
1

Evalvid-RA: Trace Driven Simulation of
Rate Adaptive MPEG-4 VBR Video

Arne Lie†and Jirka Klaue‡
†SINTEF ICT, Dept. of Communication Systems, Trondheim, NORWAY,

arne.lie@sintef.no.
‡Technical University of Berlin, Telecommunication Networks Group, Berlin, GERMANY,

jklaue@tkn.tu-berlin.de
The original publication is available at www.springerlink.com.

Direct link: http://dx.doi.org/10.1007/s00530-007-0110-0

Abstract— Due to the increasing deployment of conversational
real-time applications like VoIP and videoconferencing, the In-
ternet is today facing new challenges. Low end-to-end delay is
a vital QoS requirement for these applications, and the best
effort Internet architecture does not support this natively. The
delay and packet loss statistics are directly coupled to the
aggregated traffic characteristics when link utilization is close
to saturation. In order to investigate the behavior and quality
of such applications under heavy network load, it is therefore
necessary to create genuine traffic patterns. Trace files of real
compressed video and audio are text files containing the number
of bytes per video and audio frame. These can serve as material
to construct mathematical traffic models. They can also serve
as traffic generators in network simulators since they determine
the packet sizes and their time schedule. However, to inspect
perceived quality, the compressed binary content is needed to
ensure decoding of received media. The EvalVid streaming video
tool-set enables this using a sophisticated reassembly engine.

Nevertheless, there has been a lack of research solutions for
rate adaptive media content. The Internet community fears a
congestion collapse if the usage of non-adaptive media content
continues to grow. This paper presents a solution named Evalvid-
RA for the simulation of true rate adaptive video. The solution
generates real rate adaptive MPEG-4 streaming traffic, using the
quantizer scale for adjusting the sending rate. A feedback based
VBR rate controller is used at simulation time, supporting TFRC
and a proprietary congestion control system named P-AQM.
Example ns-2 simulations of TFRC and P-AQM demonstrate
Evalvid-RA’s capabilities in performing close-to-true rate adap-
tive codec operation with low complexity to enable the simulation
of large networks with many adaptive media sources on a single
computer.

Index Terms— Congestion control, rate control, streaming
media, VBR video, network simulation.

I. INTRODUCTION

THE Internet is today facing a change of the traffic type
dominating the aggregates at network core and edges.

Interactive VoIP and videoconferencing are currently having
an exponential growth of usage, but also one-way streaming
media (e.g. VoD and WebTV) is experiencing large growth
rates [1], [2]. Since the majority of this media content is
controlled by technology that does not monitor traffic load
nor scale the bit rate during the ongoing sessions, serious
quality degradation due to traffic overload (i.e. packet drops
and excessive delays) and throughput unfairness might result.
Typically, such services probe the network throughput only

during session startup, if at all, and initiates one of a few
possible quality versions based on current network state and
end user terminal characteristics. The MPEG and commercial
video communities have developed several advanced solutions
to answer the media scalability challenge: (i) scalable video
with base layer and enhancement layers [3], (ii) FGS (Fine
Granular Scalability) [4], and (iii) several multi-rate coding
schemes (e.g. Envivio, Microsoft Intelligent Streaming, Real
SureStream). (i) has the benefit of efficient file storage, but
the total flow sent has lower compression efficiency than
flows from codecs with only a single layer. FGS can be
adjusted to finer bandwidth granularity than ordinary scalable
coding, at the cost of higher complexity and still lower coding
efficiency [5]. While MPEG-4 FGS has failed in the market,
the new H.264 SVC might give FGS related technologies
a new chance [6].1 Multi-rate coding stores typically three
tracks with different optimized bit rates in a single file, and
the selected track can be switched on-the-fly during streaming
time. While suffering from the highest storage capacity needs,
this solution is still receiving most commercial interest, due
to its simplicity and good transmission bandwidth utilization.

In contrast to offline coding approaches, which actually
build their scalability capabilities on coarse network state
assumptions, online real-time codecs for e.g. videoconferenc-
ing can adjust codec parameters on the fly to adapt to the
current network state on much finer time granularity. This
paper presents analysis and tools supporting research within
real-time encoding, but as our conclusions will argue, its
architecture is applicable also within offline encoding.

If popular media continues to be non-adaptive, video ser-
vices may consume much more than their fair share of
capacity such as when competing with TCP flows at net-
work bottlenecks, and this breaks the best effort Internet 2

principles [7]. This unfairness adds to the already mentioned
problems with queuing delay and packet loss. As an answer
to these network challenges, the IETF has during the last
years worked on a new real-time media transport protocol
named Datagram Congestion Control Protocol (DCCP) [8],
to support the deployment of rate adaptive codecs. UDP has

1Still, FGS is very complex and cannot be part of real-time encoding.
2Even this paper focus on best effort class of traffic, rate adaptation can

also be used within DiffServ classes. Note that also expedited forwarding
DiffServ QoS breaks if too many non-adaptive applications are requesting it.

2

no congestion control mechanism like TCP. The main idea
of DCCP is to continue to use UDPs non-reliable packet
flow (no retransmissions in case of packet drops), but make
it connection-oriented like TCP. The latter will enable better
firewall penetration capabilities and the possibility to exchange
different parameter values at session initiation, such as the
choice of congestion control algorithm. TFRC (TCP Friendly
Rate Control) is the most fitted DCCP congestion control
profile for video traffic [9], using equation based control in
order to obtain smooth rate at an average similar to that of
TCP.

Many other solutions have also been proposed over the
last decade to solve these problems, among them VBR over
ATM ABR services [10], RAP [11], MPEG-TFRCP [12],
LDA+ [13], and P-AQM+ECF [14]. All of these have slightly
different objectives, but agree on the target goal of assisting the
network to provide fair and stable services. The proposals can
be divided into two main groups: (i) those who are pure end-
to-end oriented and only monitor the network state by packet
loss statistics feedback, and (ii) those who in addition also take
advantage of more advanced network state information, such
as the binary ECN marks [15], or explicit information on traffic
load from each node on the path from sender to receiver. Since
the Internet community puts a strong focus on scalability, pure
end-to-end oriented systems are preferred. However, there are
concerns whether this is sufficient to ensure low delay and
packet loss in traffic overload situations. Vital parameters are
rate adjustment speed and accuracy. The interplay with the
other media delivery chain functionalities are also of major
importance, such as traffic shaping, jitter buffer dimensioning
and control, and decoder robustness to packet losses. The
proposed solutions should therefore be compared taking all
these parameters into account.

In order to perform research on vital streaming media
parameters, both at network/transport layer and application
layer, the setup of true multimedia test networks might seem
necessary. This can however be very expensive and of little
flexibility. Thus, network simulations, using tools like the ns-
2, might seem tempting. The problem with the latter is that
one is stuck with either using synthetic video/audio models
or static audiovisual trace files for source traffic generation.
Since our goal is to implement media rate control based on
traffic feedback, the source models need to be rate adaptive.
Such modification of synthetic models is straight forward, but
then the goal of investigating perceived quality is excluded.
For this reason real audiovisual trace files must be used in
order to inspect perceived quality. One possibility for support
of the latter is to use the EvalVid tools-set [16] invented by J.
Klaue. EvalVid is an open-source project, and supports trace
file generation of MPEG-4 as well as H.263 and H.264 video.
Using it together with the ns-2 interfacing code suggested by
C.-H. Ke [17], perceived quality and objective measure like
PSNR calculation can be obtained after network simulation.
But still, this does not provide a solution for rate adaptive
video investigation.

All this has motivated the design and implementation of
Evalvid-RA, a tool-set for rate adaptive VBR video investiga-
tion in ns-2, based on modifications to the EvalVid version 1.2

tool-set and the ns-2 interfacing code. The solution framework
is generic so that it can be implemented within any network
simulator, and on any codec, provided that a set of guide-
lines is followed. The paper is organized as follows: Section III
gives first an overview over the standardized methods for video
evaluation. In Section IV the necessary framework building
blocks are introduced and explained. The performance of this
framework is investigated in this paper using a video rate
controller presented in Section V. By running ns-2 simulation
example scenarios presented in Section VI, the Evalvid-RA
capabilities are demonstrated, focusing on traffic character-
istics and rate controller performance in various protocol
and network environments. The contributions of this paper
compared to referenced work are

• The EvalVid v1.2 tool-set is enhanced to support rate
adaptive video (Evalvid-RA).

• The SVBR [18] rate controller is modified to become an
adaptive rate controller (RA-SVBR).

• The absence of Long Range Dependency (LRD) in ag-
gregate VBR rate adaptive video traffic without the use of
traffic shaping buffer is demonstrated using Evalvid-RA’s
realistic video traffic generators.

• The quality of rate adaptive MPEG-4 streaming with
conversational delay constraints is calculated using the
Evalvid-RA tool-set (e.g. PSNR). Different protocols
(UDP and TFRC) and network types (FIFO, RED, P-
AQM) are used and compared in mixed TCP traffic
scenarios.

The goal of this paper is to present the Evalvid-RA archi-
tecture, to validate its performance, and lastly to exemplify
utilization in adaptive streaming media research, showing
how increased network intelligence can improve streaming
performance.

II. RELATED WORK

Evalvid-RA connects multiple independent research areas:
(i) media rate control, (ii) media traffic characteristics, (iii)
network congestion control, and (iv) efficient and error re-
silient coding. Rate control includes sender and receiver buffer
dimensioning, to avoid both overflow and underflow, as thor-
oughly analyzed in [19]. VBR video traffic characteristics
have been reported e.g. by [20], [21] with following Markov
and ARIMA modeling by e.g. [22]–[24]. The latter modeling
however does not take adaptive rate control into account.
Network congestion control schemes for media content were
listed in the Introduction. Since Evalvid-RA includes real
media decoding, coding efficiency and packet loss resiliency
will also be taken into account, as PSNR and possibly other
QoS measures are calculated, or decoded video is actually
consumed by human observers.

