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Adaptations of the A* Algorithm for the Computation
of Fastest Paths in Deterministic Discrete-Time

Dynamic Networks
Ismail Chabini and Shan Lan

Abstract—This paper extends the A* methodology to shortest
path problems in dynamic networks, in which arc travel times
are time dependent. We present efficient adaptations of the A*
algorithm for computing fastest (minimum travel time) paths from
one origin node to one destination node, for one as well as multiple
departure times at the origin node, in a class of dynamic networks
the link travel times of which satisfy the first-in–first-out property.
We summarize useful properties of dynamic networks and develop
improved lower bounds on minimum travel times. These lower
bounds are exploited in designing efficient adaptations of the A*
algorithm to solve instances of the one-to-one dynamic fastest
path problem. The developed algorithms are implemented and
their computational performance is analyzed experimentally. The
performance of the computer implementations of the adaptations
of the A* algorithm are compared to a dynamic adaptation of
Dijkstra’s algorithm, stopped when the destination node is se-
lected. Comparative computational results obtained demonstrate
that the algorithms of this paper are efficient. Using a network
containing 3000 nodes, 10 000 links, and 100 time intervals, the
dynamic adaptations of the A* led to a savings ratio of 11, in
terms of number of nodes selected, and to a savings ratio of five in
terms of computation time. The effect of the network size on the
performance of these adaptations is also studied. It is shown that
the computational savings in term of both the number of nodes
selected and the computation time, increase with the size of the
network topology.

Index Terms—A* algorithm, computer algorithms, dynamic net-
works, intelligent transportation systems, network optimization,
time-dependent shortest paths.

I. INTRODUCTION

T HE computation of shortest paths in dynamic networks is
at the heart of the computational needs of transportation

applications involving networks equipped with information
technologies. For instance, in the context of intelligent trans-
portation systems (ITS) applications, the computation of
shortest paths is a fundamental component in route guidance
systems and in the development of solution algorithms for
large-scale dynamic network flow models; such models are
useful in supporting effective ITS decision-making. In such
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applications, there is usually a need to find a large number
of shortest paths in networks the parameters of which are
time-dependent. Furthermore, to meet the real-time operational
requirement of ITS applications, the solution algorithms must
be efficient enough in order to compute shortest paths in a
running time faster than real-time.

Past research in the area of dynamic shortest path problems
has mainly focused on the following two problem variants: the
one origin-node to all destination-nodes shortest paths problem
for a given departure time, and the all-nodes to one-destina-
tion-node shortest paths problem for all possible departure times
(see [1]). In this paper, we examine the one origin-node to one
destination-node problem variant, which is a topic that has been
rarely studied in the literature. In this variant of the problem,
one is interested in computing one-to-one shortest paths for a
given departure time, or for many (typically all) possible depar-
ture times at the origin node.

Let us consider traffic networks where drivers seek a route
that minimizes their travel time. To support travelers in selecting
“optimal” routes, one can provide them with dynamic informa-
tion in the form of shortest paths. The dissemination of this in-
formation can be done in various ways, for instance through
devices installed in cars or through variable message signs in-
stalled at particular network nodes, such as major interchanges
on a highway network. The computation of these shortest paths
may be done on-board or in a traffic management and informa-
tion center; note that the former approach is applicable only to
vehicles equipped with on-board computing units.

In this paragraph and the next, we describe two route guid-
ance situations where the need to compute one-to-one shortest
paths in dynamic networks may arise. First, consider the fol-
lowing case of on-board route guidance provision and com-
putation. A traffic management and information center fore-
cast traffic conditions and distributes time-dependent link travel
times to in-vehicle guidance processing units. These units com-
pute fastest paths given a vehicle’s current location in space and
time (current node and current time), and the driver’s destina-
tion node. This computational task is a one-to-one shortest path
problem in a dynamic network. Note that, in general, on-board
computation can be prohibitive in terms of in-vehicle storage
memory and data transmission capacity, since a large amount of
dynamic data, mainly consisting of time-dependent link travel
times, needs to be transmitted to and stored in vehicles. These
needs for fast communication speeds and in-vehicle memory
space can, however, be met if one adopts methods that allow
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for a compact representation of dynamic data. The bit-stream
method to represent dynamic network data described in [2], is
an example of such method.

Now we describe a second situation where the need to com-
pute one-to-one shortest paths in dynamic networks may arise.
When routing information is disseminated via variable message
signs installed at some nodes, such as major highway inter-
changes, one needs to compute shortest paths from these nodes
to one or many major destination nodes. There are two pos-
sible ways to determine shortest paths for this application: find
many one (guidance node)-to-one (destination node) shortest
paths, or find many all-to-one (destination node) shortest paths
for all departure times. The total number of nodes that are ei-
ther a destination node or a node where information would be
provided typically constitutes only a small fraction of the total
number of network. For instance in a model of the highways and
parkways network of New York’s Lower Hudson Valley area,
the total number of destination and route guidance candidate
nodes is approximately 100, while the total number of nodes
is in the order of several thousand nodes. Meeting the shortest
path computational needs by solving many one-to-one shortest
path problems, is therefore, in general, a more efficient approach
than achieving the same objective by solving for each destina-
tion-node an all-to-one shortest paths problem for all possible
departure times.

The A* algorithm, first proposed by [3], is an efficient al-
gorithm to solve the one-to-one shortest path problem in static
networks. It is well-known in the literature that the A* algo-
rithm generally outperforms traditional static shortest path algo-
rithms, to solve this variant of the static shortest path problem.
The A* algorithm has been studied in the context of static net-
works only. In a commentary in [4], the question of whether the
A* algorithm can be extended to solve one-to-one shortest path
problems in dynamic networks was posed. To the best of our
knowledge, the question has not been addressed in the litera-
ture, and the present paper contains first known results in this
area.

Dynamic shortest path problems can be implicitly viewed
as static shortest path problems in the time-space (or time-ex-
panded) representation of a dynamic network (see [1]). This
does not mean that one constructs a time-space network and
apply a static shortest path algorithm. It rather means that one
exploits the properties of time-space networks, as well as addi-
tional properties, to derive specialized algorithms for dynamic
networks, without explicitly working on time-space networks.
The main objective of this paper is to develop efficient adapta-
tions of the A* algorithm by exploiting particular properties of
dynamic network data. Thus, the paper extends the A* method-
ology to shortest path problems in dynamic networks.

There are various criteria to define the cost of a path. In this
paper, the cost of a path is defined as its travel time. The term
shortest path will then be interchangeably used to denote min-
imum-travel-time (or fastest) paths.

Consider the problem of computing fastest paths between an
origin node and a destination node, for all possible departure
times. A main algorithmic development of this paper is based
on the following idea. Assume that one solves this problem as a
series of one-to-one shortest path problems, each corresponding

to a given departure time at the origin node. When computing a
shortest path for a departure time, one can exploit shortest path
results that would have been obtained for earlier departure time
instants (i.e., ). We take advantage of these past computa-
tional results by developing effective lower bounds on minimum
travel times from a given node to a given destination node. As
it is shown in the section on experimental results, this has led
to meaningful improvements in the overall computational effi-
ciency. This idea has some similarities with the idea of taking
advantage of information from previous computations to speed
up the search for an optimal path proposed in [5] in the context
of static networks to solve one-to-one shortest path problems.
The idea of this paper also has similarities with ideas behind the
algorithm described in [6] to compute shortest paths from all
nodes to one destination node in continuous-time dynamic net-
works, where shortest paths are determined in decreasing order
of departure time at origin nodes, and the results for a departure
time are obtained using the results corresponding to later de-
parture times to reduce the overall computation time.

