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Abstract

Schedulers for cloud computing determine on which processing resource jobs of a workflow should be allocated.

In hybrid clouds, jobs can be allocated either on a private cloud or on a public cloud on a pay per use basis. The

capacity of the communication channels connecting these two types of resources impact the makespan and the

cost of workflows execution. This paper introduces the scheduling problem in hybrid clouds presenting the main

characteristics to be considered when scheduling workflows, as well as a brief survey of some of the scheduling

algorithms used in these systems. To assess the influence of communication channels on job allocation, we compare

and evaluate the impact of the available bandwidth on the performance of some of the scheduling algorithms.

I. INTRODUCTION

Cloud computing has attracted an increasing number of users because it offers computational capabilities

as services on a pay-per-use basis. Studies conducted by Gartner1 estimate a potential amount of U$150

billion market for cloud computing by 2013. Such a huge market is the consequence of a business model

that offers high performance and low costs. Indeed, a survey2 of 3, 645 users of cloud computing services

conducted by the Computer Sciences Corporation in eight countries between October 2011 and November

2011, reported that improved data center efficiency and lower operational costs are the main reasons for

the adoption of cloud computing solutions.

Cloud providers offer computing and storage resources, and platforms for software development and

execution, as well as software interfaces accessible throughout the network. Three models of cloud services

1http://www.gartner.com/id=914826
2http://assets1.csc.com/newsroom/downloads/CSC Cloud Usage Index Report.pdf
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are commonly available: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), or Software as a

Service (SaaS) [1]. In SaaS, the clients use applications but cannot control the host environment. Google

Apps and Salesforce.com are examples of this model. In PaaS, the platform is typically an application

framework and clients use a hosting environment for their applications. Examples of PaaS are the Google

App Engine and Amazon Web Services. In IaaS, the clients use computing resources such as processing

power and storage and they can also control the environment and the deployment of applications. Amazon

Elastic Compute Cloud (EC2), Globus Nimbus Toolkit, and Eucalyptus are good examples of this service

model. In summary, clients can use/run applications from a SaaS cloud; both develop and run their

applications on a development platform provided by a PaaS cloud; or extend their computational capacity

by leasing computing resources from an IaaS cloud.

Moreover, clients can execute most applications using their own computing infrastructure (private cloud),

and yet lease service from a cloud provider (public cloud) on demand. It was reported that 48% of United

States government agencies have moved at least one workflow to a cloud provider following the federal

cloud computing strategy published in February 2011. The operation of such hybrid cloud involves two

fundamental questions: (i) what resources should be leased and (ii) which tasks should be executed on

the leased resources. These answers are provided by a scheduler, a fundamental component of distributed

computing systems including clouds and grids [2].

These questions are answered considering the capacities of the communication links connecting the

available resources. Slow communication channels increase delays, thus increasing the execution time

(makespan) of applications, with bounds typically negotiated in service level agreements. Understanding

the impact of network delays and the costs on scheduling decisions is, thus, fundamental for cloud service

provisioning.

In line with that, this paper provides a brief survey of scheduling algorithms for hybrid clouds and

the impact of communication networks on scheduling decisions. First, the problem of scheduling tasks

and services in clouds is explained (Section II), which is then followed by a comparison of scheduling

algorithms for hybrid clouds (section III). At last, the impact of communication links on schedules is

assessed (Section IV).

II. SCHEDULING IN CLOUDS

Applications and services can be decomposed into set of smaller components, called jobs. For example,

an application that processes a large image can decompose this image into smaller ones for parallel
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processing by distinct jobs. The logical sequence of the jobs of an application is called workflow, which

is commonly represented by directed acyclic graph (DAG). The nodes of a DAG represent the jobs of

a workflow while arcs represent their data dependencies. A job can be executed only after the data it

depends on has been produced and sent to the resource where it will be executed. Such applications

can be found in a variety of fields, such as Physics (astronomy, thermodynamics), Bioinformatics (DNA

sequencing, proteomics), Chemistry (protein dynamics), and Computer Science (computer vision, image

processing).