In recent years, papers have been published on the topic
of the simulation of rate adaptive media, and also real ex-
perimental studies have been set-up to test e.g. early DCCP
prototypes efficiency. In [25] MPEG-4 trace files are used
to calibrate a TES (Transform Expand Sample) mathematical
model, and rate adaptation is incorporated by adjusting the
frame size output by a scalar (from rate-distortion curve).

3

The simulation model however has no on-line rate controller,
and since the traffic is synthetic, perceived quality cannot be
investigated. In [26] the authors set up a simulation scenario
where both temporal and quantizer scale adaption is possible.
But again the traffic is synthetic. H.263 video trace files are
used in [27], and the sending rate is controlled by DCCP TCP-
like. However, the video is not rate adaptive, so the video
submission is controlled by overruling the real-time constraint.
In [28] models are derived for pre-recorded media streaming
over TFRC and compared to simulations. The models focus
on the impact of the TFRC rate changes to the probability
of rebuffering events, i.e. events where the receive buffer is
emptied. Recently, more realistic simulation implementations
have been published, such as [29] where rate adaptation using
frame discard and FGS has been studied and implemented
in ns-2 by also inserting the binary content directly into the
simulator packets, thus supporting media decoding and PSNR
calculation. The benefit of inserting the binary data into the ns-
2 packets is that there is no need of keeping track of additional
simulation time trace files. However, the penalty is higher
computational load at simulation time, limiting the practical
size of the network and number of simultaneous video sources.
[30] is an example of a recent experimental study of real VoIP
traffic using DCCP, using real applications and networks.

To the best of our knowledge, Evalvid-RA is the first tool to
create realistic “online” rate adaptive streaming media traffic.
It includes

• a simulation time rate controller to modulate the quantizer
scale used by a real codec

• realistic frame packetizing
• the ability (through ns-2) to choose network complexity,

protocol and queue management support
• a framework that is scalable to a large number of simul-

taneous video sources
• and finally at the receiver side being able to restore

the media files supporting PSNR and other QoS metrics
calculation.

Due to the trace file approach of Evalvid-RA, absolute delay
and delay jitter impairments to the media decoding process
can be investigated in a post-process, thus decoupling network
and receiver media player constraints. Although we recognize
the importance of mathematical models for traffic and queue
statistics analysis, we believe that the complexity of the
heterogeneous networks makes realistic simulation a better
tool, especially when being able to compute end-user QoS
metrics such as PSNR, or even perform human subjective tests.

III. VIDEO QUALITY EVALUATION

The quality of a video transmission depends on the im-
pression a human observer receives of the delivered video.
Though traditional network metrics such as bandwidth, packet
loss, jitter and delay, certainly influence the video quality, the
perceived subjective quality impression of a human observer
is nevertheless the most important factor. The subjective video
quality test results are expressed by means of e.g. the mean
opinion score (MOS) as defined by the ITU. The MOS is
a scale from 5 (excellent) to 1 (bad). In contrast, objective

video quality metrics are calculated by computers. Basically,
these can be divided into pixel-based metrics, like SNR or
PSNR, and psycho-visual metrics. The latter approach, which
is based on models of the human visual system (HVS), has
been shown to outperform standard quality metrics like PSNR
in most cases [31], [32]3. However, sometimes the absolute
value of the video quality and its correlation to subjective
tests is not the most important factor but rather the relative
quality regarding a certain optimum. An example would be the
comparison of different transport protocols with an assumed
error-free transmission. In these cases simple metrics like
PSNR are still adequate. Another downside of psycho-visual
metrics is their complexity and, thus, huge computational
overhead compared with PSNR.

If the influence of network characteristics and parameter
optimization is to be assessed in terms of real subjective
video quality, a dedicated metric should at least be included
in the target function of the optimization. We recommend
the application of the video performance estimation method
standardized by ANSI [33], since it outperforms PSNR and
similar methods as shown in e.g. [31]. Though a lot of research
about video quality assessment has been done – and is still in
progress – the field is by no means finished. Nevertheless a
variety of reasons has been identified why objective metrics
like PSNR are not adequate for performance evaluation. In
[34] the influence of the frequency and amplitude of quality
fluctuations in layered video transmission has been investi-
gated. It has been shown (amongst others) that it is better
to minimize the frequency of fluctuations even if the average
PSNR decreases.

Another problem which must be faced is the quality as-
sessment of long video sequences. Usually one quality in-
dicator per video sequence is calculated, which describes
the impression of an average (non-expert) human observer.
This is well fitted for the relatively short video sequences
for which these metrics are verified. However, one quality
indicator is not enough for longer video sequences since short
but sharp disturbances could be masked by the averaging over
longer time spans. Since periodically occurring disturbances
could influence the overall impression of a video transmission,
a quality assessment method should also reflect this. One
possible solution is the calculation of the video quality – with
any method – in a sliding window of, e.g., 10 seconds. The
quality indicator of each window is compared to the quality
indicator of the corresponding video part before transmission.
The frequency of degradations could be used as overall quality
measure for the transmission instead of the averaged quality
indicator. Another possibility is the specification of a threshold
for a tolerated number of quality indicator deviations. The
Evalvid-RA tool-set provides a method which can calculate
these figures for long videos. For this purpose the miv.exe
tool from EvalVid v1.2 is used. This quality indicator is
introduced and explained in detail in [35].

There is no generally accepted method to access the quality
of a video transmission system. Though some aspects of the
problem have been discussed in this section, an in-depth study

3I.e. their results come closer to subjective tests.

4

would be beyond the scope of this paper. The citations in this
section provide a good start for further reading.

The Evalvid-RA framework supports the use of any metric
since the calculation of actual quality values is separated from
the simulation process. Only PSNR-calculation is included
directly in the tool-set, but the use of subjective metrics has
successfully been tested in [36], [37] and [38]. The included
MOS calculation tool uses a simple mapping of PSNR values
to MOS (defined in [39]) which nevertheless achieves quite
good correlation with [33] in most cases.

IV. THE EVALVID-RA ARCHITECTURE GUIDELINES

An efficient tool-set for network simulation must be scalable
so that even large networks with many sources and many
network nodes can be simulated on a single computer. Two
major challenges result from this ambition: (i) perceptual qual-
ity inspection at receiving nodes, and (ii) the implementation
of an adaptive rate controller having access to both media
content and network state feedback. The first challenge could
easily be solved by using real binary packet data as packet
payload in the network simulator. However, such an attempt
will degrade the simulator performance significantly. A more
efficient approach is to use unique packet identifiers to support
video frame assembly as a post-process. The existing EvalVid
tools [16], [17] uses this approach, by introducing a trace file
generation process, a network simulator process, and a post-
process. The second challenge is however in conflict with the
division between pre-process and network simulation process,
because it is only the pre-process that has access to the media
and codec itself. Thus, one need to find a method supporting
the exchange of necessary information between those two
processes. Obviously, the solution is dependent of the kind
of rate controller in use.

A. The selection of a rate controller

Traditionally, video rate controllers are divided into three
categories: (i) constant bit rate (CBR), (ii) variable bit rate
(VBR), and (iii) quality based (open loop VBR). In CBR, the
rate controller constraint is to produce a constant number of
bits per time unit such as the Group of Pictures (GOP) (if it
has a constant number of frames per GOP). To achieve this
goal for a hybrid codec using DCT transform (e.g. MPEG),
the quantizer scale (which holds the quantization value matrix
for the DCT transformed 8x8 pixel blocks) is considered
changed for each macro-block (16x16 pixel block) [40]. 4 The
bit rate budget is optimized looking at several sequential video
frames, causing an algorithmic delay in the rate controller.
Due to this delay, interactive applications are better off with
a VBR rate controller, which trades lower delay for higher
bandwidth variability. Other benefits with VBR are more
constant quality and higher multiplexing gain potential. VBR
typically considers quantizer scale changes at each new video
frame, or even only at each GOP. The third option, open
loop VBR, is actually coding without any rate controller, i.e.

4Wavelet coding as in MJPEG2000 should also be possible within Evalvid-
RA framework.

the quantizer scale is fixed during the whole sequence5, thus
producing the highest bit rate variability. The bit rate produced
is highest in high motion scenes, and when there are many
details and hard contrasts.

To limit the size of the trace files needed as input to the
network simulation, they are captured at frame granularity,
i.e. the size of each frame in bytes is stored in a log file.
This rules out CBR, since in that case we would have needed
access to sizes on macro block granularity6. The rate controller
choice will therefore be based on VBR. Before deciding on
the granularity of the rate controller, the interplay between the
pre-process and network simulator must first be considered.

B. The pre-process

The goal is to have an online rate controller in the network
simulator, but without having to do the media encoding itself,
since that will demand too much CPU resources during simu-
lation time. The media encoding must be performed in a pre-
process. In MPEG-4 [4], the valid quantizer scale values are
in the range 1 to 31, with 1 producing the highest quality and
bit rate. The key idea is then to encode the media with open
loop VBR for all possible quantizer scales7, store the frame
sizes per quantizer scale in separate files, so that the online
rate controller in the network simulator can select a new
quantizer scale value and get the correct frame sizes from the
corresponding trace file. The simplest and most correct option
is to allow the rate controller to consider a new quantizer scale
only at the start of a new GOP. By keeping the GOP size
fixed, the rate controller will always find an I-frame as the
first frame after trace file switching. The concept is depicted
in Fig. 1 for GOP size of two frames, and only three different
quantizer scale values 2–4. The synchronized GOP boundaries
will ensures a refresh of the motion prediction algorithm, and
all succeeding P- and B-frames in that GOP will be based on
that I-frame.