The main contributions of this paper are summarized as
follows. We have extended the A* methodology to shortest
path problems to networks in which arc travels times are
time-dependent, by presenting efficient adaptations of the
A* algorithm computing fastest (or minimum-travel-time)
paths from one origin node to one destination node, for one
as well as for multiple departure times at the origin node.
The adaptations are valid for a class of dynamic networks the
link travel times of which satisfy the first-in–first-out (FIFO)
property. We identified properties of dynamic data in such
networks, and used them to develop improved lower bounds
on minimum travel times. These lower bounds are exploited in
the design of the efficient adaptations of the A* algorithm. The
developed algorithms are implemented and their computational
performance is analyzed experimentally. Numerical results
show that the adaptations of the A* algorithm developed in
this paper are more efficient than the dynamic adaptations
of Dijkstra’s algorithm stopped when the destination node is
reached. The latter algorithm has been the fastest algorithm
known in the literature to solve the one-to-one shortest path
problem in dynamic networks. The computational results show
that an adaptation of the A* algorithm is five times faster
than the dynamic adaptation of Dijkstra’s algorithm (stopped
when the destination node is reached) for network containing
3000 nodes, 10 000 links, and 100 time intervals. Furthermore,
computational experiments show that these computation-time
savings increase with the network size. To the best of our
knowledge, this is the first time that the A* algorithm has been
studied in the literature in the context of dynamic network.

This paper is organized as follows. In Section II, a brief lit-
erature review on the A* algorithm and on dynamic shortest
path problems is presented. In Section III, some definitions and
notation are provided. Section IV describes the static A* al-
gorithm. In Section V, some properties of dynamic networks
are described. In Section VI, lower bounds on minimum travel
times in dynamic networks are developed. Based on these lower
bound results, adaptations of the A* algorithm to solve some dy-
namic shortest path problems efficiently are shown. Section VII
presents results from an experimental study of computer imple-
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mentations of the developed dynamic adaptations of the A* al-
gorithm. Section VIII concludes this paper.

II. L ITERATURE REVIEW

The A* algorithm was first proposed by [3] and further
discussed and extended in [7], [8], and [9]. Hartet al. [3]
pointed out that the A* algorithm is an admissible and optimal
algorithm. Golden and Ball [10] empirically found that, on an
infinite lattice network with diagonal arcs, the A* algorithm
searches less than 8.3% of the area that would be searched
by an optimal Label-Setting (LS) algorithm. Let and ,
respectively, denote the number of nodes and arcs in a network.
Sedgewick and Vitter [11] proved that the A* algorithm finds
a shortest path in many Euclidean graphs with an average
computation effort in compared to
required by a heap implementation of a LS algorithm. Bander
and White [12] presented algorithm IA* (interruptible A*).
This algorithm makes use of information about a collection
of nodes, obtained from experts, which are likely to be on
the optimal or near optimal path from the origin node to a
destination node. Larket al. [13] presented algorithm AG that
uses a heuristic set, , to guide the search. Such a set can
represent natural language statements and bound information,
such as Euclidean distance. Bander and White [5] presented the
adaptive A* (AA*) algorithm, which generalizes both AG and
IA*. This algorithm uses previously determined paths that are
known to be optimal and all paths that experts have considered
desirable (possibly optimal) to speed up the search. The idea of
taking advantage of information from previous computations
to speed up the search for an optimal path has some similarities
with the basic ideas of the adaptations of the A* algorithm
developed in this paper. Note that all the above developments
of the A* algorithm have focused on static networks only. In
this paper, we study dynamic networks and develop efficient
specializations of the A* algorithm.

A first variant of dynamic shortest path problems was first
proposed in [14], where the computation of shortest paths from
all nodes to one destination node for all possible departure times
was studied. The algorithm proposed in [14] can be viewed as
an extended application of the Bellman–Ford algorithm to the
time-expanded network, where the label of a node is a vector
of scalar labels rather than a single scalar label as is the case in
static networks. In [15], another algorithm is introduced to solve
the same problem variant studied in [14]. This algorithm can be
viewed as an extended application of a label correcting shortest
path algorithm in the time-expanded network where the label
of a node is a vector of scalar labels rather than a single scalar
label as is the case in static networks. Both algorithms in [14]
and [15], were proposed for the minimum-time path problem.
In [1], it is shown that these algorithms both have a worst-case
running time complexity of , where
is the number of discrete-time intervals in the dynamic network.

Instead of constructing the vector of shortest path labels by
iterating on nodes as is done in previous algorithms, Chabini
[16], [17] observes that the vector of optimal shortest path costs
can be constructed in decreasing order of time, where at a time

step the optimal labels for all nodes that correspond to de-
parture time are determined. This resulted in an algorithm
known as algorithm DOT, which has a running time complexity
of , where is the
running time of an all-to-one shortest path algorithm. In [16],
[17], it is shown that algorithm DOT has an optimal running
time complexity is the sense that no algorithm with a better
worst-case running time complexity can be developed to solve
the all-to-one dynamic shortest path algorithm for all possible
departure times.

Another most studied variant of dynamic shortest path prob-
lems is the computation of shortest paths from one node to all
other nodes for a given departure time. One of the celebrated
results for this problem is: when the FIFO property (see Sec-
tion III for the FIFO definition) is satisfied, any static shortest
path algorithm can be generalized to solve the one-to-all dy-
namic shortest path problem, for a given departure time with
the same time complexity as the static one-to-all shortest paths
problem. Dreyfus [18] was the first to suggest this generaliza-
tion heuristically. Later, Ahn and Shin [19] and Kaufman and
Smith [4] proved that this generalization is valid only if the FIFO
property holds. In [16], [17] another shorter proof of this result
is given, which is provided later in this paper.

Chabini and Dean [1] extended the results established in [16]
and [17]. They present a complete framework for classifying,
formulating, and solving different variants of shortest path
problems in discrete-time dynamic networks. The framework
includes all problem variants previously studied in the literature
as special cases. Extending algorithm DOT described in [16]
and [17], Chabini and Dean [1] designed easy to implement
algorithms that have optimal theoretical worst-case running
time complexities. Chabini and Yadappanavar [2], [20] suggest
a method to represent dynamic data in a compact form known
as bit-streams, and developed algorithms that efficiently operate
on this compact form of data representation.

The above literature review shows that most of the research
developments in the area of dynamic shortest paths have mainly
focused on one-to-all or all-to-one shortest path problems. Few
efforts have been given to the one-to-one dynamic shortest path
problem. Kaufman and Smith [4] suggest using static shortest
path algorithm such as LS algorithms to solve the one-to-one
shortest path problems for one departure time. In a commentary
to the paper by Kaufman and Smith [4], Koutsopoulos posed the
question of whether the A* algorithm can be extended to solve
one-to-one shortest path problems in dynamic networks. The
present paper reports on the first developments in this direction.
It shows efficient adaptations of the A* algorithm to solve the
one-to-one fastest path problem in dynamic networks.

III. D EFINITIONS AND NOTATION

Let be a directed network, where
is the set of nodes, and is the

set of directed links. We denote by
the set of time-dependent link travel times. Functions
have integer-valued domain and range. A function is then
a discrete and time-dependent function which is assumed to
take a static value after a finite number of intervals.
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is, hence, the set of departure time intervals for
which link travel times are time-dependent. denotes the set
of nodes having an outgoing link to nodeand denotes the
set of nodes that are the end of a link outgoing from node. Let
node denote an origin node, and node denote a
destination node.

The notation in this paragraph assumes a static network. Fol-
lowing are notation that we use in describing the A* algorithm
(a more common notation can be found in [7] which gives a
generic description of the A* algorithm that is valid for a va-
riety of artificial intelligence applications):

minimum travel cost from origin nodeto node ;
minimum travel cost from nodeto node ;
minimum travel cost among all paths from origin node
to destination node constrained to go through node;
upper bound on the minimum travel cost from origin node

to node ;
lower bound on the minimum travel cost from nodeto
destination node;
estimate of ; ;

C set of nodes that have been reached and that are candidates
for the selection of the next node;

S set of nodes that have been selected, and that are not in
setC. A node may be removed from setS and added to
setC if its label decreases; this can happen only if the
consistency assumption, defined next, is not valid.

