. To simplify the presentation, without
A discrete time dynamic network can be represented asoss of generality, we assume that the indices ofithiaks are:
static network using a time-expanded network representatian.2, .. ., k.
which is a useful implicit tool for visualizing, formulating and The induction hypothesis is that the arrival time function at
solving discrete time dynamic shortest path problems. This néite end of thelth link, a;(a;_1(a;_2---a1(t))), is a nonde-
work is formed by expanding the original dynamic network iRreasing function of. First let us consider the base case. The
the time dimension, and making a separate copy of all nodes f@st link on the path is a FIFO path, and, hence, the induction

every integer value of time € {0, 1, 2, ..., M — 1}. Every hypothesis is valid. Now, suppose that the hypothesis is true
node in the time-expanded network represents a time-node ggirthe /th link. We need to prove that, for th@ + 1)th link,
consisting of a time € {0, 1,2,..., M — 1} and a node the arrival time function;;(a;(a;—1 - --a1(t))) is a nonde-

i € N, where the nodes at the highest level of time are takereasing function of. From the induction hypothesis, we know
to represent not only time interval — 1, but all times greater that g(t) = a;(a;_1(a;_2---a1(t))) is a nondecreasing func-
than or equaltd/ — 1. Every link in a time-expanded network istion of ¢. Since every link on this path is a FIFO link, according
a directed link from a node-time pdir, ¢) to another node-time to the definition of FIFO link () = a;4(t) is a nondecreasing
pair [j, min {7, t + d;;(t)}, wherej € A(z)]. function. Leth(t) = f(g(t)). Let us prove that functioh(t) is
Time-expanded networks have the following properties. a nondecreasing function 6f Sincef(-) andg(-) are two non-
1) Along the time dimension, they are acyclic if arc traveflecreasing functions, we haves ' = g(t) < g(#') andy <
times are positive, and multileveled if arc travel times ar¢ = f(v) < f(¢/). Lety = g(¢) andy’ = g(#'), it follows that
nonnegative. flg(t)) < f(g(¥)). Thus,h(t) = f(g(t)) < h(t') = f(g(t')).
2) Every path on the original dynamic network corresponddence, we have < ¢’ = h(t) < h(t'). Thereforeh = fogis

to a path on the time-expanded network with the sanfenondecreasing function. Agt) = a;y1(a(ai—1 - - ai(t))),
travel time and travel cost. Visiting a nodén the orig- the arrival time function of the path is a nondecreasing function

inal dynamic network at time corresponds to visiting ©f £, and the path is a FIFO path. . ¢
node-time pa|(z’ t) inthe Corresponding time_expanded Corollary: In a FIFO network, any path satisfies the FIFO
network. property.

3) A shortest path problem in a dynamic network can be Proof: In a FIFO network, every link satisfies the FIFO
solved by applying a static shortest path algorithm to iFoperty. Thus, all links of any path satisfy the FIFO property.
equivalent representation as time-expanded network. USing lemma 2, any path satisfies the FIFO property. ¢

A consequence of properties 2 and 3 above is that dynamid-€mma 3: If every path between origin nodeand destina-

shortest path problems can be solved by (implicitly) applyindf? nodeq_satlsflgs_the FIFO property, then the minimum travel
static shortest path algorithms to the time-expanded represeff€ function satisfies the FIFO property.

tion of a dynamic network. This observation applies to the Ax  Proof: Suppose that, is a shortest path among all paths
algorithm as well. Since the time-expanded network contaif™m 0rigin nodeo to destination node and departing node
nM nodes andnM arcs, a trivial and direct application of a@t timet. The travel time of path; departing node at timet is
static shortest path algorithm may, however, not be the most @gnoted bYL(p:, £). Sincep, is a shortest path when departing
ficient algorithm possible. Property 1 is exploited in [1] to forNodeo at timet, we havet + L(py, t) < ¢ + L(pi11, ). Since
mulate and efficiently solve a variety of discrete time dynamf FIFO property holds on path, 1, we havet + L(pi41, t) <
shortest path problems in a common framework. t+1+ L(pr11, t +1). Hence, we have+ L(p:, t) <t + 1+

For each departure time, the adaptations of the A* algorithfP+1, ¢ + 1). Therefore, if every path between origin node

presented in this paper search a subset of arcs less (practica@fid destination nodg satisfies the FIFO property, then the
much less) tham: links amongmM links, and select a subsetMinimum trayel time f_unctlon_ satisfies the FIFO property4 _
of nodes less (practically much less) thamodes among.M Lemma 3 is used in Section VI-B to develop the dynamic
nodes. The main task that we address in the remainder of ti¢€r bounds on the minimum travel times.

paper is to show ways aimed at visiting a number of arcs, and

nodes, as small as possible in practical implementations of the

A* algorithm for the one-to-one dynamic shortest path problem. VI, DYNAMIC ADAPTATIONS OF THEA* A LGORITHM

B. FIFO Properties In dynamic networks, one may need to sqlve a one-to-one
shortest path problem for a given departure tinwe for many