Changing to another quantizer scale during a GOP is
however also possible without causing too noticeable artifacts,
but a real encoder with rate controller would then produce the
next P- or B-frame based on a slightly different compressed
I-frame (i.e. the same frame but not the same quantizer scale)
than the one used in the simulation. To explain this with an
example, let’s consider a codec that produces 12 frames per
GOP and only I- and P-frames (the I-frame is number 1, while
frames 2–12 are P-frames). The rate controller has chosen
quantizer scale 5 for an ongoing GOP. At frame number 7
in that GOP, the rate controller suggests changing to scale
10, since the bit rate budget is somewhat overrun. A real
live encoder would then produce frame 7 (P-frame) based
on frame 6 having a quantizer scale of 5. However, using

5Still, the different frame types may use different quantizer scales, e.g. I-
frames use scale 8 while P-frames use scale 12, and B-frames scale 16, but
fixed during the sequence.

6This is however not a big sacrifice, since the most challenging research
are within interactive media, where the algorithmic delay of CBR should be
avoided. However, it also rules out H.264 slice mode: a future Evalvid-RA
upgrade to H.264 should therefore include slice granularity trace files as an
option.

7Here we choose to use the same quantizer scale for all types of frames.

5

4034 (I)

2230 (I)

962 (P)

3021 (I)

762 (P)

1621 (I)

761 (P)

2014 (I)

532 (P)

1121 (I)

5623 (I)

1232 (P)

1345 (I)

960 (P)

4034 (I)

1012 (I)

667 (P)

2743 (I)

720 (P)

762 (I)

460 (P)

Q=2 Q=3 Q=4
time
(ms)

40

80

120

160

200

240

280

320

1043 (P)

1043 (P)

532 (P)

GOP

tracefile 1 tracefile 2 tracefile 3

. . .

. . .

. . .

Fig. 1. The Evalvid-RA main concept by letting the simulation time rate
controller choose correct frame sizes (emphasized boxes) from distinct trace
files valid for each quantizer scale. The figure shows a simplified example of
a 25fps video using three quantizer scale values and GOP size of two (one I-
and one P-frame).

a separated “offline” encoder and live rate controller (seen
from the network simulator), frame 7 is already produced in
the pre-process, based on frame 6 having a quantizer scale
of 10 also. Although the artifacts produced would not be too
much noticeable (verified by own experiments not documented
further in this paper), this observation concludes that the only
correct option is to have equally sized GOPs and a VBR rate
controller that works on GOP granularity.

To summarize this subsection, the pre-process must run an
encoder for each media file that shall be used in the network
simulation 31 times at open-loop VBR mode (quantizer scale
1–31), and with fixed GOP size (e.g. 12 frames) (see Fig. 2
upper left corner, where the pre-process tools are shown
schematically with input and output files). In addition, each of
these files must be traced to produce 31 frame size trace files.
This process is performed only once for each media file, and
the trace files can be used over and over again by new network
simulations. The required tools are one encoder and one trace
file generator. Since Evalvid-RA 1.0 builds on EvalVid v1.2,
the codec choice was limited to MPEG-4 encoders. (However,
the current EvalVid 2.0 supports also H.263 and H.264 bit
streams. In principle every codec which can be encapsulated
in an MP4-container as defined in ISO/IEC 14496-12 and -14
could be used.) In this paper we have used ffmpeg’s MPEG-4
encoder [41] configured to produce equally sized GOPs with
fixed quantizer scale. The EvalVid v1.2 mp4.exe program
has been used to produce the trace files.

C. The network simulation

The next step is the network simulation as shown in
Fig. 2 (upper right corner). In a real network, the flows in
progress will naturally consist of flows carrying independent
and different content. In trace file simulation though, it is
common to use the same trace files simultaneously as media
input for many or all sending nodes. If the starting position
inside the trace files is decided randomly and independent for

each source, and if the trace files are big enough, this will
approximate independent and different sources. In addition, the
flows starting time in the simulation can also be randomized.
This solution will also be used here, but in addition, each
source is running independent rate controllers, and these can
be pre-set to different target bit rate averages. As they in
addition will react on independent network load feedback
while running independent rate controllers, it can be concluded
that the approximation of independent source modeling is even
more valid in our case. Also, in Section VI-D and VI-E we
will show that different VBR rate controlled media genres
give almost the same traffic characteristics. This is confirmed
in earlier work, e.g. [18].

To improve the simulator performance, the trace files are
read into memory only once to avoid frequent accesses to
external files. In our case we have 31 trace files, with equal
number of frame size traces. All files are read into memory
during simulation initialization, and organized like a matrix
(also stored in frame size.dat), similar to the simple
depiction in Fig. 1. Along one of the axis is the frame number
count (time), while on the other axis is the quantizer scale
1–31. Through simple indexing, the source nodes can start
at a randomized frame number count, while the independent
rate controllers (explained in Section V-B) calculate the GOPs
quantizer scale that is used as index along the other axis.

Typically, one of the sources is selected as the primary flow
(Fig. 2, S0–D0 path), i.e. the flow that will be included in
the post-process (see Fig. 2 lower part), where the received
media will be decoded and perceptual quality like PSNR and
MOS values are calculated. This flow must be started at frame
number 1, so that the decoded media can be directly compared
to the original media, frame by frame. The rest of the flows
are used as traffic generators of real rate adaptive media. If
desired, more than one flow can be selected as a primary flow,
and more than one original media file can be used as source
material. In the latter case, using N different original media
sources, N matrices of frame sizes must be read into memory
in the simulation initialization phase.

To assist the post-process, the quantizer scale used for the
primary flow must be logged during simulation time. This
information is stored in the senders trace file (st be 0 in
Fig. 2), together with packet sizes and sending times. Given
a simulation time MTU parameter, each frame is typically
fragmented into several packets. The packets belonging to the
same frame are either submitted back-to-back, or smoothed
over one frame interval, eventually smoothed by the TFRC
sending buffer (see Section V-C), decided by simulation time
parameters. Received packets are logged at receiving nodes
(e.g. rd be 0 in Fig. 2), storing packet number, time, size,
and if missing (detected by received packet numbering not
being sequential), tagged as lost. The frame size.dat will
together with the other simulation time output files support
the received media file binary reassembly and decoding to be
performed in the post-process.

D. The post-process

The main post-processing functionality is depicted in the
lower left corner of Fig. 2. Using the trace files generated

6

ffmpeg.exe

Pre-process (once)

mp4.exe

video_Q*.m4v

Q=[2..31]

2, 3, …
, 31

st_*.txt

2, 3, …
, 31

30 MPEG-4
compressed video

rate variants

30 frame size traces

ns-2 simulation (simple example)

*.yuv, *.mov,
*.mp4, ...

Original video source
e.g. video_orig.yuv

sd_be_0

rd_be_0

Post-process (of primary flows)

Frame size
memory (RAM)

RA-SVBR

S3

S2

S1

S0

RA-SVBR

TCP

TCP

D3

D2

D1

D0

R0 R1

frame_size.dat

• Reconstruct
received primary
flow *.m4v and
decode

• Visually compare
with original or
transmitted version

• Calculate PSNR
• Mean Opinion Score

(MOS)

packet ID & receive time

packet ID & transmit time,
and Q -value used

matrix of all possible frame
sizes and Q-values

Fig. 2. An overview of the Evalvid-RA framework: pre-process, network simulation, and post-process. The 30 trace files st*.txt serve as input to the
network simulator. This example shows two video sources competing for network capacity with two FTP over TCP applications. The source S0 to destination
D0 is selected as primary flow.

during network simulation (dashed lines from the right),
together with the media files produced during the pre-process
(dashed line from the top), several statistics and measures can
be calculated from the simulated traffic. As in the original
EvalVid [16] with the ns-2 interface [17] the following can
now be produced:

• loss rate statistics
• delay statistics
• assembly of received compressed media taking packet

loss and/or delay into account
• decoding of (possibly) erroneous compressed media
• playing decoded media
• calculate PSNR and/or MOS (decoded media compared

to original media)
The first two in the list can be calculated for all flows, while
the rest is only available for the primary flow(s). The added
functionality, and corresponding challenge, is the assembly of
received compressed media. Due to the rate controller, the
actual media transmitted is a mix between some or all of
the 31 quality variants. Thus, the logging of actual quantizer
scale used is a key component, functioning as a pointer to the
correct input file. Thus the Evaluate Trace program et.exe
of EvalVid v1.2 was modified to et ra.exe. It opens all
31 MPEG-4 compressed files for reading, then scans all of
them following the size of each compressed GOP and logged
quantizer scale, to find the correct start position inside the used
MPEG-4 file of every GOP. In this way the correct binary
information is copied into the resulting MPEG-4 file, which
is the rate adaptive primary media file submitted into the

network, given the network state feedback at simulation time.
Packet losses during simulation will result in corresponding
frame loss. The resulting MPEG-4 file will then typically have
a varying quantizer scale, but inside each GOP, the quantizer
scale is fixed.

A list of the complete Evalvid-RA tools package is given
in the Appendix.

V. ADAPTIVE RATE CONTROLLER

Having established the framework guidelines, the online rate
controller running at simulation time can now be selected.
This rate controller will have very limited input information
from the encoder. If assuming connection to a live (online)
encoder where low delay is of critical concern, there is no a
priori information of the visual complexity of the next frame
or GOP. The actual number of bytes spent per frame can
however easily be monitored, using the information from the
input trace files (depicted as st *.txt in Fig. 2). The rate
controller constraints are thus target average bit rate, the bit
rate variability allowed, plus a possible peak rate limit, all
which can be calculated by the rate controller itself.