Consistency Assumption:The notion of consistency in the
area of shortest path algorithms has been used to denote dif-
ferent concepts. In this paper, for a given arbitrary destination
node , we say that the consistency assumption is valid if and
only if, for any pair of nodes and , the lower bounds on the
minimum travel costs (times) from these nodes to a given des-
tination satisfy the following inequality: . That
is, the difference of the lower bounds for any pair of nodes
and , is a lower bound on the minimum travel time fromto .
Some researchers in the transportation field (see [4]) also used
the term consistency to refer to the FIFO property, which we
define later in this section. Note that if the former definition
of consistency assumption is used, we have .
This implies that for every link , the (reduced) cost

is nonnegative, as . The relation-
ship between the consistency assumption and the positivity of
the links’ reduced costs, will be used to alternatively interpret
the A* algorithm as a classical LS algorithm if the consistency
assumption is valid. This aspect is explained further later in this
paper.

FIFO Definitions: In a traffic network, at an aggregate level,
link travel times are usually such that travelers arrive at the end
of a link in the same order in which they depart the beginning
of the link. This is known as the FIFO property. More formally,
we say that a link travel time function satisfies the FIFO
property if the arrival time function is nondecreasing.
In a discrete-time dynamic network, a link is a FIFO
link if and only if

If the travel time function of a link satisfies the FIFO
property, we say that link is a FIFO link. Similarly, if the

travel time function of a path satisfies the FIFO property, we say
the path is a FIFO path. If every link in a network is a FIFO link,
then the network is said to be a FIFO network. Minimum-time
dynamic shortest path problems are easier to solve in FIFO net-
works, than more general dynamic shortest path problems in-
cluding minimum-time path problems in non-FIFO networks
(which are defined as networks with at least one non-FIFO arc).

The problem considered in this paper is to find fastest paths
from an origin node to a destination node for one, or for mul-
tiple, departure times in a FIFO dynamic network. To solve this
problem, one can use various dynamic shortest path algorithms
that were developed in the literature. For instance, one can adopt
any LS one-to-all shortest path algorithm in a FIFO network [4],
and stop the search when the label of the destination node is se-
lected to be permanently set. These shortest path algorithms may
be improved, however, since some nodes may unnecessarily be
searched. The adaptations of the A* algorithm of this paper, aim
at avoiding searching nodes that would not be on a shortest path.
A mechanism to achieve this is based on the following observa-
tion: in a FIFO network, when one computes the shortest path
at time interval , one can take advantage of the information ob-
tained when computing a shortest path for time interval .
This information is used to develop improved lower bounds on
the fastest travel time from a nodeto destination node.

IV. A* A LGORITHM

We believe that typical readers of this journal are from the
transportation area, and, hence, may not be familiar with the
details of the A* algorithm. Thus, before developing the adap-
tations of the A* algorithm, we first provide a relatively brief
introduction to the A* algorithm. We first illustrate the basic
idea of the A* algorithm, and then describe it. Some proper-
ties of the A* algorithm are also summarized. Finally, we show
that if the consistency assumption is valid, the A* algorithm can
be viewed as Dijkstra’s algorithm applied to an equivalent net-
work. This network has the same topology as the original net-
work and has as link costs the reduced-costs derived using the
original link costs and the lower bounds that verify the consis-
tency assumption.

A. Basic Idea of the A* Algorithm

To solve a one-to-one static shortest path problem, one can
use any traditional LS algorithm designed for one-to-all shortest
path problems and stop it when the destination node is reached.
These algorithms are, however, not the most efficient algorithms
possible to solve a one-to-one shortest path problem. For ex-
ample, consider a city network where the origin node is located
at the center of the city and the destination node is located at its
far east. An LS algorithm would typically put the same effort to
search to the east, to the south, to the west and to the north of the
origin node. These algorithms may, hence, search areas through
which a shortest path would never pass.

Since one knows the objective of the search which is to reach
the destination node, intuitively, the efficiency of a LS algorithm
may be improved if one takes advantage of this information to
guide the search. For instance, the shortest path search may be
constrained within a certain subarea of the whole network. The
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Fig. 1. Search area of A* algorithm and a LS algorithm.

resulting search area would then be much smaller than the area
examined by a traditional LS algorithm.

Let us consider a traffic network where nodes are uniformly
distributed in a given geographic area, and link travel distances
are Euclidean distances. Assume that one needs to compute a
shortest path from an origin nodeto a destination node(see
Fig. 1). If Dijkstra’s algorithm is used, at each new loop [in Step
2)], it selects a node that is closest to the origin node, i.e., a node
with minimum . The resulting search area of Dijkstra’s algo-
rithm is roughly a circle. The A* algorithm orders the nodes in
the candidate node set according to labels , which
is an estimate of the minimum travel cost among all paths from
an origin node to destination nodeconstrained to go through
node . The A* algorithm selects a node with minimum label

. It will be proven in Corollary 1 of Propositions 1
and 2 that the A* algorithm selects only those nodes that satisfy

. If the lower bound used in the A* algo-
rithm is the Euclidean distance, the search area corresponding
to the latter inequality will then be an ellipse [10]. As shown in
Fig. 1, the search area of the A* algorithm would then be much
smaller than the search area of a traditional LS algorithm.

B. Description of the A* Algorithm

Following is a description of the A* algorithm. The (origin,
destination) node pair is denoted (, ).

Step 1) Initialization:
Set , , ; , ,

;
Step 2) Node selection:

Choose ,
.

Step 3) Stopping rule:
If , then stop. Otherwise, continue.

Step 4) Update and distance labels :
For each : If then

If . Go back to Step 2).
In Step 4) of the algorithm, labels and are updated for

every . If the consistency assumption is satisfied by the
lower bounds, one does not need to reconsider those nodes
belonging to the selected node set (S) (see Proposition 1). Also

note that in an implementation of the algorithm, for a node, one
can keep only label instead of both labels and ; since
can be obtained as a function ofonly (

). This would
lead to some savings in computation time and memory space.
The term is known as the reduced cost (in this
paper travel costs are the travel times).

Descriptions of Dijkstra’s shortest path algorithm can be
found in classical books on network algorithms. This algorithm
can be viewed as a particular case of the A* algorithm, where
the lower bounds are equal to zero. If link costs are nonnegative,
the zero lower bounds verify the consistency condition, and,
thus, there is no need to reconsider nodes that have been se-
lected in Step 2). We then omit providing a separate description
of the one-to-one Dijkstra’s shortest path algorithm, as it can
be easily derived from the description of the A* algorithm.

C. Some Properties of the A* Algorithm

In this section, we present some properties of the A* algo-
rithm. These properties are useful for understanding the A* al-
gorithm and for developing the adaptations of the A* algorithm
of this paper. Since these properties appear in the literature, we
state them without proofs.

Proposition 1 [3, Lemma 2]:Suppose that the consistency
assumption is satisfied. If nodeis selected by the A* algorithm,
then .

If the consistency assumption is not satisfied, then it is pos-
sible that the label of a node selected in earlier steps of
the A* algorithm will be lowered in later steps of the algorithm.
Hence, if the label of a node is lowered, then this node needs
to be put back to the candidate set. Proposition 1 however im-
plies that, if the consistency assumption is satisfied, as soon as
a node is selected by the A* algorithm, a shortest path from the
origin node to that node has been identified. Therefore, nodes
that have been selected will not re-enter the candidate set. The
last statement in the A* algorithm need not be performed for
those nodes that are already in the set of selected nodes S.