Link travel times may possess some properties useful anall departure times. In this section, we first study the formula-

studying and developing efficient algorithms for dynamition of the one-to-all dynamic shortest path problem in a FIFO
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dynamic network. Then a static lower bound is developed toStep 3) Stopping rule:

solve the one-to-one shortest path problem for a given depar- If ¢ = ¢, then stop. Otherwise, continue.

ture timet, using an adaptation of the A* algorithm. We later Step 4) Updatd%j and distance Iabeléj

develop dynamic lower bounds and mixed static-dynamic lower Foreachj € A(i): If Li+dij(Li)+¢4(Li) < F;
bounds, that exploit special characteristics of dynamic networks then

to solve the one-to-one shortest path problem for all departure Lj = Li+di;(L); Fy = Li+dij(L;)+&4(Ly);
times. If j ¢ C, C=CU{j}. Gobackto Step 2).

2) Static Lower Boundsin the previous subsection we
have shown a dynamic variant of the A* algorithm to solve the
one-to-one dynamic shortest path problem in a dynamic FIFO

The formulation of the one-to-one shortest path problefetwork. As explained in Section IV-B, the efficiency of the
is similar to the formulation of the one-to-all shortest path\* a|gorithm depends on the qua“ty of the lower bounds on
prOblem. The Only difference is that, for the one-to-one Shortee%. Therefore, in order to adapt the A* a|go|’ithm efﬁcienﬂy,
path problem, the algorithm stops when the destination nodejg need to develop effective lower boundscpn As we will
selected if a LS algorithm is used. We first present a well-knovgge |ater in this paper, it is possible to find better lower bound

formulation of the one-to-all dynamic shortest path problem. gn ¢, than those commonly used in static networks, such as
1) Formulation of the Dynamic Shortest Paths Problem for gyose based on Euclidean distance.

Given Departure Time:The objective of the one-to-alldynamic  For all (i, j) € A4, let d%l,in = miny—o, . a—i{di;(t)}. We
shortest path problem is to find shortest paths from an originstruct a virtual static network witt* as the link travel
nodeo, departing at time interval 0, to all other nodes. Minimurgmes. An all-to-one static shortest path algorithm applied to the
travel timeL; is defined by the following equations ([17] andyjrtual network and destination nogdeads to minimum travel

A. One-to-One Shortest Path Problem for a Given
Departure Time

[18]): times denoted by from every node to nodeq. Below we
min min(t + dij(£), j# o prove thatc;g‘_“ is a lower bognd Oltg (¢) for every node-tlme
L;={ i€ B(j)t>L; pair (i, t). This lower bound is said to be static since it does not
0, j=o. depend on the departure time at the origin node. Note that, for a

_given destinationg;gi’f1 needs to be computed only once, which
Lemma 4 (Borrowed From [18]):If the FIFO property is ¢an pbe done during a preprocessing step.

satisfied, the above formulation of the shortest path problem is| emma 5: For every node and departure time, ¢ <
. ] (] —_

equivalent to the following equation: ¢i;(t). Furthermoregii» satisfies the consistency assumption,
‘min (L; + di; (L)), j#o i.e., for everyllink(i, J) € A el < di(t) + e
L; = cBG) Proof: First we prove that for every nodeand depar-
0, j=o. ture timet, efi'® < ¢;;(t). Suppose thap is a shortest path
L . from node: to nodeq on the virtual static network. We have
FIFO property had. Theralore, the equivalende of tnose (.. ~ (s ey i SUPpOSE tha() & a shortest path
property ' ' q tvaromz‘ to ¢, which departs nodéat timet. Sincep*(t) is also a

formulations holds. ¢
This formulation is similar to the optimality conditions for min min min
static shortest path problem. It shows that static shortest pV\{%rk’ we havery, zirlz:(m:")ep o’ < Ei’%”@* ® ™
algorithms can be extended to solve the one-to-all shortest p %the def'[}j})f’” ofdy;™, for eve%gf D € pr(n) at ann)l/irtllme
problemin FIFO dynamic networks. The dynamic A* aIgoritthtervalt’ di™ < dy(t). Hencec™ < Z.(k,l)ew(t) d™ <
adaptations of this paper are derived from this formulation. TRe (k, ey (1) B (t) = eig (t.)' Thereforecfy™ < iy (1),
adaptations differ only in the way one determines a lower boundLe&t us now prove that;;™ satisfies the consistency assump-
&:4(t) ONe;y(t), the minimum travel time between a (node, timeljon. In the virtual static network, according to the optimality
pair, (4, t), to a destination node say, The formulation is still conditions, we have;;™ < di7™ + ;™. According to the
valid if the departure time, at the origin node is not necessarilydefinition of &7+, we haved;™ < d;;(¢). Thereforeez™ <
equal to zero, as it suffices to change the definitionLpfto  d;;(t) + e ¢
minimum arrival time instead of minimum travel time. i is used as a lower bound ep,. Since the static lower
Following is a description of a dynamic adaptation of the Abounds satisfy the consistency assumption, whenever the algo-
algorithm, to find a fastest path between an (origin, destinatiorijhm selects a node, a shortest path from the origin to that node