A. Shaped VBR (SVBR) — A compelling candidate

The two first constraints can efficiently be controlled by
a leaky bucket. Leaky buckets in different variants are also
commonly used by most offline and online rate controllers.
When searching the literature, the Shaped VBR (SVBR) by M.
Hamdi et al. [18] is a compelling candidate, since it is of low

7

TABLE I

LIST OF TERMS USED IN THIS PAPER AND THEIR RESPECTIVE DEFINITIONS

Term Definition Units

r Leaky bucket rate, i.e. the average video rate bits/GOP

b Leaky bucket size bits

X(k) Leaky bucket fullness at time k bits

R(k) Leaky bucket input during GOP k bits

R̂(k) Estimate of Leaky bucket input during GOP
k

bits

Q(k) static quantizer scale used during GOP k 1–31

r′(k) adaptive Leaky bucket rate used during
GOP k

bits/GOP

b′(k) adaptive Leaky bucket size used during
GOP k

bits

G GOP size frames

rnew current network update of rate bits/GOP

rold previous network update of rate bits/GOP

r̄ averaged leaky rate used for TFRC bits/GOP

rt
i partial TFRC rate feedback (number i of N) bits/GOP

Bi TFRC sender buffer backlog at feedback i packets

df decay factor used for forcing sender buffer
to drain

b′′ adaptive Leaky bucket size used for TFRC bits

complexity, and also designed to work on GOP granularity.
Their paper stress however that the quantizer scale q producing
the average target bit rate r should optimally be known a
priori. We found that this requirement could be relaxed without
having significant impact on performance, see Subsection VI-
B.

The SVBR is using a leaky bucket LB(r, b) where r is the
target average bit rate and b is the bucket size (see Table I for
paper variables overview). The larger the bucket size, the more
rate variability is allowed, producing a more stable quality
[42]. The media packets do not experience additional delay
because the LB(r, b) is used as a virtual buffer, meaning
that the packets go straight into the network (or network
sending buffer as in TFRC), but is counted in parallel by
the LB(r, b). The latter makes it very suitable for interactive
communication. The leaky bucket fullness X(k) is calculated
at the start of every GOP k as [18]

X(k) = min{b, (max{0, X(k − 1) − r} + R(k − 1))}, (1)

where R(k − 1) is the actual bits spent during GOP k − 1.
When X(k) is close to zero, the rate control algorithm behaves
as in open loop, i.e. with the quantizer scale Q(k) = q. When
it is close to b, however, it behaves more like CBR, i.e. R(k)
is attempted to be close to r. The quantizer scale Q(k) is then
calculated as

Q(k) = Q(k − 1)R(k − 1)/R̂(k) (2)

assuming that the scene complexity changes slowly from GOP
to GOP (i.e. it follows a predefined rate-distortion curve), and
R̂(k) is an estimate of the bits to be spent during GOP k.
When the scene complexity increases substantially, (2) will
calculate too small Q(k), giving too high R(k). This will be
“compensated” for in the GOP k + 1. For pre-stored media
and live media allowing a delay equal to one GOP, the next

Q=4
b’(k-1)

X(k-1)

r’ (k-1)

IP network

Q=31

Q=3
Q=2

. .
.

Q(k) is calculated
using eq. (2).

r’(k)

packetizerframe sizes

network feedback

R(k-1)

Fig. 3. RA-SVBR with the updates from the network and its selection of
frame size information from the available trace files (eventually real frames
from online coder in a real implementation).

GOP scene complexity will be known a priori, and such bit
rate over-shoots can be avoided. For more details on how to
calculate R̂(k) we refer to [18].

B. Rate Adaptive SVBR (RA-SVBR): the needed modification

Although SVBR was designed for static values of r, b,
and q, we have found that r and b actually can be variables
influenced by network state feedback. Using r and b as upper
limit values used when the network is in non-congested state,
r′(k) < r and b′(k) < b can be calculated whenever the
congestion control algorithm suggests a new allowed average
bit rate rnew . Since these events are not synchronized to the
GOP periods, (1) must be modified to take this into account.
Scaling the bucket size b′ = br′/r (the time index k is
omitted in the time varying r ′ and b′ from now on), and letting
i ∈ [0, G − 1] being the time index for the network feedback
event counted as the position in the active GOP of size G
frames, the equation becomes

X(k) = min{b′, (max{0, X(k − 1)− r′}+ R(k − 1))}, (3)

where r′ = roldi/G + rnew(G − i)/G and b′ = boldi/G +
bnew(G− i)/G. When there is no network feedback during a
GOP, r′ = rold = rnew and b′ = bold = bnew. We have named
this SVBR modification RA-SVBR. Fig. 3. depicts an overview
over RA-SVBR local operation and its interface towards the
live network feedback (right) and media encoder trace files
(left).

The major limitation of a GOP based rate controller is
that the new rate might be delayed up to the time duration
of one GOP before effectuated, depending on the time the
network feedback event occurs relative to the local GOP
period. The result might be packet drops in the network due to
traffic overload. However, (3) makes sure that the bit budget
is corrected in the next GOP period. A more complex rate
controller could take advantage of the possibility of changing
the quantizer scale parameter one or multiple times during a
GOP, as discussed in Subsection IV-B.

The major advantage of the rate adaptive version of SVBR
is that any r′ < r can be supported, provided that the quantizer
scale needed is within its upper limit. One is not restricted to

8

supporting only the 31 discrete quality variant bit rates —
the rate controller ensures that any r ′ < r can be supported,
when averaged over some few number of GOP periods. It is
important to note this, since this makes a significant difference
to multirate coding where typically only 3–4 different rates are
supported.

Very small r′ forces the rate controller to select large
quantizer scale values. The general video quality when using
the very highest quantizer scale values is not very good
— visible blocking artifacts show up. In addition, since the
quantizer scale value is upwardly bounded to 31, an arbitrary
small r′ can not be supported. Thus, rmin < r′ < r, where
rmin is dependent on the current scene complexity.

In practice, this means that also other rate scaling techniques
could be considered, such as lowering the frame rate and/or
reducing the spatial resolution. Such changes can be supported
by signaling repeated headers to the receiver, giving new
values for these parameters to the decoder. The simulator
implementation could also take lower bounds on quality into
consideration and alternatively terminate a session if the
allowed throughput is too small. Such information could of
course also be used as input to admission control systems in
order to prevent starting new flows when available bandwidth
is too small. All these features are on the priority list for future
Evalvid-RA updates.

C. Supported network feedback systems

In general, any congestion control algorithm can be sup-
ported. For best possible stability and link utilization, an
average rate limit should be calculated and used as r ′. In this
paper, two different congestion control mechanisms are tested
and compared using the Evalvid-RA tool-set: TFRC [9] and
P-AQM+ECF [14], where the latter is a proprietary solution
where more accurate network state information is exploited.

The two methods differ significantly. Whereas TFRC relies
on either packet drop statistics or ECN tagging (e.g. from RED
routers) observed at receiver and signaled back to sender using
acknowledgment packets, P-AQM+ECF uses explicit packets
with congestion state information based on both input rate
and queue statistics directly from each P-AQM enabled router
on the path. Furthermore, TFRC requires each packet to be
of similar size (TFRC is packet rate oriented, not bit rate —
TFRC-SP is another TFRC profile where packets per second is
constant and size per packet is a variable, to better suite VoIP
applications [43]), while P-AQM+ECF do not impose any such
limitations. Since the output from the VBR encoder can not
be guaranteed to produce frame sizes that can be fragmented
into integer number of packets, byte stuffing has to be used
where the actual packet size is less than the fixed TFRC
packet size. Clearly, this is bandwidth waste. Even further,
TFRC uses strict traffic shaping, in that the TFRC rate is the
maximum rate: packets in the transmit queue are submitted
at the TFRC packet rate, as long as there are packets in the
queue. In P-AQM+ECF, the packets are submitted directly into
the network without any traffic shaping. The benefit with the
latter approach is no additional transmit buffer delay, while
the disadvantage is much more bursty traffic. However, as

will be shown by simulations in Section VI-D, there is no
significant LRD (Long Range Dependency), so the router
buffer occupancy should be controllable.

P-AQM+ECF calculate r′ directly, and is interfaced to
adaptive SVBR by just passing this value. However, since
TFRC is using a transmit buffer, there is a need for a small
modification to (3) to ensure that the buffer queue is kept
reasonably small. The coupling between the TFRC packet rate
and adaptive SVBR is therefore decided to be given as

X(k) = min{b′′, (max{0, X(k − 1)− r̄}+ R(k − 1))}, (4)

where r̄ = 1/N(k − 1)
∑N

i=1 rt
ie

−Bi/df , rt being the TFRC
rate calculated as bytes per GOP and Bi is the instantaneous
TFRC transmit queue backlog at the TFRC rate feedback
events and b′′ = br̄/r. The averaging operation in (4) is
necessary due to the fact that TFRC feeds back N updates
per GOP. The term e−Bi/df with the decay factor df = 100
ensures that the queue backlog is drained over time. A smaller
decay factor than 100 would have drained the queue faster, but
we observed that the TFRC feedback system became unstable
(queue oscillations bigger and bigger). We also simulated with
df = 1000 to show increased stability at the cost of some
increased shaping buffer delay.

VI. EXAMPLE EVALVID-RA SIMULATION AND RESULTS

To demonstrate the capabilities of Evalvid-RA some simu-
lation examples are described and the results are discussed in
this section. The ns-2 simulation model runs the RA-SVBR
source and a dumbbell network topology providing feedback
as depicted in Fig. 3. The actual video sources used are
described in the next section.

A. Test sequences and the Evalvid-RA pre-process

The video clips for the initial simulations were selected
from the official MPEG test clips. This way, our results
can be verified by independent researchers. A 1836 frame
video sequence was created using a collage of the clips
(in given order) News, Football, Akiyo, Stefan, and Paris,
at CIF resolution and 30fps (giving a duration of 61.2s).
These clips can be downloaded from e.g. http://www.tkn.tu-
berlin.de/research/evalvid/cif.html. All sources were using this
sequence, however started at different time and frame number
(and looped to enable continuous media), thus avoiding traffic
synchronization as discussed earlier. The simulation study also
covers more elaborate simulations, testing five different IP
router architectures. For that study, seven minute long clips
from The Matrix (genre “Action movie”, CIF, 29.97 fps)
and from “An Inconvenient Truth” (genre “Documentary”,
CIF, 25 fps) are used to create even more realistic network
traffic. The latter media can also be considered as advanced
videoconferencing content, in that there are shots with text,
presenter in front of slides with computer graphics, and some
shots with natural image content.