Proposition 2 [3, Corollary of Lemma 3]:For any node
selected by the A* algorithm, .

Proposition 3 [3, Theorem 1]:When the A* algorithm ter-
minates, it always finds a shortest path from the origin node to
the destination node.

Proposition 3 shows the correctness of the A* algorithm.
Proposition 4 [3, Theorem 2]:Consider the set of lower

bounds verifying the consistency assumption. If a node is
selected by the A* algorithm for a given a lower bound, then
this node will be selected by the A* algorithm using any smaller
lower bound.

The nodes selected in Step 2) of the A* algorithm, determine
the arcs that will be explored in Step 4). Assuming that the ef-
fort to compute lower bounds are similar and that the number
of arcs leaving a node is evenly distributed among nodes, the
overall computational effort is an increasing function of the
overall number of nodes selected in Step 2) of the A* algorithm.
Proposition 4 implies that if the lower bounds satisfy the con-
sistency assumption, then the total number of nodes selected by,
and consequently the overall computational effort of, the A* al-
gorithm is a nonincreasing function of the values of.
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The next two corollaries further show the relationship be-
tween the number of nodes selected by the A* algorithm and
the quality of a lower bound on .

Corollary 1: If the consistency assumption is satisfied, then
the A* algorithm selects only those nodes with .

Proof: Since the consistency assumption is satisfied, then
using Proposition 1 we have, . Using Proposition 2, if
node is selected by the A* algorithm, then .
Thus, we have .

Corollary 2: If for every node, then the A* algo-
rithm selects only those nodes on a shortest path.

Proof: First, we prove that, if for every node
, then satisfies the consistency assumption. Sinceis the

minimum travel time from to , for any two nodes and we
have . Hence, we have .

Since the consistency assumption is satisfied, then, by Corol-
lary 1, the A* algorithm selects only those nodes with

. Since , the A* algorithm selects only those nodes
that verify the inequality . Since we know that
any node verifies , if for all nodes, the
A* algorithm selects only those nodes that verify the equality

. This means that any selected nodeis on a
shortest path from the origin node the destination node. There-
fore, if for every node, the A* algorithm selects only
those nodes on a shortest path.

In summary, the efficiency of the A* algorithm depends on
the quality of the lower bound on . If for every node
, then . This means that the A* algorithm is identical to

Dijkstra’s algorithm. If , the A* algorithm selects only
those nodes on a shortest path. If , the number of
nodes selected by the A* algorithm is a nonincreasing function
of , if the consistency assumption is valid. Therefore, in order
to make the algorithm select fewer nodes, one needs to find a
tighter lower bound on .

D. Reduced Cost Presentation of A* Algorithm

The A* algorithm is generally stated as shown in Sec-
tion IV-B. We now show that the A* algorithm is identical to
Dijkstra’s shortest path algorithm, if the original link travel
costs are replaced by the reduced link costs obtained using
the lower bounds satisfying the consistency assumption.
For all , the expression of the reduced cost is

. The following lemma establishes a
relationship between A* algorithm and Dijkstra’s algorithm. It
is assumed that Dijkstra’s algorithm is stopped as soon as the
destination node is selected.

Lemma 1: If the consistency assumption is satisfied, then ap-
plying the A* algorithm in a network with link travel times to
solve a one-to-one shortest path problem is the same algorithm
(however stated “differently”) as applying Dijkstra’s algorithm
in the same network with link costs .

Proof: If the consistency assumption is satisfied, for all
, we have . Therefore,

is nonnegative. Hence, we can apply Dijkstra’s
algorithm in the network with link travel times to solve a
one-to-one shortest path problem. Note that Dijkstra’s algorithm
is stopped when the destination node is selected.

Except at their last step, the A* algorithm and Dijkstra’s al-
gorithm follow the same steps. Since the reduced costs are non-
negative, the label of a node selected in earlier stages of these

algorithms will not be decreased in later stages. The statements
in the last step of the A* algorithm are then identical to the last
step of Dijkstra’s algorithm which considers only the nodes that
have been reached but have never been selected.

The above equivalency in the statements of the algorithms
could also serve as a basis for yet another proof of the validity
of the A* algorithm if the consistency assumption is valid. Since
replacing by or replacing by does not affect the
shortest paths between any pair of nodes (see [21]), a shortest
path found by Dijkstra’s algorithm in the network with link
travel times is also a shortest path found in the original net-
work, and vice versa. Therefore, applying the A* algorithm in a
network with link travel times to solve a one-to-one shortest
path problem is a valid algorithm and is the same as applying
Dijkstra’s algorithm in a network with the same topology but
with link travel times instead of .

In the case when the consistency assumption is valid, Lemma
1 also implies that one does not necessarily need to write a sep-
arate computer code for the A* algorithm if one already has a
computer code of Dijkstra’s algorithm. One can run Dijkstra’s
algorithm on a network by replacing link travel times by .
Note, however, that replacing by for all links will in-
duce extra computational time. In fact, to solve the one-to-one
shortest path problem, one does not need to search all the links
in a network. Thus, it is not necessary to replaceby for all
links prior to applying Dijkstra’s algorithm. Instead, one needs
to do so only when one needs to access an arc. This observa-
tion is of particular interest in the context of dynamic networks
for the following reason. As it is shown later in this paper, the
time-expanded network contains arcs, at most arcs of
which will be searched by a dynamic adaptation of LS algo-
rithm. Since the LS algorithm is stopped when the destination
node is selected, an even smaller number of arcs will be searched
to solve the one-to-one fastest path problem in a dynamic net-
work. Hence, one should compute for only those links actu-
ally searched by the algorithm. This means that if computational
efficiency is sought, one needs to change a computer code of
Dijkstra’s algorithm in such a way that a link reduced cost is
computed only when a link is accessed to update nodes not yet
selected.

A* algorithm can be viewed as an algorithm that perturbs
link costs, by adding to the cost of each arc .
Thus, if , the perturbation increases the cost of arc

, while it increases the cost of arc if . If
the node lower bounds are a measure of closeness to the desti-
nation node, the arcs that are pointing closer to the destination
have their costs decrease, while the nodes pointing away from
the destination have their costs increase. This leads to possible
re-ordering in the selection of nodes in Step 2). Hence, nodes
might not be selected, or even not reached before the destina-
tion node is selected.

V. SOME PROPERTIES OFDYNAMIC NETWORKS

This section presents some fundamental results and proper-
ties of dynamic networks upon which the adaptations of the
A* algorithm of this paper are based. First, we show that dy-
namic networks can be viewed as static networks by using the
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time-expanded network representation. Then some properties
of time-expanded networks are highlighted. Finally, we present
some FIFO properties that will be used to develop lower bounds
on minimum travel times for the dynamic adaptations of the A*
algorithm.

A. Time-Expanded Network

A discrete time dynamic network can be represented as a
static network using a time-expanded network representation,
which is a useful implicit tool for visualizing, formulating and
solving discrete time dynamic shortest path problems. This net-
work is formed by expanding the original dynamic network in
the time dimension, and making a separate copy of all nodes for
every integer value of time . Every
node in the time-expanded network represents a time-node pair
consisting of a time and a node

, where the nodes at the highest level of time are taken
to represent not only time interval , but all times greater
than or equal to . Every link in a time-expanded network is
a directed link from a node-time pair to another node-time
pair [ , where ].

Time-expanded networks have the following properties.

1) Along the time dimension, they are acyclic if arc travel
times are positive, and multileveled if arc travel times are
nonnegative.

2) Every path on the original dynamic network corresponds
to a path on the time-expanded network with the same
travel time and travel cost. Visiting a nodein the orig-
inal dynamic network at time corresponds to visiting
node-time pair in the corresponding time-expanded
network.

3) A shortest path problem in a dynamic network can be
solved by applying a static shortest path algorithm to its
equivalent representation as time-expanded network.