feasible path between nodand nodey on the virtual static net-

node pair ¢, ), departing the origin node at tintg. has been determined. Thus, in the last step of the algorithm, we
Step 1) Initialization: do not need to consider those nodes that are already in the se-
R R R R lected node set. We update latigl for only the neighboring
Lo =to, Fy = €oq(to); Lj = 00, Fj =00, Vj # 0 nodes that are not on the selected node set.
C ={o}; S =¢. Consider two-dimensional grid networks where the travel
time of a link is its Euclidean distance divided by a certain
Step 2) Node selection: value of travel speed. Lower bounds based on the Euclidean

distance are typically obtained by dividing the Euclidian

¢ = Argmin I, 5= 5U {iy. 0=\t distance between the current node and the destination node, by
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the minimum value of the minimum speeds among all links. We now proceed to prove that lower bouég(¢ + L;(¢))

This “Euclidean” lower bound is always less than or equal teatisfies the consistency assumption. We want to show that the
and consequently can not outperform, the static lower boufallowing inequality is valid:

developed in this subsection. Thus, we do not compare further .

these two lower bounds in the experimental section, as wig(t+Li(1) < eij (b4 Li(t)) +€jq (4 Li(t) +eij (E+ Li(t))-
know by theory that the static lower bound is always mor8incec;,(t — 1 + L;(t — 1)) is the minimum travel time to

effective. Note the Euclidean lower bound also verifies thgestination node departing nodé at time(# — 1) + L;(t — 1),
consistency assumption. we have:

eiq(t — 14 Lz(t — 1)) < dij(t -1+ Lz(t — 1))
B. One-to-One Shortest Path Problems for All Departure tej(t— 14 Li(t — 1)+ d;;(t — 1+ L;i(t — 1))).

Times Adding L;(t — 1) — L;(t) — 1 to both sides of this inequality

_ leads to:
The one-to-one shortest path problem for all departure times

consists in finding shortest paths from an origin node to a des-¢iq(t — 1+ Li(t — 1)) — 1 4+ L;(t — 1) — L;(?)
tination node for every departure timat the origin node. Al- Sdi(t— 1+ Li(t = 1)) +ej(t — 14+ Li(t — 1)
though one can still usg>™ as lower bounds, we are interested - ‘ ‘ ‘
in deriving improved SI?\(/Iver bounds. Assume that when com- Fdig(t =14 Lit = 1) + Lilt = )= Li(t) — 1.
puting fastest paths for departure timave have already com- The left-hand side of the inequality is equal &, (t + L;(¢)).
puted fastest paths for departure time 1. In FIFO networks, The right-hand side of the inequality is equaldg:(t+ L, (t))+
one can take advantage of the results obtained for departure timgt — 1+ L; (¢t — 1) +d;; (¢t — 1+ L;y(t —1))) — 1+ L;(t — 1)+
t — 1 to reduce the computational effort for time intervalhis  d;;(¢—1+L; (¢ —1)) — (L;(¢t) +d;; (t+ L:(¢))). The latter term
observation forms the basis for the development of a dynani$eequal tad;; (t+ L;(t)) + ¢4 (t+ L (t) + di; (t+ L (t)). Thus,
lower bound, and of a mixed lower bound. As it is shown in thee have proved that the inequaliéy,(t + L;(¢)) < d;;(t +
experimental section, these lower bounds impact positively the(t)) + é,,(¢ + L;(¢) + di; (¢t + L;(¢)) is valid. Therefore,
computational efficiency. Eig(t+ Li(t)) = €;q(t — 1+ L;(t— 1)) — 1+ L;(t — 1) — L;(¢)

1) Dynamic Lower BoundsAssume that when we considersatisfies the consistency assumption. ¢
a departure time at the origin node, the minimum travel times Lemma 6 can be generalized to derive a lower bound on
before timet have already been determined. The minimum ae;,(t + L;(¢)) for nodesi on a shortest path corresponding to a
rival time at a node is t + L;(t), for a departure time at departure time — k, wherek is a positive integer. We do not
the origin node. During the course of the algorithm, the curredwell on these lower bounds as numerical results have shown
minimum arrival time at node is t + L;(¢), which is greater that the most effective practical lower bounds were obtained for
than or equal te + L;(t). We are interested in deriving a lowera value oft = 1. These lower bounds can be used for nodes that
bound one;,(t + L;(#)), which we will derive from a concep- are not on a shortest path corresponding to departuret tinie
tual lower bound:;,(t + L;(t)) and from the static lower bound but that appear on a shortest path corresponding to a departure
described in the previous subsection. Lemma 6 provides a ctime ¢ — k. This could be useful if it is not possible to use the
ceptual lower bound oa;,(t + L;(t)) for a node:, which is on  static lower bound in conjunction with the dynamic lower bound
a shortest path corresponding to departure timel. We refer as described next.
to this lower dynamic lower bound as the dynamic lower bound. 2) Mixed Lower Bounds:The dynamic lower bounds are

Lemma 6: For every departure time nodat the origin node valid only for nodes on the generated shortest path departing
and for every node on a shortest path corresponding to a dahe origin node at timeé — 1. For nodes that are not on the pre-
parture timet — 1, (¢ — 14 L;(t — 1)+ e;o(t— 14+ L;(t—1)))—  vious shortest path, we usg™ as a lower bound. This means
(t + L,;(t)) is a lower bound or; (¢t + L,(¢)). Furthermore, that two types of lower bounds will be used, as not all nodes are
this lower bound denoted,, (¢ + L;(t)), satisfies the consis- guaranteed to be on a previous shortest path. This may cause the
tency assumption. consistency assumption to be violated.