The workflow of two real applications are illustrated: The Montage [3] (Figure 1(a)) and the Laser

Interferometer Gravitational Wave Observatory (LIGO) [4] (Figure 1(b)). Montage consists of an image

application that creates mosaics of the sky in astronomy research. The size of the workflow depends on

the squared degree size of the part of the sky to be generated, and it can produce an output of 86 TB data

set involving 17 hierarchical workflows, each with 900 sub workflows3. LIGO is a project used to detect

gravitational waves through a network of gravitational-wave detectors, and its workflow often requires on

the order of a terabyte of data to produce meaningful results3.

(a) Montage workflow (b) LIGO workflow

Fig. 1. Examples of workflow applications.

The computational demands of applications such as Montage and LIGO can easily overwhelm the

available computational power of private clouds. Moreover, their execution time can be prohibitive.

The cloud computing paradigm is quite effective for dealing with such problem by providing virtually

unbounded on-demand resources.

Figure 2 illustrates a hybrid IaaS cloud composed of the resources of the private cloud as well as those

of one or more public IaaS clouds. A hybrid cloud scheduler must decide which resources should be leased

3Source: http://pegasus.isi.edu/
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from the public clouds to guarantee the execution of the workflow within the specified maximum execution

time (deadline). After the submission of workflow by a user, a broker runs the scheduling algorithm to

start the decision making process. Besides deciding which resources will be used, the scheduler also

determines which part of the workflow will run in each cloud provider.

Fig. 2. Hybrid cloud infrastructure and workflow submission.

One challenging issue in hybrid clouds is how interfaces can be provided to interact automatically

with different existing public clouds, so that the broker can gather information about resources and the

workflow executed and monitored in a variety of public cloud infrastructures. Some projects, such as the

JClouds (www.jclouds.org) try to solve this problem by providing portable abstractions to several existing

cloud providers. Another challenge involves the consideration of security requirements of the applications

which can reduce the pool of potential hosts for scheduling jobs.

The scheduling problem involved is known to be NP-Complete in general, including the scheduling of

workflows in heterogeneous computer systems discussed in this paper. Scheduling algorithms often utilize

heuristics and optimization techniques to try to obtain a near optimal schedule.

The input of scheduling algorithm must include the DAG that represents the workflow of jobs and their

dependencies, as well as information about the target system, including the processing capacity of each

resource and the available capacities of the network links. This information is obtained from a resource
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information repository in the private cloud. Moreover, scheduling algorithms for clouds are usually cost-

aware, so that the information about the cost per time unit of usage of each resource must be available.

Providing with this information, the scheduling algorithm is capable of estimating the workflow makespan

and its execution costs.

Figure 3 illustrates the inputs necessary for a scheduler and gives an example of a schedule. The DAG

contains information on the computational requirements of its jobs as well as information on the amount

of bytes to be transmitted to resolve each data dependency. In the example, we use millions of instructions

(MI) for specifying job computational costs, MI/s for resource processing capacities, Megabytes for data

dependencies, and Megabits/s for link bandwidths. The scheduler combines all of this information to

compute how long each job takes to run on each resource, how long each data transmission would take

according to the resource assigned to each job, and how much a given job assignment would cost. The

scheduling algorithm runs when a workflow is submitted for execution, and the necessary resources are

allocated on demand to run the workflow.

Fig. 3. Scheduler inputs, with information about the DAG and the target system, and a possible resulting schedule.

The right-hand side of Figure 3 illustrates a hypothetical schedule for this example. The critical path

of the DAG was scheduled on resource 1 (R1), which is the fastest available. Data transmission takes

24 seconds between R1 and R2 in order to fulfill data requirements for the job scheduled on R2. This

job returns the results to R1 so it can be utilized by the third job on the critical path, which demands a

transmission of 8 seconds. Longer data transmissions occur between R1 and R3, since jobs running on

those resources have stronger data dependencies. By considering all the computations performed and all the
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transmission delays, the resulting makespan is 170.5 seconds and cost is 29.35 dollars. The consideration

of communication delays is important for the minimization of costs since a job which receives data from

its predecessors needs to be active in that resource, thus consuming processing time and money.