A consequence of properties 2 and 3 above is that dynamic
shortest path problems can be solved by (implicitly) applying
static shortest path algorithms to the time-expanded representa-
tion of a dynamic network. This observation applies to the A*
algorithm as well. Since the time-expanded network contains

nodes and arcs, a trivial and direct application of a
static shortest path algorithm may, however, not be the most ef-
ficient algorithm possible. Property 1 is exploited in [1] to for-
mulate and efficiently solve a variety of discrete time dynamic
shortest path problems in a common framework.

For each departure time, the adaptations of the A* algorithm
presented in this paper search a subset of arcs less (practically
much less) than links among links, and select a subset
of nodes less (practically much less) thannodes among
nodes. The main task that we address in the remainder of this
paper is to show ways aimed at visiting a number of arcs, and
nodes, as small as possible in practical implementations of the
A* algorithm for the one-to-one dynamic shortest path problem.

B. FIFO Properties

Link travel times may possess some properties useful in
studying and developing efficient algorithms for dynamic

networks, such as, the FIFO property. Below, we describe some
interesting consequences of the FIFO property, which are very
useful in developing efficient adaptations of the A* algorithm.

Lemma 2: If every link on a path is a FIFO link, then the path
is a FIFO path.

Proof: We prove this lemma by induction. Assume that
the path has links, and that the departure time index at the
first node in this path is. To simplify the presentation, without
loss of generality, we assume that the indices of thelinks are:
1, 2, , .

The induction hypothesis is that the arrival time function at
the end of the th link, , is a nonde-
creasing function of. First let us consider the base case. The
first link on the path is a FIFO path, and, hence, the induction
hypothesis is valid. Now, suppose that the hypothesis is true
for the th link. We need to prove that, for the th link,
the arrival time function is a nonde-
creasing function of. From the induction hypothesis, we know
that is a nondecreasing func-
tion of . Since every link on this path is a FIFO link, according
to the definition of FIFO link, is a nondecreasing
function. Let . Let us prove that function is
a nondecreasing function of. Since and are two non-
decreasing functions, we have: and

. Let and , it follows that

. Thus, .
Hence, we have . Therefore, is
a nondecreasing function. As ,
the arrival time function of the path is a nondecreasing function
of , and the path is a FIFO path.

Corollary: In a FIFO network, any path satisfies the FIFO
property.

Proof: In a FIFO network, every link satisfies the FIFO
property. Thus, all links of any path satisfy the FIFO property.
Using lemma 2, any path satisfies the FIFO property.

Lemma 3: If every path between origin nodeand destina-
tion node satisfies the FIFO property, then the minimum travel
time function satisfies the FIFO property.

Proof: Suppose that is a shortest path among all paths
from origin node to destination node and departing node
at time . The travel time of path departing node at time is
denoted by . Since is a shortest path when departing
node at time , we have . Since
the FIFO property holds on path , we have

. Hence, we have
. Therefore, if every path between origin node

and destination node satisfies the FIFO property, then the
minimum travel time function satisfies the FIFO property.

Lemma 3 is used in Section VI-B to develop the dynamic
lower bounds on the minimum travel times.

VI. DYNAMIC ADAPTATIONS OF THEA* A LGORITHM

In dynamic networks, one may need to solve a one-to-one
shortest path problem for a given departure timeor for many
or all departure times. In this section, we first study the formula-
tion of the one-to-all dynamic shortest path problem in a FIFO
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dynamic network. Then a static lower bound is developed to
solve the one-to-one shortest path problem for a given depar-
ture time , using an adaptation of the A* algorithm. We later
develop dynamic lower bounds and mixed static-dynamic lower
bounds, that exploit special characteristics of dynamic networks
to solve the one-to-one shortest path problem for all departure
times.

A. One-to-One Shortest Path Problem for a Given
Departure Time

The formulation of the one-to-one shortest path problem
is similar to the formulation of the one-to-all shortest path
problem. The only difference is that, for the one-to-one shortest
path problem, the algorithm stops when the destination node is
selected if a LS algorithm is used. We first present a well-known
formulation of the one-to-all dynamic shortest path problem.

1) Formulation of the Dynamic Shortest Paths Problem for a
Given Departure Time:The objective of the one-to-all dynamic
shortest path problem is to find shortest paths from an origin
node , departing at time interval 0, to all other nodes. Minimum
travel time is defined by the following equations ([17] and
[18]):

.

Lemma 4 (Borrowed From [18]):If the FIFO property is
satisfied, the above formulation of the shortest path problem is
equivalent to the following equation:

Proof: , since the
FIFO property holds. Therefore, the equivalence of these two
formulations holds.

This formulation is similar to the optimality conditions for
static shortest path problem. It shows that static shortest path
algorithms can be extended to solve the one-to-all shortest path
problem in FIFO dynamic networks. The dynamic A* algorithm
adaptations of this paper are derived from this formulation. The
adaptations differ only in the way one determines a lower bound

on , the minimum travel time between a (node, time)
pair, , to a destination node say,. The formulation is still
valid if the departure time at the origin node is not necessarily
equal to zero, as it suffices to change the definition ofto
minimum arrival time instead of minimum travel time.

Following is a description of a dynamic adaptation of the A*
algorithm, to find a fastest path between an (origin, destination)
node pair ( , ), departing the origin node at time.

Step 1) Initialization:

Step 2) Node selection:

Step 3) Stopping rule:
If , then stop. Otherwise, continue.

Step 4) Update and distance labels
For each : If

then
;

If . Go back to Step 2).

2) Static Lower Bounds:In the previous subsection we
have shown a dynamic variant of the A* algorithm to solve the
one-to-one dynamic shortest path problem in a dynamic FIFO
network. As explained in Section IV-B, the efficiency of the
A* algorithm depends on the quality of the lower bounds on

. Therefore, in order to adapt the A* algorithm efficiently,
we need to develop effective lower bounds on. As we will
see later in this paper, it is possible to find better lower bound
on than those commonly used in static networks, such as
those based on Euclidean distance.

For all , let . We
construct a virtual static network with as the link travel
times. An all-to-one static shortest path algorithm applied to the
virtual network and destination nodeleads to minimum travel
times denoted by from every node to node . Below we
prove that is a lower bound on for every node-time
pair . This lower bound is said to be static since it does not
depend on the departure time at the origin node. Note that, for a
given destination, needs to be computed only once, which
can be done during a preprocessing step.

Lemma 5: For every node and departure time,
. Furthermore, satisfies the consistency assumption,

i.e., for every link , .
Proof: First we prove that for every nodeand depar-

ture time , . Suppose that is a shortest path
from node to node on the virtual static network. We have

. Suppose that is a shortest path
from to , which departs nodeat time . Since is also a
feasible path between nodeand node on the virtual static net-
work, we have .
By the definition of , for every at any time
interval , . Hence,

. Therefore, .

Let us now prove that satisfies the consistency assump-
tion. In the virtual static network, according to the optimality
conditions, we have . According to the
definition of , we have . Therefore,

.
is used as a lower bound on . Since the static lower

bounds satisfy the consistency assumption, whenever the algo-
rithm selects a node, a shortest path from the origin to that node
has been determined. Thus, in the last step of the algorithm, we
do not need to consider those nodes that are already in the se-
lected node set. We update label for only the neighboring
nodes that are not on the selected node set.

Consider two-dimensional grid networks where the travel
time of a link is its Euclidean distance divided by a certain
value of travel speed. Lower bounds based on the Euclidean
distance are typically obtained by dividing the Euclidian
distance between the current node and the destination node, by
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the minimum value of the minimum speeds among all links.
This “Euclidean” lower bound is always less than or equal to,
and consequently can not outperform, the static lower bound
developed in this subsection. Thus, we do not compare further
these two lower bounds in the experimental section, as we
know by theory that the static lower bound is always more
effective. Note the Euclidean lower bound also verifies the
consistency assumption.