Proof: We first prove that;, (t—1+L;(t—1))—14+L;(t— The dynamic lower bound is a conceptual result only, as one

1) — Li(t) is a lower bound om;,(t + L;(t)). From lemma 3, may not knowZ;(¢) when one is doing the calculations at node
we know that the FIFO property holds for minimum travel times In fact, one only knowd.;(¢) which is an upper bound on
between any two nodes in a FIFO network. For minimum travél; (t). We now describe how the practical lower bound is derived
times between the origin node and nagwe havet + L;(t) > from the dynamic lower bound. We know thai(t) > L;(t). It
t—1+L;(t—1). Since the arrival time at nodevhen departing results that;,(t — 1+ L;(¢t — 1)) — 1+ L;(t — 1) — L;(¢) >
nodei at timet -+ L; () is not earlier than the arrival time at node;(t — 1+ L;(t — 1)) — 1+ L;(t — 1) — L;(t). Therefore, we
g when departing nodeat timet — 1 + L;(t — 1), we have: can use the following practical lower bound for the nodes on the
t+ Li(t) + e (t+ Li(t) 2t — 1+ Lyt — 1)+ ¢e,(t — 1+ generated shortest path corresponding to departurettime:
Li(t — 1)) This leads t(kiq(t—i-Li(t)) > (t -1 —i—LZ(t — 1) + qu(t — 14 Lz(t — 1)) — 14 Lz(t — 1) — f/z(t)
et — 14 Li(t — 1))) — (¢t + L;(¢)). We have then a lower  The latter practical dynamic lower bounds may have a value
bound ore;, (t+L;(t)) denoted:;, (t+Li(t)): ¢iq(t+Li(t)) = smaller thanci2™. Hence, for every node on the generated
(t—1+Li(t— 1)+ eyt —14+L;(t—1))) — (t+ L;(¢)). shortest path for a departure of the origin at time 1, it is
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static lower bounds or mixed lower bounds. If one uses static
lower bounds, one does not need to reconsider those nodes on
the selected node set, since these lower bounds satisfy the con-
sistency assumption. Mixed lower bounds, on the other hand, do
not satisfy the consistency assumption.

Fig. 2. A small network. VIl. COMPUTER IMPLEMENTATIONS AND
EXPERIMENTAL EVALUATION

desirable to take the maximum ef;™ and the practical dy-  The dynamic adaptations of the A* algorithm discussed in
namic lower bound. Although the resulting lower bound dogge previous section have been implemented for the purpose of

not verify the consistency assumption, as we will show later,dbmputational testing. In the dynamic adaptation of the A* algo-
will eventually reduce the number of nodes selected. rithm for the one-to-one shortest path problem for one departure
The lower bounds that we adopt are given by time, only the static lower bounds are applicable. We refer to this

implementation by DAA*_S. For the one-to-one shortest path

_ R problem for all departure times, two dynamic adaptations of the
max {Gﬁ}mv eig(t — 1+ Li(t — 1)) — H4-Li(t — 1)~ Li(t) ;. A* algorithm are possible, using the static lower bounds or the
otherwise. mixed lower bounds. We refer to the implementation based on

These lower bounds are called mixed lower bounds, and 5?8(6(1 lower bounds as D,AA*—M' Dijksira’s algorithm was also
denoteds, (¢ + ﬁi(t)). implemented for comparison purposes. Note that all these algo-

Lemma 7: The mixed lower bounds do not necessarily saE'—tE.th are stopr?ed as SOOhnfaS thehdestlln_::mondnode 'r? sglect_ed, at
isfy the consistency assumption. which time a shortest path from the origin node to the destina-

Proof: We provide a counter example that shows théiton node has been determined. In each iteration of the dynamic

the consistency assumption is not satisfied by the mixed Iovxﬁeqaptat'ons of the A* alggnthm an.d'Dukstra’s algorithm, one
eeds to select a node with the minimum label from the set of

bound for the small network depicted in Fig. 2. This networR did des. Thi ionis imol dbv usi h
consists of three nodes, three links and three time intervals. (Y Ist:riltjitrsj?ee& Is operation Is Implemented by using a heap

numbers next to a link denote the travel times of that link for al he i h ; f the A* alaorithm i
departure times 0, 1, and 2. For instance, [8, 7, 6] on link (1, 3 In the literature, the performance of the A* algorithm is usu-

means that the travel times on link (1, 3) are: 8 at time inten@ ly charakg:ten?ed '(;‘ termis of tr(;e Eumber of nodebs gelec;fted only.
0, 7 at time interval 1, and 6 at time interval 2. The travel times '€ NUMBPEr ol Nodes Se ected, however, may, by itself, not re-

are assumed to be constant after time interval 2. Note that ev f}?t thovera]l efficiencky of tr?is algoritk}m. 'Lhis_ Is Eart}i_cu(;arly
link travel time satisfies the FIFO property. trde in dynamic networks. The reason for this is that finding a