Following the Evalvid-RA pre-process these sequences were
first compressed with ffmpeg 30 times (static quantizer scale
values ranging 2–31 are supported by ffmpeg). The GOP
size was fixed to 12 frames with B-frames turned off to

9

avoid algorithmic codec delay8. Then the mp4.exe trace
tool was used on each of these MPEG-4 files to produce the
ASCII trace files giving the compressed frame size and type.
These 30 trace files were used as basis for the Evalvid-RA
ns-2 traffic generator vbr rateadaptive.cc in order to
produce realistic video traffic, where each frame is fragmented
into MTU sized packets before submission. Note that an
optimal packetizer would fragment frames to packets at macro
block boundaries – similar to the slices defined in H.264 – to
enhance error resilience. This approach is not possible in the
current version of Evalvid-RA since the trace files from the
mp4.exe tool are generated with frame size granularity, not
macro-block or slice granularity.

B. Adaptive SVBR performance vs. ffmpeg’s VBR controller

As a first validation of the implementation, a comparison
of the RA-SVBR and ffmpeg’s rate controller was performed.
Using the MPEG test sequence, both RA-SVBR’s r-parameter
and ffmpeg’s own 1-pass VBR rate controller (using the -
b switch) were set to 600kbit/s. b in RA-SVBR was set
equivalent to 1.5 GOP size in bytes. We noted that ffmpeg’s
rate controller used some GOP’s before stabilizing the rate
output, at start it was a bit too high. RA-SVBR was simulated
in ns-2 using the MPEG sequence produced as described in
subsection VI-A. There were no bandwidth bottlenecks and
network feedback reading was turned off. This ensured that the
RA-SVBR rate controller was working at r ′ = r = 600kbit/s
fixed during the whole session. The resulting ns-2 trace files
were used as input to the et ra.exe tool for MPEG-4 file
assembly. This file and the file generated by ffmpeg were now
decoded with ffmpeg to raw YUV files. These two YUVs
were compared to the original MPEG test sequence to produce
the PSNR results, which are shown in Fig. 4a). There is
only a minor difference in performance. Not surprisingly, the
ffmpeg’s own rate controller produces the best result, since
it can vary the quantizer step from frame to frame, and even
macro-block to macro-block, and not only from GOP to GOP
as in RA-SVBR. Inspecting the figure more closely, one can
see that the I-frames have significantly better PSNR (about
1.5–2.0 dB), while the P-frames have almost the same PSNR.
This is achieved by lowering the quantizer scale of the I-
frames, thus producing a better I-frame which is also a better
key-frame for the motion estimation of the following P-frames.
Nevertheless, this comparison proves that the quantizer scale
adjustments made by RA-SVBR and its implementation follow
the proposed performance as given in [18].

Fig. 4 a) – c) also show the different complexity of the clips
compromising the MPEG test sequence: News (frame 1–300)
is medium, football (300–400) high-motion, Akiyo (400–700)
is very low complexity, thus the PSNR values get very high,
Stefan (tennis player, 700–800) is very complex, thus giving
very small PSNR values, and at last Paris (800–1836) which
is high to medium.

8B-frames are however fully supported by Evalvid-RA.

0 500 1000 1500 2000

30

40

50

P
S

N
R

 (
dB

)

a)

0 500 1000 1500 2000
0

10

20

qu
an

tiz
er

 s
ca

le
 Q

b)

0 500 1000 1500 2000
0

2

4

6
x 10

6 c)

time (frame number)

bi
t r

at
e

(b
it/

s)

ffmpeg @ 600kbit/s

RA−SVBR @ 600kbit/s

Open loop VBR Q=2

RA−SVBR @ 600kbit/s

Fig. 4. a) Comparison of PSNR values of RA-SVBR and ffmpeg’s rate
controller in test sequence. b) The quantizer scale values Q used by RA-
SVBR in test sequence in a). c) The bit rate of Q = 2 VBR and RA-VBR
at 600kbit/s.

C. TFRC and P-AQM initial performance comparison

In this section, a simple scenario with VBR traffic only
is tested using the MPEG sequence, in order to address
behavior specific for homogeneous video traffic and network
characteristics. The TFRC streaming media flows are routed
through a network with either ordinary FIFO or RED routers
with ECN enabled, while adaptive UDP is streamed over
P-AQM with ECF signaling. A simple dumbbell network
topology was used. The bottleneck link capacity was 40 Mbit/s
with a propagation delay of 10 ms. The access network
capacities were 32 Mbit/s9 with 5 ms delay (each side of the
bottleneck link), thus producing a total one-way propagation
delay of 20 ms. 64 media sources were started at random time,
uniformly distributed over the first 16 s period of simulation
time, but all ended simultaneously at 64 s. The only exception
was the primary flow that started at 10ms and ended at 61.21 s.
Each source had a target RA-SVBR average bit rate set to
r = 1.0 Mbit/s. The fair share bandwidth after all sources have
started was however 40 Mbit/s/64 = 625 kbit/s. The challenge
of the network congestion control and the rate adaptive SVBR
was then to make the sources produce 625 kbit/s on average
(after 16 s, packet headers included), ensuring bandwidth
fairness and smallest possible delay between sender and re-
ceiver. The end-to-end delay budget includes sender buffer
(TFRC only), packet transmission delay, propagation delay,
and network router queuing delay. MTU was set to 1036 bytes
for the TFRC case, and 1028 bytes for the P-AQM case. These
numbers resulted from 1000 byte payload, 20 byte IP header,
8 byte UDP header (P-AQM) and 16 byte DCCP/TFRC header

9to make sure that the access network does not cause any form of queuing

10

TABLE II

NS-2 SIMULATION RESULTS

Sim. # Cong. Control df Utiliz. (%) P. drop (%)

s1 P-AQM+ECF — 88.2 0.0

s2 RED/ECN+TFRC 1000 89.9 0.0

s3 RED/ECN+TFRC 100 90.0 0.0

s4 RED/ECN+TFRC 40 89.6 0.0

s5 FIFO+TFRC 100 92.0 1.1

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

E
nd

−
2−

en
d

de
la

y
(s

)

time packet Tx departure (s)

s1

s2

s3

s4

Fig. 5. The packet delay end-2-end for the primary flow, including traffic
shaping buffer, transmit delay, propagation delay and router queue delay.

[8]. In a real implementation the RTP protocol could have
been used additionally — this would have added typically
12 bytes. The RED router (used by the TFRC simulations)
was configured to gentle adaptive RED with the target delay
set to half of the maximum queue buffer size. The buffer
size was set equal to the bandwidth-delay product (BDP)
assuming an RTT of 200 ms10, which gives 0.200 x 40e6
/ 8 = 1 MB, i.e. approximately 1000 packets (assuming 1000
byte packets). The RED target queue equilibrium was thus
about 500 packets. Smaller queue equilibrium was also tried
but resulted in severe queue length instability. P-AQM, which
is designed to control aggregate traffic with small persistent
queue sizes, was configured to a target queue size of only
50 kB. Both RED and P-AQM were run in byte count mode.
Transmitter (encoder) frame discard as additional rate control
was not allowed.

Table II lists the simulations and their parameters and
results, showing ∼ 90% link utilization and zero loss for all
the simulation cases, except s5 which uses packet drops to
signal congestion.

Fig. 5 shows the end-to-end delay for simulation cases
s1–s4. S1 (P-AQM) has very low delay, at equilibrium it is
below 30ms. The TFRC simulations s2–s3 show that there
is a significant period in which the delay is very high. An
inspection shows that this delay is both due to excessive queue
delay and significant shaping buffer backlog. S4 shows that a

10The RED router must be set to cope with typical average RTT of the flows
traversing it, and not the special case with low RTTs as in this example; this
also makes it more robust to handle many flows, see e.g. [44].

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

time (s)

P
S

N
R

 (
dB

)

s1 all cases

s3 no limit

s3 PoD=150ms

s3 PoB=500ms

s3 PoB=150ms

SVBR 1Mbit/s

Fig. 6. The resulting PSNR values (frame by frame) of the primary flows
in s1 and s3 simulation, given the different delay constraints.

too low decay factor leads to unstable behavior. We believe,
the reason is that the stable packet submission of TFRC is
discontinued by the completely drained shaping buffer. The
TFRC “Fast Restart” functionality, which should assist in
stability for self-limiting sources, was however enabled.