B. One-to-One Shortest Path Problems for All Departure
Times

The one-to-one shortest path problem for all departure times
consists in finding shortest paths from an origin node to a des-
tination node for every departure timeat the origin node. Al-
though one can still use as lower bounds, we are interested
in deriving improved lower bounds. Assume that when com-
puting fastest paths for departure time, we have already com-
puted fastest paths for departure time . In FIFO networks,
one can take advantage of the results obtained for departure time

to reduce the computational effort for time interval. This
observation forms the basis for the development of a dynamic
lower bound, and of a mixed lower bound. As it is shown in the
experimental section, these lower bounds impact positively the
computational efficiency.

1) Dynamic Lower Bounds:Assume that when we consider
a departure time at the origin node, the minimum travel times
before time have already been determined. The minimum ar-
rival time at a node is , for a departure time at
the origin node. During the course of the algorithm, the current
minimum arrival time at node is , which is greater
than or equal to . We are interested in deriving a lower
bound on , which we will derive from a concep-
tual lower bound and from the static lower bound
described in the previous subsection. Lemma 6 provides a con-
ceptual lower bound on for a node , which is on
a shortest path corresponding to departure time . We refer
to this lower dynamic lower bound as the dynamic lower bound.

Lemma 6: For every departure time nodeat the origin node
and for every node on a shortest path corresponding to a de-
parture time ,

is a lower bound on . Furthermore,
this lower bound denoted , satisfies the consis-
tency assumption.

Proof: We first prove that
is a lower bound on . From lemma 3,

we know that the FIFO property holds for minimum travel times
between any two nodes in a FIFO network. For minimum travel
times between the origin node and node, we have

. Since the arrival time at nodewhen departing
node at time is not earlier than the arrival time at node

when departing nodeat time , we have:

. This leads to
. We have then a lower

bound on denoted :
.

We now proceed to prove that lower bound
satisfies the consistency assumption. We want to show that the
following inequality is valid:

Since is the minimum travel time to
destination node departing node at time ,
we have:

Adding to both sides of this inequality
leads to:

The left-hand side of the inequality is equal to: .
The right-hand side of the inequality is equal to:

. The latter term
is equal to . Thus,
we have proved that the inequality

is valid. Therefore,

satisfies the consistency assumption.
Lemma 6 can be generalized to derive a lower bound on

for nodes on a shortest path corresponding to a
departure time , where is a positive integer. We do not
dwell on these lower bounds as numerical results have shown
that the most effective practical lower bounds were obtained for
a value of . These lower bounds can be used for nodes that
are not on a shortest path corresponding to departure time,
but that appear on a shortest path corresponding to a departure
time . This could be useful if it is not possible to use the
static lower bound in conjunction with the dynamic lower bound
as described next.

2) Mixed Lower Bounds:The dynamic lower bounds are
valid only for nodes on the generated shortest path departing
the origin node at time . For nodes that are not on the pre-
vious shortest path, we use as a lower bound. This means
that two types of lower bounds will be used, as not all nodes are
guaranteed to be on a previous shortest path. This may cause the
consistency assumption to be violated.

The dynamic lower bound is a conceptual result only, as one
may not know when one is doing the calculations at node
. In fact, one only knows which is an upper bound on

. We now describe how the practical lower bound is derived
from the dynamic lower bound. We know that . It
results that

. Therefore, we
can use the following practical lower bound for the nodes on the
generated shortest path corresponding to departure time:

.
The latter practical dynamic lower bounds may have a value

smaller than . Hence, for every node on the generated
shortest path for a departure of the origin at time , it is
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Fig. 2. A small network.

desirable to take the maximum of and the practical dy-
namic lower bound. Although the resulting lower bound does
not verify the consistency assumption, as we will show later, it
will eventually reduce the number of nodes selected.

The lower bounds that we adopt are given by

if is not on the previous shortest path

otherwise.

These lower bounds are called mixed lower bounds, and are
denoted .

Lemma 7: The mixed lower bounds do not necessarily sat-
isfy the consistency assumption.

Proof: We provide a counter example that shows that
the consistency assumption is not satisfied by the mixed lower
bound for the small network depicted in Fig. 2. This network
consists of three nodes, three links and three time intervals. The
numbers next to a link denote the travel times of that link for all
departure times 0, 1, and 2. For instance, [8, 7, 6] on link (1, 3)
means that the travel times on link (1, 3) are: 8 at time interval
0, 7 at time interval 1, and 6 at time interval 2. The travel times
are assumed to be constant after time interval 2. Note that every
link travel time satisfies the FIFO property.

Consider the problem of finding fastest paths from origin
node 1 to destination node 3 for all departure times. If we depart
node 1 at time interval 0, the minimum travel time to arrive node
3 is 8, and an optimal path is 1–3 (the travel time for path 1–2–3
is ). Now, let us consider time interval 1 at node 1.
Node 1 was on the previous shortest path. Thus, the mixed lower
bound for node 1 is

Since , and , we
have

. Since node 2 was not on the previous
shortest path, we use as a lower bound:

. For this small network, if the consistency assumption
were valid we would have: .
However, this does not hold, since

. Thus, in this network, the mixed
lower bounds do not satisfy the consistency assumption. There-
fore, the mixed lower bounds do not in general satisfy the con-
sistency assumption.

For the one-to-one shortest path problem for all departure
times, we need to determine a shortest path from an origin node
to a destination node for every departure time. One may use

static lower bounds or mixed lower bounds. If one uses static
lower bounds, one does not need to reconsider those nodes on
the selected node set, since these lower bounds satisfy the con-
sistency assumption. Mixed lower bounds, on the other hand, do
not satisfy the consistency assumption.

VII. COMPUTER IMPLEMENTATIONS AND

EXPERIMENTAL EVALUATION

The dynamic adaptations of the A* algorithm discussed in
the previous section have been implemented for the purpose of
computational testing. In the dynamic adaptation of the A* algo-
rithm for the one-to-one shortest path problem for one departure
time, only the static lower bounds are applicable. We refer to this
implementation by DAA*_S. For the one-to-one shortest path
problem for all departure times, two dynamic adaptations of the
A* algorithm are possible, using the static lower bounds or the
mixed lower bounds. We refer to the implementation based on
mixed lower bounds as DAA*_M. Dijkstra’s algorithm was also
implemented for comparison purposes. Note that all these algo-
rithms are stopped as soon as the destination node is selected, at
which time a shortest path from the origin node to the destina-
tion node has been determined. In each iteration of the dynamic
adaptations of the A* algorithm and Dijkstra’s algorithm, one
needs to select a node with the minimum label from the set of
candidate nodes. This operation is implemented by using a heap
data structure.

In the literature, the performance of the A* algorithm is usu-
ally characterized in terms of the number of nodes selected only.
The number of nodes selected, however, may, by itself, not re-
flect the overall efficiency of this algorithm. This is particularly
true in dynamic networks. The reason for this is that finding a
better lower bound usually requires extra computational time.
One then needs to balance the extra computational time spent to
obtain a better lower bound with the execution time saving that
this lower bound may lead to. Therefore, below we report not
only the number of nodes selected by the dynamic adaptations
of the A* algorithm, but also their computation times.

All algorithms were implemented using the C++ program-
ming language and tested on randomly generated networks. All
computational times were obtained by running the codes on a
Sun SPARC 5 Workstation.