Consider the problem of finding fastest paths from Origipetter lower bound usually requires extra computational time.

node 1 to destination node 3 for all departure times. If we depQFe then needs to balance the extra computational time spent to

node 1 at time interval 0, the minimum travel time to arrive nou%talm a bebtter Igwer b(lnundd W't_rll_r:he efzxecugoln time saving that
3is 8, and an optimal path is 1-3 (the travel time for path 1—213'S lower bound may lead to. Therefore, below we report not

is 6+ 3 — 9). Now, let us consider time interval 1 at node lonIy the number of nodes selected by the dynamic adaptations

Node 1 was on the previous shortest path. Thus, the mixed Iov%?he A* allgorithm, bUt_ also their compl_Jtation times.
bound for node 1 is All algorithms were implemented using the C++ program-

ming language and tested on randomly generated networks. All

e;gi“, if ¢is not on the previous shortest path

é13 (1 + Jil(l)) computational times were obtained by running the codes on a
) . Sun SPARC 5 Workstation.
= max {e‘f};n, e13(0 4+ L1(0)) — 14 L1(0) — Ll(l)} . The number of nodes selected by either the dynamic adapta-

. . tion of the A* algorithm or Dijkstra’s algorithm may vary with
SinceLq(1) = L1(0) = L1(0) = 0, ande;3(0) = 8, we different origin—destination (OD) pairs. The number of nodes

1
haveéis(1 + Li(1)) = é13(1) = max {4, e13(0) — 1} = selected and the computational time of Dijkstra’s algorithm are
max{6,8 — 1} = 7. Since node 2 was not on the previousiondecreasing functions of the minimum travel time between
shortest path, we us€,™ as a lower bound»;(1 + e12(1)) = an OD pair. The validity of this observation can be intuitively

elin = 1. For this small network, if the consistency assumptioexplained as follows. Since the minimum travel times vary for
were valid we would have;3(1) < e12(1) + é23(1+ e12(1)).  different OD pairs, the search area for an OD pair with a longer
However, this does not hold, sinégs(1) = 7 > e12(1) + traveltimeis generally larger than the search area for an OD pair
é23(1 + e12(1)) = 5+ 1 = 6. Thus, in this network, the mixed with shorter minimum travel times. Thus, comparing two algo-
lower bounds do not satisfy the consistency assumption. Therigims by computing a shortest path using one OD pair only may
fore, the mixed lower bounds do not in general satisfy the conet lead to conclusive results. Therefore, when we analyze the
sistency assumption. 4 performance of the algorithms of this paper, we compare their

For the one-to-one shortest path problem for all departuperformance based on a number of randomly selected OD pairs,
times, we need to determine a shortest path from an origin naat® report not only the numerical results obtained for individual
to a destination node for every departure titn®©ne may use OD pairs, but also the average of these numerical results.
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:

We will first compare DAA*_S and DAA*_M with Dijkstra’s
algorithm using a network containing 3000 nodes, 10 000 links,
and 100 time intervals to analyze the performance of these algo-
rithms as a function of OD pairs. Then we test the algorithms on
networks of different sizes to analyze the performance of each
algorithm as a function of the size of the test networks. If the

:

MEEEEEEI”HH

Number of nodes selected
2

savings of the adaptations of the A* algorithm increase with the 1000

size of the network, then this would mean that for larger net-

works one may benefit even more by using the adaptations of the 0 - ~

A* algorithm instead of using an algorithm such as Dijkstra’s OD pairs sorted by minimum travel time
algorithm. We conduct the computational tests using networks LIDAA*_S T Dijkstra’s

having» nodes and*n links (the typical average degree of a
road network is around 3). For all test networks, the number gf. 3. comparison of number of nodes selected by Dijkstra’s algorithm and
time intervals is 100. In order to assess and analyze the oveP#i*_S for a network with 3000 nodes, 10000 links, 100 time intervals. On

performance of the dynamic adaptation of the A* algorithrf}’*29° | }hﬁog:’;‘gg{e%‘;gggislaﬁdgd by Dijkstra’s algorithm is 5.4 times the
compared to Dijkstra’s algorithm, the effect of individual net- -
work parameters on the performance of the algorithms will be

investigated by varying a given parameter, while keeping ti@plemented such that it stops whenever the destination node

other parameters constant. is selected (which means a shortest path from the origin node
to the destination node has been determined). Fig. 3 depicts the
A. Random Network Generator number of nodes selected by the heap-based implementations of