The Evalvid-RA post-processing tools for the primary flows
were now used to generate PSNR and MOS values for s1–
s3, given three different delay constraint scenarios: (i) no
delay constraint, (ii) receiver play-out buffer size constraint
(PoB), and (iii) absolute play-out buffer time constraint (PoD).
In (i) all received packets were used in the frame assembly
process (by et ra.exe), while in (ii) packets were dropped
if the packet inter-arrival jitter was higher than a specified
receiver play-out buffer size could tolerate (due to memory
limitation). In (iii), an absolute play-out time was specified
relative to the frame transmission time, due to the real-time
constraint. We tested the simulated scenario with 150 ms and
500 ms equivalent play-out buffer size constraint and 150 ms
absolute play-out delay constraint. The latter reflecting the
recommended one-way delay for conversational media. Fig. 6
displays the results for s1 and s3. Since these scenarios had
zero loss (due to the ECN and ECF signaling), the PSNR
values reflect two other QoS parameters: bandwidth and delay.
Bandwidth fairness can be examined by calculating per flow
bandwidth, using e.g. Jain’s Fairness Index [45]: it was better
than 0.99 for all simulations (1.0 is perfect fairness), showing
that the bandwidth was fairly distributed over the flows. P-
AQM performs best at all tests, due to its superior end-to-end
delay performance, both in receive frame jitter and absolute
delay. However, the delay caused by TFRCs traffic shaping
buffer and RED router affected the perceived quality of TFRC
in terms of objective PSNR values. Constraint (i) gives almost
the same PSNR as P-AQM, while (iii) shows that the absolute
delay of 150ms results in PSNR degradation in the order 1–
10dB. This degradation is due to the fact that the decoder has
to render the last successfully decoded frame when the current
frame number is not yet arrived at the receiver. In case (ii), a
PoB of 500 ms is sufficient to handle most of the inter-arrival

11

TABLE III

EVALVID-RA POST-PROCESSING RESULTS

Sim. avr. max avr. PSNR (dB) frames
delay delay PoB PoB= PoB= PoD= slipped /

(ms) (ms) =∞ 500ms 150ms 150ms total fr.

s1 30.3 104 35.0 35.0 35.0 35.0 0/1836
s2 212.1 939.4 33.7 32.8 19.1 29.2 1259/1836
s3 231.2 1379 33.1 31.5 19.3 28.8 1250/1836

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

PoB=inf PoB=500ms PoB=150ms PoD=150ms

M
O

S

Ref. 1.0Mbit/s

s1 (P-AQM)

s2 (TFRC)

s3 (TFRC)

Fig. 7. Average MOS values calculated from the PSNR values following
guidelines in [16], [39]. A reference MOS value is calculated for a 1.0 Mbit/s
flow of the same sequence, which would have resulted if there were fewer
than 40 flows in the bottleneck.

packet jitter to avoid too much PSNR degradation, while with
a PoB of 150 ms, a lot of frames will be dropped due to
buffer limitation so that decoding collapses. Statistical delay
and PSNR values for the tests s1–s3 are shown in Table III,
with corresponding average MOS values shown in Fig. 7.

This subsection has demonstrated that the perceptual quality
of interactive video flows is not only a function of bandwidth
and packet drop ratio, but also on end-to-end delay. The
network feedback systems are shown to cooperate closely with
the adaptive rate controller so that the aggregate traffic gives
link utilization close to capacity while packet drops are limited.
Due to the inherent TFRC traffic shaping, it is probably natural
that this non-bursty traffic can be strictly controlled. The non-
traffic shaped traffic output of the P-AQM+ECF system is
however not so evident since it submits the VBR traffic directly
into the network. The reason why this works well is examined
in the next subsection.

D. Adaptive VBR rate control avoiding LRD

In [20] and also later work by others it was proven and
demonstrated that VBR video traffic exhibits long range de-
pendence (LRD). LRD traffic characteristic means that the
resulting rate (measured in bytes per frame or per GOP)
occupied by the VBR coder varies significantly and that its
ACF (autocorrelation function) has significant values for large
lags n, i.e. the ACF ρ(n) ∝ n−β as n → ∞ and 0 < β < 1
(compared to the exponential fast decay ρ(n) ∝ αn, n → ∞
and 0 < α < 1, valid for Poisson sources). With other
words, the VBR coder traffic output has a self-similar behavior.

0 50 100 150 200 250 300
0

2

4

6

8

10

12
x 10

5

time (s)

bi
t r

at
e

av
r.

 o
ve

r
G

O
P

=
40

0m
s

(b
it/

s)

Single source bit rates

Flow 5, start at 15.6s
Flow 0 (primary flow)
Flow 4, start at 4.1s

Fig. 8. Three of the 64 flows, showing the VBR behavior, and the adaptive
rate control slowly adjusting the rate to the 600kbit/s fair application rate.

Obviously, such traffic makes it very difficult to have high
link utilization without risking periods with persistent packet
losses due to queue buffer overflow. However, the work cited
did statistical analysis of VBR open-loop coders only, i.e. no
rate controller was present at all. Applying VBR rate control
means that an average bit rate is established, possibly also
with variance constraints. This is exactly what is gained by
adaptive SVBR in the form of (3) and (4). [18] also shows
that the rate controller almost completely eliminates any LRD,
i.e. it becomes more like SRD (short range dependent). This is
why the deployment of VBR rate controllers makes high link
utilization obtainable, since the aggregate of SRD sources will
exhibit Poisson characteristics. When scaling both the r and
b of the leaky bucket in SVBR, variability is also reduced per
source to adjust to the potentially increased variance of the
aggregate. Thus, congestion control combined with adaptive
rate controllers makes way for even more flows and stabilizes
the network throughput at high utilization. The accuracy of
the feedback system and buffer dimensioning then determines
if this can be accomplished with small buffer delays.

An Evalvid-RA ns-2 simulation was carried out to substan-
tiate the claims made above. It was similar to the P-AQM
simulation described in the previous subsection, except that it
was run over 300 seconds to get more data for the statistics.
All flows were looped back to the beginning of the trace files
when finished, except for the primary flow that stopped at
61.2 s as before. In Fig. 8 the primary flow rate is shown
together with flow 4 and 5. Note that since flow 5 starts
at 15.6 s, it is one of the last flows to start in the 0–16 s
starting period, thus its convergence against the fair bandwidth
share is slower than “normal” (e.g. compared to flow 4). This
plot shows that it takes some time before the flows become
stationary. However, the aggregate of the flows entering the
bottleneck router has a stationary behavior much sooner, as
shown in Fig. 9. The reason for this is that the congestion
control of P-AQM works on the aggregate, while the AIMD
behavior of the sources themselves control the fairness issue.
Here the aggregate bit rate has been calculated using four

12

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

10
x 10

7

time (s)

en
ve

lo
pe

 o
f a

gg
re

ga
te

 in
pu

t r
at

e
(b

it/
s)

avr 20ms
avr 40ms
avr 200ms
avr 400ms

Fig. 9. Averaging at larger and larger time scales reveals a stationary time
series.

0 0.2 0.4 0.6 0.8 1

x 10
−3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

inter arrival time (s)

oc
cu

ra
nc

es
 in

 b
in

i.a.t. pdf (histogram)

Fig. 10. The histogram of the inter arrival time of packet received at
bottleneck router

different averaging time units: 20, 40, 200, and 400 ms
(=GOP). As shown by the curve for GOP sized averaging
rates, stationary behavior is obtained already at approximately
20 s. Its variability at smaller time scales is much higher.
However, the figure shows that the averaging operation reduces
the variance considerably, which is typical for Poisson and
Poisson-like traffic aggregates. Calculating a histogram of the
packet inter arrival times (Fig. 10) reveals that the traffic is
indeed Poisson-like, since a negative exponential distribution
shape is produced. The only exception is the spike at 0.27 ms,
caused by the frequent event of multi-packet frames arriving
back-to-back (1028 B packets in 32 Mbit/s access links have
0.27 ms spacing). Calculating the autocorrelation function of
the bit rates as shown in Fig. 9, gives the results as shown
in Fig. 11. With 400 ms average time windows, the sequence
is clearly uncorrelated. At smaller time scales a correlation
peak at the lag corresponding to 61.2 s is evident. This is not
surprising as the flows repeat themselves after this amount of
time. This is a result of a “synthetic” aggregate behavior and
motivates a modification of Evalvid-RA to jump to an arbitrary

0 100 200 300 400 500 600 700 800
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

lag (in 400ms steps)

au
to

co
rr

el
at

io
n

A
C

F

avr 20ms
avr 40ms
avr 200ms
avr 400ms

Fig. 11. The envelope of the autocorrelation function of aggregate input
traffic to bottleneck router, calculated at four different time units. Lag units
are scaled to fit corresponding time unit.

GOP after ending the trace file instead of jumping to the very
beginning. Nevertheless, the envelope shape reveals that the
ACF converges fast to zero at increasing lag, as is the nature
of Poisson-like traffic sources.

It is the near Poisson traffic nature that makes it possible
to control an aggregate of VBR rate controlled video streams
close to full link utilization, with zero packet loss and very
small queue delay. As future bottleneck router capacity in-
creases, higher link utilization is obtainable without adding
delay, possibly even decreasing the delay at the same link
utilization.

E. Mixed VBR and TCP traffic

In this section we aim to demonstrate the Evalvid-RA
capabilities in video transmission protocol analysis using more
realistic Internet traffic and running a high number of different
work loads in order to compare the different protocols and
network architectures. The focus is on relative performance,
thus we present the results as PSNR values as function of the
number of VBR flows.

A common bottleneck link of 40 Mbit/s is shared by
32 long-lived New Reno TCP flows (e.g. continuous FTP
download) and 120 sources generating HTTP Web traffic using
a recommended model generating Poisson distributed flow
arrival times and Pareto distributed flow sizes (with shape
factor of 1.35) [46]. The access network capacity is 3.0 Mbit/s,
while the rest of the parameters are similar to Section VI-
C. In this environment the VBR flows are transmitted. We
vary the number of VBR flows from 2 up to 128, using the
clips from ”The Matrix” and ”An Inconvenient Truth”. In
addition to P-AQM and TFRC over RED/ECN routers (TFRC
1), we also test TFRC over RED without ECN marking (TFRC
2), TFRC over ordinary FIFO routers (TFRC 3), and non-
adaptive 1.0 Mbit/s UDP flows over FIFO routers (UDP).
To obtain reference PSNR values (”ref.” curves in Fig 12
and 13), we also simulated a single UDP flow with target
bit rates 1.0 Mbit/s, 740 kbit/s, 570 kbit/s, 392 kbit/s, and

13

2 16 32 64 128
10

15

20

25

30

35

40

45

50

#of simultaneous VBR flows

P
S

N
R

 (
dB

)
a) Inconvenient

2 16 32 64 128
10

15

20

25

30

35

40

45

50
b) Matrix

ref.

P−AQM

UDP

TFRC 1

TFRC 2

TFRC 3

Fig. 12. PSNR values as function of number of VBR flows in mixed
network traffic. Play-out delay constraint is 150ms (videoconferencing delay
constraint).