The number of nodes selected by either the dynamic adapta-
tion of the A* algorithm or Dijkstra’s algorithm may vary with
different origin–destination (OD) pairs. The number of nodes
selected and the computational time of Dijkstra’s algorithm are
nondecreasing functions of the minimum travel time between
an OD pair. The validity of this observation can be intuitively
explained as follows. Since the minimum travel times vary for
different OD pairs, the search area for an OD pair with a longer
travel time is generally larger than the search area for an OD pair
with shorter minimum travel times. Thus, comparing two algo-
rithms by computing a shortest path using one OD pair only may
not lead to conclusive results. Therefore, when we analyze the
performance of the algorithms of this paper, we compare their
performance based on a number of randomly selected OD pairs,
and report not only the numerical results obtained for individual
OD pairs, but also the average of these numerical results.
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We will first compare DAA*_S and DAA*_M with Dijkstra’s
algorithm using a network containing 3000 nodes, 10 000 links,
and 100 time intervals to analyze the performance of these algo-
rithms as a function of OD pairs. Then we test the algorithms on
networks of different sizes to analyze the performance of each
algorithm as a function of the size of the test networks. If the
savings of the adaptations of the A* algorithm increase with the
size of the network, then this would mean that for larger net-
works one may benefit even more by using the adaptations of the
A* algorithm instead of using an algorithm such as Dijkstra’s
algorithm. We conduct the computational tests using networks
having nodes and * links (the typical average degree of a
road network is around 3). For all test networks, the number of
time intervals is 100. In order to assess and analyze the overall
performance of the dynamic adaptation of the A* algorithm
compared to Dijkstra’s algorithm, the effect of individual net-
work parameters on the performance of the algorithms will be
investigated by varying a given parameter, while keeping the
other parameters constant.

A. Random Network Generator

A network generator that generates random dynamic FIFO
networks was implemented using the C++ programming lan-
guage. The user of this network generator inputs the size of the
network (number of nodes, number of links and number of time
intervals) and the range of the link travel times. One can also
generate a non-FIFO network, but for the purpose of this paper,
only FIFO networks will be generated, since the dynamic adap-
tations of the A* algorithms are valid for this class of networks
only.

The topology of a random network is generated in two steps.
We first construct a subnetwork that ensures connectivity, and
then we add random links until a desired number of links is
achieved. Link travel times are selected randomly from a range
given by the user, using a uniform distribution. The link travel
times generated in this way may not satisfy FIFO property. In
order to obtain FIFO link travel times, the following transfor-
mation is applied to the generated link travel time functions:

, where is the arrival time and
is the departure time at node. Transformed link travel times

satisfy the FIFO property.

B. Computational Results for the Dynamic One-to-One
Shortest Path Problem for One Departure Time

As indicated earlier in this section, in order to analyze the
behavior of the algorithms with respect to different OD pairs,
we first compare DAA*_S and DAA*_M with Dijkstra’s algo-
rithm in a network with 3000 nodes, 10 000 links, and 100 time
intervals.

Below, we show the computational results obtained using the
dynamic adaptations of A* algorithm and Dijkstra’s algorithm.
Since we consider the computation of a one-to-one shortest path
problem for one departure time, only the static lower bounds are
applicable.

We compare the number of nodes selected by the dynamic
adaptation of the A* algorithm with static lower bounds
(DAA*_S) and Dijkstra’s algorithm in the randomly generated
dynamic network. As indicated above, Dijkstra’s algorithm is

Fig. 3. Comparison of number of nodes selected by Dijkstra’s algorithm and
DAA*_S for a network with 3000 nodes, 10 000 links, 100 time intervals. On
average, the number of nodes selected by Dijkstra’s algorithm is 5.4 times the
number of nodes selected by DAA*_S.

implemented such that it stops whenever the destination node
is selected (which means a shortest path from the origin node
to the destination node has been determined). Fig. 3 depicts the
number of nodes selected by the heap-based implementations of
Dijkstra’s algorithm and of DAA*_S as a function of randomly
selected OD pairs sorted in increasing order of their minimum
travel times. The figure shows that, for every OD pair, the
number of nodes selected by DAA*_S is always less than the
number of nodes selected by Dijkstra’s algorithm. For the
random network with 3000 nodes, 10 000 links, and 100 time
intervals, the average number of nodes selected by Dijkstra’s
algorithm is 5.4 times as much as the average number of nodes
selected by DAA*_S. The figure also shows that the number of
nodes selected by Dijkstra’s algorithm, as explained earlier in
this section, is a nondecreasing function of the minimum travel
time between an OD pair.

We now compare the computation times of DAA*_S and
Dijkstra’s algorithm. As Fig. 4 indicates, for every OD pair, the
computation time of DAA*_S is less than the computation time
of Dijkstra’s algorithm. For this test network of 3000 nodes,
10 000 links, and 100 time intervals, the average computation
time of Dijkstra’s algorithm is 3.2 times the average computa-
tion time of DAA*_S.

C. Computational Results for the Dynamic One-to-One
Shortest Path Problem for All Departure Times

Below, we show the computational results obtained using the
dynamic adaptations of A* algorithm and Dijkstra’s algorithm.
Since we consider the computation of a one-to-one shortest path
problem for all departure times, both static lower bounds and
mixed lower bounds are applicable. We use the same network
as in Section VII-B, that is a dynamic FIFO network with 3000
nodes 10 000 links, and 100 time intervals. The computation
times reported in this subsection are the averages for one-to-one
shortest path problem for all departure times. First, we compare
the number of nodes selected by the dynamic adaptation of the
A* algorithm based on mixed lower bounds (DAA*_M) to the
number of nodes selected by the adaptation based on the static
lower bounds (DAA*_S) for the randomly generated dynamic
network. Fig. 5 shows that, for every OD pair, the number of
nodes selected by DAA*_M is less than the number of nodes
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Fig. 4. Comparison of computation time of Dijkstra’s algorithm and DAA*_S
for a network with 3000 nodes, 10 000 links, 100 time intervals. On average, the
computation time of Dijkstra’s algorithm is 3.2 times the computation time of
DAA*_S.

Fig. 5. Comparison of number of nodes selected by DAA*_S and DAA*_M
for a network with 3000 nodes, 10 000 links, 100 time intervals. On average, the
number of nodes selected by DAA*_S is 2.1 times the number of nodes selected
by DAA*_M.

selected by DAA*_S. For this network, the average number of
nodes selected by DAA*_S is 2.1 times the average number of
nodes selected by DAA*_M. This shows that the dynamic lower
bounds are more effective than the static lower bounds.

We now compare the computation times of DAA*_M and
DAA*_S in the randomly generated network. Fig. 6 shows that,
for most of OD pairs, the computation time of DAA*_M is
less than the computation time of DAA*_S. For some nodes,
the computation time of DAA*_M is greater than the compu-
tation time of DAA*_S. This is because the extra time spent
to compute the lower bounds is more than the time saved by
using these lower bounds. For this test network with 3000 nodes
10 000 links, and 100 time intervals, the average computation
time of DAA*_S is 1.5 times the average computation time of
DAA*_M.

From the computational results summarized above, we can
also compare the performance of the A* algorithm with mixed
lower bounds (DAA*_M) and the performance of Dijkstra’s
algorithm. We first compare the number of nodes selected by
DAA*_M and Dijkstra’s algorithm in the randomly generated
dynamic network of 3000 nodes, 10 000 links and 100 time in-
tervals. Fig. 7 shows that, for every OD pair, the number of nodes
selected by DAA*_M is less than the number of nodes selected
by Dijkstra’s algorithm. For this network, the average number

Fig. 6. Comparison of computation time of DDA*_S and DAA*_M for
a network of 3000 nodes, 10 000 links, 100 time intervals. On average, the
computation time of DDA*_S is 1.5 times the computation time of DAA*_M.

Fig. 7. Comparison of computation time of Dijkstra’s algorithm and DAA*_M
for a network of 3000 nodes, 10 000 links, 100 time intervals. On average, the
computation time of Dijkstra’s algorithm is 4.8 times the computation time of
DAA*_M.