A network generator that generates random dynamic FIHeikstra’s algorithm and of DAA*_S as a function of randomly
networks was implemented using the C++ programming |aﬁelecte_d OD pairs s_,orted in increasing order of their minimum
guage. The user of this network generator inputs the size of {favel times. The figure shows that, for every OD pair, the
network (number of nodes, number of links and number of tinfé!mber of nodes selected by DAA*_S is always less than the
intervals) and the range of the link travel times. One can al§§mber of nodes selected by Dijkstra’s algorithm. For the
generate a non-FIFO network, but for the purpose of this pap&ndom network with 3000 nodes, 10000 links, and 100 time
only FIFO networks will be generated, since the dynamic adaiptervals, the average number of nodes selected by Dijkstra’s
tations of the A* algorithms are valid for this class of network&!gorithm is 5.4 times as much as the average number of nodes
only. selected by DAA*_S. The figure also shows that the number of

The topology of a random network is generated in two step’?@_des sglect.ed by Dijkstra’s.algorithm, as explai.nt_ad earlier in
We first construct a subnetwork that ensures connectivity, afts Section, is a nondecreasing function of the minimum travel
then we add random links until a desired number of links §me between an OD pair. o
achieved. Link travel times are selected randomly from a ran Q\Ne now compare the_Com.put'atlon times of DAA*_S and
given by the user, using a uniform distribution. The link trave%ukstra’s_algo_rlthm. As Fig. 4 indicates, for every OD pair, the
times generated in this way may not satisfy FIFO property. ﬁmeutatmn time (_)f DAA* S is less than the computation time
order to obtain FIFO link travel times, the following transfor®f Dijkstra’s algorithm. For this test network of 3000 nodes,
mation is applied to the generated link travel time functiondQ 000 links, and 100 time intervals, the average computation
ds;(t) = min,s, s — t + dyj(s), wheret is the arrival time and time pf Dijkstra’s algorithm is 3.2 times the average computa-
s is the departure time at nodeTransformed link travel times tion time of DAA*_S.

d;;(t) satisfy the FIFO property. ) .
C. Computational Results for the Dynamic One-to-One
B. Computational Results for the Dynamic One-to-One Shortest Path Problem for All Departure Times

Shortest Path Problem for One Departure Time Below, we show the computational results obtained using the

As indicated earlier in this section, in order to analyze thdynamic adaptations of A* algorithm and Dijkstra’s algorithm.
behavior of the algorithms with respect to different OD pair§ince we consider the computation of a one-to-one shortest path
we first compare DAA*_S and DAA*_M with Dijkstra’s algo- problem for all departure times, both static lower bounds and
rithm in a network with 3000 nodes, 10000 links, and 100 timaixed lower bounds are applicable. We use the same network
intervals. as in Section VII-B, that is a dynamic FIFO network with 3000

Below, we show the computational results obtained using thedes 10000 links, and 100 time intervals. The computation
dynamic adaptations of A* algorithm and Dijkstra’s algorithmtimes reported in this subsection are the averages for one-to-one
Since we consider the computation of a one-to-one shortest psitiortest path problem for all departure times. First, we compare
problem for one departure time, only the static lower bounds ate number of nodes selected by the dynamic adaptation of the
applicable. A* algorithm based on mixed lower bounds (DAA*_M) to the

We compare the number of nodes selected by the dynamiamber of nodes selected by the adaptation based on the static
adaptation of the A* algorithm with static lower bounddower bounds (DAA*_S) for the randomly generated dynamic
(DAA*_S) and Dijkstra’s algorithm in the randomly generatechetwork. Fig. 5 shows that, for every OD pair, the number of
dynamic network. As indicated above, Dijkstra’s algorithm isodes selected by DAA* M is less than the number of nodes
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Fig.4. Comparison of computation time of Dijkstra’s algorithm and DAA*_g19- 6. Comparison of computation time of DDA*_S and DAA*_M for
for a network with 3000 nodes, 10 000 links, 100 time intervals. On average, thd'€twork of 3000 nodes, 10000 links, 100 time intervals. On average, the

computation time of Dijkstra’s algorithm is 3.2 times the computation time GOmPutation time of DDA*_S is 1.5 times the computation time of DAA*_M.
DAA*_S.
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Fig. 7. Comparison of computation time of Dijkstra’s algorithm and DAA*_M

) ) for a network of 3000 nodes, 10000 links, 100 time intervals. On average, the
Fig. 5. Comparison of number of nodes selected by DAA*_S and DAA*_M 5 jtation time of Dijkstra’s algorithm is 4.8 times the computation time of
for a network with 3000 nodes, 10 000 links, 100 time intervals. On average, n J 9 ' P

*
number of nodes selected by DAA*_Sis 2.1 times the number of nodes selected —

by DAA*_M.
4000

selected by DAA*_S. For this network, the average number of
nodes selected by DAA* S is 2.1 times the average number of
nodes selected by DAA* M. This shows that the dynamic lower

bounds are more effective than the static lower bounds.