2 16 32 64 128
10

15

20

25

30

35

40

45

50

#of simultaneous VBR flows

P
S

N
R

 (
dB

)

a) Inconvenient

2 16 32 64 128
10

15

20

25

30

35

40

45

50
b) Matrix

ref.

P−AQM

UDP

TFRC 1

TFRC 2

TFRC 3

Fig. 13. PSNR values as function of number of VBR flows in mixed network
traffic. Play-out delay constraint is 2s (VoD and WebTV delay constraint).

240 kbit/s, corresponding to the fair bandwidth share in the
different cases.

In Fig. 12 the results for the videoconferencing 150 ms
delay constraint case are depicted, while in Fig. 13 the
corresponding results for the VoD/WebTV 2 s delay constraint
case are shown. The P-AQM performance is equal and above
the reference quality, where the reason for the latter is in fact
statistical multiplexing gain (SMG): since both movie clips
have large variations in their bit rate for all quantizer scales
Q, and for Q = 2 the bit rate range is approx. 0.25–4.5 Mbit/s,
there is room for other flows to exploit other flows inability to
fully utilize their fair bandwidth share. The flows are upper bit
rate limited at 1.0 Mbit/s, explaining the absence of SMG at 2
VBR flows. With 128 VBR flows, the fair bandwidth share is
below the minimum bandwidth at Q = 2, which also renders
SMG impossible. P-AQM is robust also in mixed traffic due to
a two-queue scheduler that separates the UDP and TCP traffic
and marks the TCP packets with ECN as in RED routers [14].
Non-adaptive UDP streaming also achieves very high PSNR

values (but not has high as P-AQM due to packet losses) before
it collapses above 32 flows due to very high packet losses. It
must be noted that the high performance of non-adaptive UDP
is on the cost of starved TCP flows! It is also evident that
TFRC performs best when run over ECN enabled RED routers.
Performance drops a little when ECN is not supported, while
ordinary FIFO queues gives TFRC the lowest performance.
The better quality of TFRC at the 2 s delay constraint is due
to the fact that most frames do arrive with a latency between
150 ms and 2 s. Again, like in Section VI-C, this delay is
a combination of traffic shaping buffer delay and RED and
FIFO queuing delay. TFRC also pays a PSNR penalty at any
number of flows, in that it has constant packet size, and thus
must often use bandwidth-wasting byte stuffing.

All simulated cases had bottleneck link utilization above
99.0%. Packet drops increased with the number of VBR
flows: for P-AQM it was in the range 0.001–1%, for TFRC
0.01% with ECN, 0.1–2% without ECN and with FIFO,
and ill-behaving UDP 0.6–89%. Jain’s Fairness Index of the
VBR flows was better than 0.99 for all TFRC and P-AQM
simulations. When comparing all long-lived flows, the index
was 0.96 or better. Also worth noting is that the results for
the two media clips were very similar, demonstrating that VBR
rate control reduces LRD and thereby genre differences.

VII. CLOSING REMARKS AND CONCLUSION

In this paper we have presented Evalvid-RA, a framework
and tool-set to enable simulation of rate adaptive VBR video.
Evalvid-RA’s main capability is the generation of true rate
adaptive MPEG-4 VBR traffic, i.e. the codec output is de-
pendent of the aggregate traffic passing through the network
bottlenecks. In addition, the received media traces are used
to restore true media files that can be visually inspected and
PSNR and MOS scores can be calculated when comparing
with the original material. The tool-set includes an online
(at simulation time) rate controller that, based on network
congestion signals, chooses video quality and bit rates from
corresponding pre-processed trace files.

Evalvid-RA’s capabilities were demonstrated by the sim-
ulation of a VBR rate controller, modulated by TFRC and
P-AQM+ECF congestion signals. Up to 128 simultaneous
independent VBR sources were run, together with 32 long-
lived TCP flows and background Web traffic generated by
120 independent sources. The 420 second network simulation
took about 10 minutes to complete on a three year old laptop
running ns-2 under Cygwin. Thus, even higher numbers of
sources should be feasible.

Statistical analysis of P-AQM+ECF controlled VBR traf-
fic revealed that the traffic aggregate did not exhibit self-
similarity. That’s why high link utilization and controlled
queuing delay and packet loss is obtainable without strict
traffic shaping as e.g. TFRC is using. The P-AQM system
had both the highest PSNR score and could also support
more flows at reasonably high PSNR values. The cost of
these achievements is however a new router algorithm (at least
located at the bottleneck link) and some additional signaling
traffic. The corresponding simulations of TFRC revealed that

14

the performance was increasing with higher network router
intelligence. They also showed that delay constraint results
were both dependent on the traffic shaping buffer backlog
and router queue backlog. Our solution of draining the traffic
shaping buffer could probably be improved, e.g. by using
frame discard if the buffer contains more than e.g. 2–3 frames,
depending on the application. But then, also other means
should be developed that prevent unstable TFRC behavior
when using such aggressive buffer draining.

Evalvid-RA can be used as a test tool for new ideas
and early implementations. The usage of TFRC for media
applications is expected to grow substantially in the coming
years and improved performance in real-time applications with
strict delay constraint, such as videoconferencing, would make
it even more valuable. Obviously, the Internet community
prefers simple scalable solutions over new ideas involving
e.g. new router architecture as in P-AQM. However, this does
not prevent the use of novel architectures in dedicated media
networks, such as digital-TV.

More advanced Evalvid-RA usage includes fairness and
delay performance tests in scenarios with multiple bottlenecks,
heterogeneous RTTs, and scenarios where some sources are
self-limited while others are bottleneck limited [47]. Advanced
routers with selective packet drop can be tested with new
error resilient media features, since PSNR and MOS scores
can be calculated in the Evalvid-RA post process. Work on
rate adaptive media over wireless networks will be more and
more relevant. In fact, such work has already been started at
NTNU using Evalvid-RA and ns-2 802.11 models.

Future tool enhancements could include support for audio
codecs and more video codecs (such as H.264/AVC, which
is already supported by Evalvid 2.0), as well as transmitter
frame discard and relaxed quantizer scale constraints. The
quantizer scale modulation demonstrated in this paper can
in fact be expanded to also include temporal and spatial
scalability, perhaps even modality changes, provided that the
scaling follows a predefined rate-distortion curve. Ordinary
multirate coding can be supported, with trace files resulting
from optimized CBR or VBR rate controlled media, with
arbitrary quantizer scale values on frame, slice, or even macro
block granularity. In fact, this awakens the idea of using the
multiple precoded media with fixed quantizer scale (as used in
Evalvid-RA to simulate real-time codecs) also as content on
real streaming servers, thus enabling streaming media services
of pre-stored VoD content with rate adaptation at much finer
granularity than ordinary multirate coding. Some sample tests
reveal that the additional storage cost is six times that of
storing only the highest quality stream, which can be justified
with the dropping prices of storage media. In such a way
Evalvid-RA could also become not only an analysis concept,
but also a concept of implementation, and a bridge in rate
adaptive media deployment.

By publishing the Evalvid-RA source code online, we hope
that the Internet real-time media research community success-
fully uses this tool-set to investigate, develop, and optimize
adaptive media codecs and network architecture jointly, so
that current and future adaptive packet video systems are
better suited to handle the varying wired and wireless network

TABLE IV

THE EVALVID-RA TOOLS OVERVIEW: PRE-PROCESS, SIMULATION, AND

POST-PROCESS.

Tool Original
Evalvid-
RA?

Evalvid-RA
script

Purpose

ffmpeg No manyQ.sh To encode video file with the
full range of quantizer scale
values 2–31.

mp4.exe No
(Evalvid
1.2)

manyQ.sh Create frame size trace files of
all encoded files from previous
step.

ns-2:
vbr rate
adapt.cc

Yes concat
TFRC*.tcl

Simulation: Module running
RA-SVR and interfacing the
frame size trace files and net-
work feedback.

ns-2:
ra eval
vid udp.
{cc,h}

Yes (i.e.
modifi-
cation of
[17])

concat
TFRC*.tcl

Simulation: modified udp.cc
in where sender trace files
are written, including tx time,
packet type and Q-value used.

ns-2:
ra eval
vid udp
sink2.
{cc,h}

Yes (i.e.
modifi-
cation of
[17])

concat
TFRC*.tcl

Simulation: modified
udpsink.cc in where receiver
trace files are written,
including rx time and packet
type.

ns-2: awk
scripts

Yes See
commands
.txt

Sample scripts for simple post-
processing of ordinary ns-2
packet trace files.

et ra.exe Yes (mod.
et.exe
Evalvid
1.2)

runPoD.sh
and
runPoB.sh

Post-process: Re-assembly of
the rate adaptive MPEG-4 file
sent during simulation time.

fixyuv
ra.exe

Yes (mod.
fixyuv
.exe
Eval. 1.2)

runPoD.sh Post-process: Inserts missing
frames due to drop or late ar-
rival so that sent and received
video consists of equal number
of frames.

psnr.exe No
(Evalvid
1.2)

runPoD.sh
and
runPoB.sh

Post-process: Calculate the
PSNR.

mos.exe No
(Evalvid
1.2)

runPoD.sh
and
runPoB.sh

Post-process: Map MOS val-
ues from PSNR.

miv.exe No
(Evalvid
1.2)

runPoD.sh
and
runPoB.sh

Post-process: Calculate quality
indicator for longer sequences.

capabilities and conditions. The latest version of Evalvid-RA
can be downloaded from http://www.item.ntnu.no/
∼arnelie/Evalvid-RA.htm.

APPENDIX

LISTING OF THE EVALVID-RA TOOLS

Table IV is included to ease the understanding of what
tools are included in the Evalvid-RA download package, their
origin, their purpose, and how to use them. Since all tools are
command-line based, they are accompanied by sample script
files (Linux shell scripts and ns-2 TCL scripts).