Fig. 8. Comparison of number of nodes selected by Dijkstra’s algorithm and
DAA*_M for a network of 3000 nodes, 10 000 links, 100 time intervals. On
average, the number of nodes selected by Dijkstra’s algorithm is 11.3 times the
number of nodes selected by DAA*_M.

of nodes selected by Dijkstra’s algorithm is about 11 times the
average number of nodes selected by DAA*_M.

Fig. 8 shows that, for every OD pair, the computation time of
DAA*_M is less than the computation time of Dijkstra’s algo-
rithm. For the test network used, the average computation time
of Dijkstra’s algorithm is 4.7 times the average computation
time of DAA*_M.

Note that, similar to Figs. 3 and 4, both Figs. 7 and 8 show
that the number of nodes selected by, and the computation times
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Fig. 9. Comparison of average number of nodes selected for networks with
different sizes. NxxMyy means that the network has xx00 nodes and yy00 links.
For instance, N50M150 represents the size of a network with 5000 nodes and
15 000 links.

Fig. 10. Comparison of computation times for networks with different sizes.
NxxMyy means that the network has xx00 nodes and yy00 links. For instance,
N50M150 represents the size of a network with 5000 nodes and 15 000 links.

of, Dijkstra’s algorithm are nondecreasing functions of the min-
imum travel time between the OD pair.

D. Performance Study as a Function of Network Size and
Network Parameters

We first show the performance of the implementations of
DAA*_S, DAA*_M and Dijkstra’s algorithms for different net-
work sizes while keeping the number of links in the test net-
works equal to three times the number of nodes. The reason for
adopting test networks in which the number of arcs is three times
the number of nodes, is to emulate traffic networks where the
ratio between the number of links and the number of nodes is
typically around 3.

Fig. 9 shows that the numbers of nodes selected by Dijkstra’s,
DAA*_S and DAA*_M algorithms increase with the size of the
network, but at different rates. Note that the-axis does not
follow a linear scale in Figs. 9 and 10. The rate of increase of the
number of nodes selected by Dijkstra’s algorithm is higher than
the rate of increase of the number of nodes selected by DAA*_S.
This latter rate is higher than the rate of increase of the number
of nodes selected by DAA*_M. Fig. 10 shows that the com-
putation time savings for the different implementations behave
similarly to the number of nodes selected by the algorithms.

Fig. 11. Comparison of average number of nodes selected for networks
composed of 1000 nodes, 100 time intervals, and a varying number of links.

Fig. 12. Comparison of computation times for networks composed of 1000
nodes, 100 time intervals, and a varying number of links.

The results exhibited in Figs. 9 and 10 suggest that, for net-
works with larger sizes, the dynamic adaptations of A* algo-
rithm lead to larger savings in terms of number of nodes selected
as well as in terms of computation times.

In the rest of this subsection, we analyze the efficiency
of the computer implementations of DAA*_S, DAA*_M
and Dijkstra’s algorithm, as a function of different network
parameters while keeping the other parameters constant.

First, we consider the effect of the number of links while
keeping the number of nodes and the number of time intervals
constant. Fig. 11 shows that, for networks with 1000 nodes and
100 time intervals, the number of nodes selected by DAA*_S,
DAA*_M or Dijkstra’s algorithm are almost constant functions
of the number of links. This can be explained as follows. If
the number of nodes in the network is constant, the average
number of nodes that fall in the search areas corresponding to
the algorithms for a given destination would not change even
if the number of links change. However, as one may expect, the
number of nodes selected by Dijkstra’s algorithm is greater than
the number of nodes selected by either DAA*_S or DAA*_M
algorithms.

Fig. 12 shows that, for networks with 1000 nodes, the com-
putation time of Dijkstra’s, DAA*_S and DAA*_M algorithms
increase with the number of links, but at different rates. The rate
of increase of the computation time of Dijkstra’s algorithm is
higher than the rate of increase corresponding to DAA*_S and
DAA*_M algorithms. Although the numbers of nodes selected
by different algorithms are almost constant, more links will be
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Fig. 13. Comparison of average number of nodes selected for networks
composed of 9000 links, 100 time intervals, and a varying number of nodes.

Fig. 14. Comparison of computation times for networks composed of 9000
links, 100 time intervals, and a varying number of nodes.

scanned whenever a node is selected if the number of links in-
creases. Thus, the computation time increases with the number
of links.

Now, we examine the effect of the number of nodes on com-
putational performance while keeping the number of links and
the number of time intervals constant. Fig. 13 shows that, for
networks with 9000 links and 100 time intervals, the number of
nodes selected by DAA*_S, DAA*_M or Dijkstra’s algorithm
increase with the number of nodes, but at different rates. The
rate of increase of the number of nodes selected by Dijkstra’s
algorithm is higher than the rate of increase corresponding to
DAA*_S and DAA*_M algorithms.

Fig. 14 shows that, for test networks with 9000 links and 100
time intervals, the computation times of the different algorithms
behave similarly to the number of nodes selected, as a function
of the number of nodes in the network, as was shown in Fig. 9.

Numerical results have shown that the computational saving
ratios do not vary as a function of the number of time intervals.
Numerical results supporting this conclusion are not included in
this paper, but the conclusion is intuitively valid.

VIII. C ONCLUSIONS

In this paper, we presented efficient adaptations of the A*
algorithm for computing fastest paths between one origin
node and one destination node in dynamic networks, for one
or for multiple departure times at the origin node. These

dynamic adaptations of the A* algorithm are based on ef-
fective lower bounds on minimum travel times, that exploit
the FIFO properties of dynamic data and the special structure
of the time-expanded implicit representation of a dynamic
network. The adapted algorithms were implemented and their
computational performance was experimentally evaluated and
tested. The performance of the computer implementations of
the dynamic adaptations of the A* algorithm are compared to
a dynamic adaptation of Dijkstra’s algorithm that is stopped
as soon as the destination node is reached. Results using a
network containing 3000 nodes, 10 000 links, and 100 time
intervals showed a saving ratio of 11, in terms of number of
nodes selected, and a saving ratio of 5 in terms of computation
times. The effect of the network size on the performance of
these adaptations was also computationally studied. It was
shown that the computational savings, in terms of both the
number of nodes selected and the computation time, increase
with the network size. These encouraging results demonstrate
the efficiency of the algorithms developed in this paper.

We now present some logical extensions to the research work
presented in this paper. First, it would be interesting to extend
the results of this paper to continuous-time dynamic networks.
The static lower bound remains valid in this context, while the
dynamic lower bound may need to be adapted for cases where
one knows only the results of fastest path computations at some
earlier finite number of time instants. The discussion at the end
of Section VI-B-2 summarizes one such dynamic lower bound.
Second, one may also consider investigating the extension of
the A* algorithm to non-FIFO networks. Note that the static
lower bound is valid in this context as well. Third, the algo-
rithms of this paper offer possibilities for designing and devel-
oping efficient parallel implementations for the computation of
dynamic shortest paths. Decomposition strategies can be devel-
oped in the domains of pairs of origin–destination nodes and
the network topology. An efficient strategy should balance the
communication time, the computation time and the idle time.
Finally, the ideas presented in this paper can be extended to de-
velop time-based algorithms, for discrete-time as well as contin-
uous-time dynamic networks, to compute shortest path from one
origin node to all other nodes if one changes the departure time
at the origin. In [22], an example of such extensions is developed
to compute single-origin minimum travel-time path trees for all
possible departure times in continuous-time FIFO dynamic net-
works. The design of other time-based algorithms for other dy-
namic shortest path problems, is the subject of ongoing research.
The first author and other collaborators have developed algo-
rithms based on the concept of re-optimization, which can be
viewed to share, to a certain degree, some fundamental simi-
larities with the derivations in this paper. The algorithms led to
encouraging computational results [23]. We will report on these
algorithms in forthcoming papers.
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