We now compare the computation times of DAA* M and
DAA*_S in the randomly generated network. Fig. 6 shows that,
for most of OD pairs, the computation time of DAA* M is
less than the computation time of DAA*_S. For some nodes,
the computation time of DAA* M is greater than the compu- —
tation time of DAA*_S. This is because the extra time spent MDAA* M BDijkstra’s
to _Compute the lower bounds IS_ more than the Flme saved I}—% . 8. Comparison of number of nodes selected by Dijkstra’s algorithm and
using these lower bounds. For this test network with 3000 nodesa* M for a network of 3000 nodes, 10000 links, 100 time intervals. On
10000 links, and 100 time intervals, the average Computati@\(erage, the number of nodes selected by Dijkstra’s algorithm is 11.3 times the
time of DAA*_S is 1.5 times the average computation time di'mper of nodes selected by DAA*_M.

DAA* M.

From the computational results summarized above, we cainodes selected by Dijkstra’s algorithm is about 11 times the
also compare the performance of the A* algorithm with mixedverage number of nodes selected by DAA*_M.
lower bounds (DAA*_M) and the performance of Dijkstra’s Fig. 8 shows that, for every OD pair, the computation time of
algorithm. We first compare the number of nodes selected BAA* M is less than the computation time of Dijkstra’s algo-
DAA*_M and Dijkstra’s algorithm in the randomly generatedithm. For the test network used, the average computation time
dynamic network of 3000 nodes, 10 000 links and 100 time if Dijkstra’s algorithm is 4.7 times the average computation
tervals. Fig. 7 shows that, for every OD pair, the number of nodésie of DAA*_M.
selected by DAA* M is less than the number of nodes selectedNote that, similar to Figs. 3 and 4, both Figs. 7 and 8 show
by Dijkstra’s algorithm. For this network, the average numbéhat the number of nodes selected by, and the computation times

3000

2000

1000 naEEEEEEE

Number of nodes selected

OD pairs sorted by minimum travel time
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Fig. 9. Comparison of average number of nodes selected for networks
different sizes. NxxMyy means that the network has xx00 nodes and yy00 linkS!

V\}I:ﬂg 11. Comparison of average number of nodes selected for networks
mposed of 1000 nodes, 100 time intervals, and a varying number of links.

For instance, N50M150 represents the size of a network with 5000 nodes and

15000 links. 0.030
S 0.025 4 —
0.07 = —&— Dijkstra’s
) g 0.020 - ——DAA*_S
0.06 = "
- g 0.015 - —<=DAA* M
§ 0.05 - 2
~ 2 0.010
| [="
é 0.04 g
g 0.03 4 S 0.005 - m
§ 0.02 - 0.000 . . .
& 001 - 3000 5000 7000 9000
S 0004 : : [ , Number of Links
@Qq b@\% Q%Q ®§°° Q@Q §>Q Fig. 12. Comparison of computation times for networks composed of 1000
éﬁﬁ’ $ & L X\ @0 nodes, 100 time intervals, and a varying number of links.

! ) N - ) The results exhibited in Figs. 9 and 10 suggest that, for net-
Fig. 10. Comparison of computation times for networks with different sizes. . . . - .
NxxMyy means that the network has xx00 nodes and yy00 links. For instan®¥0rks with larger sizes, the dynamic adaptations of A* algo-
N50M150 represents the size of a network with 5000 nodes and 15000 linksithm lead to larger savings in terms of number of nodes selected

as well as in terms of computation times.
of, Dijkstra’s algorithm are nondecreasing functions of the min—]c Ir:hthe rest (t)f th_|5 TUbseit'?_n' we fagaAlf*e StheDifES'e'\;l]Cy
imum travel time between the OD pair. ot the ComP“ er implementations o el —

and Dijkstra’s algorithm, as a function of different network

. . parameters while keeping the other parameters constant.

D. Performance Study as a Function of Network Size and First, we consider the effect of the number of links while
Network Parameters

keeping the number of nodes and the number of time intervals
We first show the performance of the implementations @fonstant. Fig. 11 shows that, for networks with 1000 nodes and

DAA*_S, DAA*_M and Dijkstra’s algorithms for different net- 100 time intervals, the number of nodes selected by DAA*_S,
work sizes while keeping the number of links in the test neDAA*_M or Dijkstra’s algorithm are almost constant functions
works equal to three times the number of nodes. The reasondbrthe number of links. This can be explained as follows. If
adopting test networks in which the number of arcsis three timég® number of nodes in the network is constant, the average
the number of nodes, is to emulate traffic networks where the@mber of nodes that fall in the search areas corresponding to
ratio between the number of links and the number of nodestige algorithms for a given destination would not change even
typically around 3. if the number of links change. However, as one may expect, the
Fig. 9 shows that the numbers of nodes selected by Dijkstra'gimber of nodes selected by Dijkstra’s algorithm is greater than
DAA*_S and DAA*_M algorithms increase with the size of thethe number of nodes selected by either DAA* S or DAA* M
network, but at different rates. Note that tlheaxis does not algorithms.
follow a linear scale in Figs. 9 and 10. The rate of increase of theFig. 12 shows that, for networks with 1000 nodes, the com-
number of nodes selected by Dijkstra’s algorithm is higher thanutation time of Dijkstra’s, DAA*_S and DAA*_M algorithms
the rate of increase of the number of nodes selected by DAA* iScrease with the number of links, but at different rates. The rate
This latter rate is higher than the rate of increase of the numhrincrease of the computation time of Dijkstra’s algorithm is
of nodes selected by DAA*_M. Fig. 10 shows that the conhigher than the rate of increase corresponding to DAA*_S and
putation time savings for the different implementations behal®A* M algorithms. Although the numbers of nodes selected
similarly to the number of nodes selected by the algorithms. by different algorithms are almost constant, more links will be
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4500