ACKNOWLEDGMENT

The authors would like to thank Chih-Heng Ke (NCKU
Taiwan) who wrote the original ns-2 interface for the (non-
rate adaptive) Evalvid. We also would like to thank The
Research Council of Norway for the support of Mr. Lie’s Ph.D.
work, and the people at DResearch Digital Media Systems for
supporting Mr. Klaue’s research.

15

REFERENCES

[1] P. A. Palumbo, “Broadband streaming video: Viewer metrics and market
growth analysis 2000 - 2004,” Accustream Research, Tech. Rep., 2004.

[2] UNINETT, “Digital Brytningstid Uninett 10år,” UNINETT, Tech.
Rep., October 2003. [Online]. Available: http://www.uninett.no/
publikasjoner/digital.brytningstid/digital.brytningstid.pdf

[3] “ISO/IEC 13818-2, Information technology – Generic coding of moving
pictures and associated audio information – Part 2: Visual,” 1994.

[4] “ISO/IEC 14496-2, Information technology – Coding of audio-visual
objects – Part 2: Visual,” 1999.

[5] W. Li, “Overview of fine granularity scalability in MPEG-4 video
standard,” IEEE Trans. Cct. Syst. for Video Tech., vol. 11:3, pp. 301–317,
March 2001.

[6] S. Wenger, Y.-K. Wang, and M. M. Hannuksela, “RTP payload format
for H.264/SVC scalable video coding,” Journal of Zhejiang University,
vol. 7, no. 5, pp. 657–667, May 2006.

[7] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion
control in the Internet,” IEEE/ACM Transactions on Networking, vol. 7,
no. 4, pp. 458–472, 1999.

[8] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control
Protocol (DCCP),” IETF RFC4340, Tech. Rep., Mar. 2006. [Online].
Available: http://www.ietf.org/rfc/rfc4340.txt

[9] S. Floyd, E. Kohler, and J. Padhye, “Profile for Datagram Congestion
Control Protocol (DCCP) Congestion Control ID 3: TCP-Friendly Rate
Control (TFRC),” IETF RFC4342, Tech. Rep., Mar. 2006. [Online].
Available: http://www.ietf.org/rfc/rfc4342.txt

[10] T. V. Lakshman, P. P. Mishra, and K. K. Ramakrishnan, “Transporting
Compressed Video Over ATM Networks with Explicit Rate Feedback
Control,” in Proceedings of the INFOCOM’97. Washington, DC, USA:
IEEE Computer Society, 1997, p. 38.

[11] R. Rejaie, M. Handley, and D. Estrin, “RAP: An End-to-end Rate-based
Congestion Control Mechanism for Realtime Streams in the Internet,”
in Proc. of IEEE Infocom, March 1999.

[12] M. Miyabayashi, N. Wakamiya, M. Murata, and H. Miyahara, “MPEG-
TFRCP: Video Transfer with TCP-friendly Rate Control Protocol,” in
Proc. of IEEE International Conference on Communications (ICC2001),
vol. 1, June 2001, pp. 137–141.

[13] D. Sisalem and A. Wolisz, “LDA+ TCP-Friendly Adaptation: A Mea-
surement and Comparison Study,” in Proc. of NOSSDAV, 2000.

[14] A. Lie, O. M. Aamo, and L. A. Rønningen, “A Performance Comparison
Study of DCCP and a Method with non-binary Congestion Metrics for
Streaming Media Rate Control,” in Proc. of 19th International Teletraffic
Congress (ITC’19), Beijing, China, Aug–Sept 2005.

[15] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP,” IETF RFC3168, Tech. Rep.,
September 2001.

[16] J. Klaue, B. Rathke, and A. Wolisz, “EvalVid - A Framework for Video
Transmission and Quality Evaluation,” in Proc. of the 13th International
Conference on Modelling Techniques and Tools for Computer Perfor-
mance Evaluation, Urbana, Illinois, USA, Sept. 2003.

[17] C.-H. Ke, “How to evaluate MPEG video transmission using the
NS2 simulator,” 2004. [Online]. Available: http://hpds.ee.ncku.edu.tw/
∼smallko/ns2/Evalvid in NS2.htm

[18] M. Hamdi, J. W. Roberts, and P. Rolin, “Rate control for VBR video
coders in broad-band networks,” IEEE Journal on Selected Areas in
Communications, vol. 15, no. 6, August 1997.

[19] A. R. Reibman and B. G. Haskell, “Constraints on Variable Bit-Rate
Video for ATM Networks,” IEEE Trans. on Circuits and Systems for
Video Technology, vol. 2, no. 4, pp. 361–372, Dec. 1992.

[20] M. Garrett and W. Willinger, “Analysis, Modeling and Generation of
Self-Similar VBR Video Traffic,” in Proc. of ACM Sigcomm, London,
1994.

[21] J. Beran, R. Sherman, M. Taqqu, and W. Willinger, “Long-range
dependence in variable-bit-rate video traffic,” IEEE Transactions on
Communications, vol. 43, no. 234, pp. 1566–1579, Feb/Mar/Apr 1995.

[22] M. Krunz and S. K. Tripathi, “On the Characterization of VBR MPEG
Streams,” in Proceedings of ACM Sigmetrics’97. Seatle, Washington:
ACM, May 1997.

[23] N. Ansari, H. Liu, and Y. Q. Shi, “On Modeling MPEG Video Traffics,”
IEEE Trans. on Broadcasting, vol. 48, December 2002.

[24] C. H. Liew, C. Kodikara, and A. M. Kondoz, “Modelling of MPEG-4
Encoded VBR Video Traffic,” IEE Electronic Letters, vol. 40, no. 5,
March 2004.

[25] J. Zhu, A. Matrawy, and I. Lambadaris, “Models and tools for simulation
of video transmission on wireless networks,” in Proc. of IEEE Electrical
and Computer Engineering, 2004.

[26] W. Mohsin and M. Siddiqi, “Scalable Video Transmission and Conges-
tion Control using RTP,” Department of Electrical Engineering, Stanford
University, Tech. Rep., May 2002.

[27] C. Xu, J. Liu, and C. Zhao, “Performance analysis of transmitting H.263
over DCCP,” in IEEE Int. Workshop VLSI Design and Video Technology,
May 2005.

[28] L. Xu and J. Helzer, “Media Streaming via TFRC: An Analytical Study
of the Impact of TFRC on User-Perceived Media Quality,” in Proc. of
Infocom, March 2006.

[29] E. Gürses, “Optimal Streaming of Rate Adaptable Video,” Ph.D. dis-
sertation, The Graduate School Of Natural And Applied Sciences Of
Middle East Technical University, 2006.

[30] H. V. Balan, L. Eggert, S. Niccolini, and M. Brunner, “An Experimental
Evaluation of Voice Qualit over the Datagram Congestion Control
protocol,” NEC Europe, Germany, Tech. Rep., 2006.

[31] S. Wolf and M. Pinson, “Video quality measurement techniques,” U.S.
Department of Commerce, NTIA, Tech. Rep. 02-392, June 2002.

[32] S. Winkler, Digital Video Quality – Vision Models and Metrics. John
Wiley & Sons, 2005.

[33] T1.801.03, “Digital transport of one-way video signals – parameters for
objective performance assessment,” ANSI, Tech. Rep., 2003.

[34] M. Zink, O. Künzel, J. Schmitt, and R. Steinmetz, “Subjective impres-
sion of variations in layer encoded videos,” in Proceedings of the 11th
IEEE/IFIP International Workshop on Quality of Service (IWQoS’03),
Monterey, CA, USA, June 2003, pp. 134–154.

[35] J. Gross, J. Klaue, H. Karl, and A. Wolisz, “Cross-layer optimization of
OFDM transmission systems for MPEG-4 video streaming,” Computer
Communications, vol. 27, pp. 1044–1055, 2004.

[36] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” Image
Processing, IEEE Transactions on, vol. 13, no. 4, pp. 600–612, 2004.

[37] “VQM Software.” [Online]. Available: http://www.its.bldrdoc.gov/n3/
video/vqmsoftware.htm

[38] Sarnoff, “JNDmetrix.” [Online]. Available: http://www.sarnoff.com/
products services/video vision/jndmetrix/

[39] J.-R. Ohm, Digitale Bildcodierung - Repräsentation, Kompression und
Übertragung von Bildsignalen. Springer, 1995.

[40] I. JTC1/SC29/WG11, “Information technology – Coding of audio-visual
objects – Part 2: Visual,” 1999, ISO/IEC 14496-2.

[41] LGPL, “FFMPEG Multimedia System.” [Online]. Available: http:
//ffmpeg.mplayerhq.hu/

[42] T. Lakshman, A. Ortega, and A. Reibman, “VBR Video: Trade-offs and
potentials,” Proceedings of the IEEE, vol. 86, no. 5, pp. 952–973, May
1998.

[43] S. Floyd and E. Kohler, “TCP Friendly rate Control (TFRC): The
Small-Packet (SP) Variant,” IETF RFC4828, Tech. Rep., Apr. 2007.
[Online]. Available: http://www.ietf.org/rfc/rfc4828.txt

[44] J. Chung and M. Claypool, “Analysis of active queue management ,”
in Second IEEE International Symposium on Network Computing and
Applications, April 2003, pp. 359–366.

[45] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure of Fairness
and Discrimination for Resource Allocation in Shared Systems,” DEC
Research Report TR-301, Tech. Rep., Sept 1984.

[46] D. Katabi, M. Handley, and C. Rohrs, “Congestion Control for High
Bandwidth-Delay product Networks,” in Proc. of ACM Sigcomm, 2002.

[47] T. Phelan, “TFRC with Self-Limiting Sources,” Sonus Networks, Tech.
Rep., Oct 2004. [Online]. Available: http://www.phelan-4.com/dccp/
tfrc-self-limit.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