dynamic adaptations of the A* algorithm are based on ef-

g 4000 1 l fective lower bounds on minimum travel times, that exploit
8 3500 —&=Dijkstra’s the FIFO properties of dynamic data and the special structure
5 20007 —=DAA*_S of the time-expanded implicit representation of a dynamic
g 25007 —e=DAA* M| petwork. The adapted algorithms were implemented and their
45 2000 - computational performance was experimentally evaluated and
B 1500 - tested. The performance of the computer implementations of
§ 1000 1 the dynamic adaptations of the A* algorithm are compared to
503‘ QM a dynamic adaptation of Dijkstra’s algorithm that is stopped

as soon as the destination node is reached. Results using a
network containing 3000 nodes, 10000 links, and 100 time
intervals showed a saving ratio of 11, in terms of nhumber of
) ) nodes selected, and a saving ratio of 5 in terms of computation
Fig. 13. Comparison of average number of nodes selected for netWO{ks h ff f th K si h £ f
composed of 9000 links, 100 time intervals, and a varying number of nodeslIMES. The e ?Ct of the network size qn the per O'rmance 0
these adaptations was also computationally studied. It was
0.080 shown that the computational savings, in terms of both the

1000 3000 5000 7000
Number of Nodes

number of nodes selected and the computation time, increase
o~ 0.070 1 with the network size. These encouraging results demonstrate
& 0.060 == Dijkstra’s the efficiency of the algorithms developed in this paper.
§ 0.050 —o—DAA* S We now present some logical extensions to the research work
S 0.040 | —eDAA* M| presented in this paper. First, it would be interesting to extend
E 0030 the results of this paper to continuous-time dynamic networks.
é‘ 0.020 1 The static lower bound remains valid in this context, while the
o} 0.010 dynamic lower bound may need to be adapted for cases where
0,000 . . ‘ one.knqvv_s only the resqlts of fastest path cpmputgtions at some
' 1000 2000 5000 1000 earlier fmlte number of tlm_e instants. The dlscu§5|on at the end
Number of Nodes of Section VI-B-2 summarizes one such dynamic lower bound.

Second, one may also consider investigating the extension of
Fig. 14. Comparison of computation times for networks composed of 9obbe A* algorithm to non-FIFO networks. Note that the static
links, 100 time intervals, and a varying number of nodes. lower bound is valid in this context as well. Third, the algo-
rithms of this paper offer possibilities for designing and devel-
scanned whenever a node is selected if the number of links 9 efficient parallel implementations for the computation of
creases. Thus, the computation time increases with the num amic shortest paths. Decomposition strategies can be devel-
of links oped in the domains of pairs of origin—destination nodes and
Now, we examine the effect of the number of nodes on cori1€ Network topology. An efficient strategy should balance the
putational performance while keeping the number of links arfgpmmunication time, the computation time and the idle time.
the number of time intervals constant. Fig. 13 shows that, fbf1@lly: the ideas presented in this paper can be extended to de-
networks with 9000 links and 100 time intervals, the number &elop time-based algorithms, for discrete-time as well as contin-
nodes selected by DAA* S, DAA* M or Dijkstra’s algorithmuous'time dynamic networks, to compute shortest path from one
increase with the number of nodes, but at different rates. TAEJIN node to all other nodes if one changes the departure time
rate of increase of the number of nodes selected by Dijkstr@&the origin. In [22], an example of such extensions is developed
algorithm is higher than the rate of increase corresponding fbCOMPute single-origin minimum travel-time path trees for all
DAA* S and DAA* M algorithms. possible departure times in continuous-time FIFO dynamic net-
Fig. 14 shows that, for test networks with 9000 links and 10807ks. The design of other time-based algorithms for other dy-
time intervals, the computation times of the different algorithnﬁam"? shortest path problems, is the subject of ongoing research.
behave similarly to the number of nodes selected, as a functi-[,)lﬁe first author and other coIIaborator_s havg develpped algo-
of the number of nodes in the network, as was shown in Fig. &thms based on the concept of re-optimization, which can be
Numerical results have shown that the computational savififf"ed t share, to a certain degree, some fundamental simi-
ratios do not vary as a function of the number of time interval&fities with the derivations in this paper. The algorithms led to
Numerical results supporting this conclusion are not included %Fcog[]agmg (;omg)utat!onal results [23]. We will report on these
this paper, but the conclusion is intuitively valid. algorithms in forthcoming papers.
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