III. SCHEDULERS FOR CLOUDS

Cloud computing evolved from grid computing, service oriented computing, and virtualization paradigms.

This means that scheduling algorithms developed for these type of systems can be also used in clouds.

Scheduling algorithms can be distinguished by their main characteristics, such as:

• Target system: the system for which the scheduling algorithm was developed, which can be a

heterogeneous system, a grid, or a cloud computing system.

• Optimization criterion: Makespan and cost are the main metrics specified by cloud user and

considered by schedulers in the decision making process.

• Multi-core awareness: Computer systems can have multiple cores which should be considered by

scheduling algorithms in resource selection.

• On-demand resources: Resources can be leased either on-demand or for long terms. The on-demand

leasing of resources is treated by the scheduling algorithm as a “single expense” during the execution

of the workflow.

• Reserved resources: The algorithm should consider the use of a resource reserved for a long term.

• Levels in service level agreement (SLA): The scheduling algorithm should consider that SLAs can

be organized hierarchically. SLAs with a single-level allow clients and providers to interact directly

to negotiate resource capacities and prices. When multiple levels, the scheduling algorithm can run

in an intermediate facility between the IaaS cloud provider and the final client. By doing so, costs

can be decreased.

Table I lists various workflow scheduling algorithms and compares their characteristics and applicability

for cloud scheduling. Although not all scheduling algorithms used in clouds were conceived for these

systems, recently some scheduling algorithms specially designed to hybrid clouds have been proposed

[5], [6]. Next, we briefly describe some scheduling algorithms commonly used.

The Heterogeneous Earliest Finish Time (HEFT) [7] scheduling algorithm was designed for heteroge-

neous computing systems. Since it was developed before the advent of cloud computing and utility grids,

it does not consider monetary costs. Its objective is to minimize the workflow makespan.
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TABLE I
SCHEDULING ALGORITHMS CHARACTERISTICS

Algorithm Target Optimization Multi-core On-demand Reserved SLA
system criteria aware resources resources levels

HEFT [7] Heterogeneous minimize makespan No No No No
MDP [8] Utility Grid minimize cost No Yes No Single-level

within deadline
PCP [9] Utility Grid minimize cost No Yes No Single-level

within deadline
Pandey [10] Cloud minimize cost No Yes No Single-level
Wu [11] Cloud minimize cost No Yes No Single-level
HCOC [5] Cloud minimize cost Yes Yes No Single-level

within deadline
Genez [6] Cloud minimize cost Yes Yes Yes Two-level

within deadline

The deadline-driven cost-minimization algorithm [8], or the Deadline-Markov Decision Process (MDP),

breaks the DAG into partitions, assigning a maximum finishing time for each partition according to the

deadline set by the user. Based on this time, each partition is scheduled for that resource which will result

in the lowest cost and earliest estimated finishing time. This algorithm works with on-demand resource

reservation.

Abrishami et al. [9] presented the Partial Critical Paths (PCP) algorithm which schedules the workflow

in a backwards fashion. Constraints are added to the scheduling process when such scheduling of jobs

in a partial critical path fails, so that the algorithm will be re-started. This algorithm presents the same

characteristics as does MDP, although it involves greater time complexity, since a relatively large number

of re-schedulings can be demanded during the execution of the algorithm.

The self-adaptive global search optimization technique called particle swarm optimization (PSO) is

utilized to schedule workflows in the algorithm proposed in [10] and which was developed to work in

clouds with a single-level SLAs and on-demand resource leasing. It considers neither multi-core resources

nor workflow deadlines, but focuses solely on monetary cost minimization.

The Hybrid Cloud Optimized Cost (HCOC) algorithm [5], schedules workflows in hybrid clouds by

first attempting costless local scheduling using HEFT. If the local scheduling cannot meet the deadline,

the algorithm selects jobs for scheduling in resources from the public cloud. When selecting resources

from the public cloud, the HCOC algorithm considers the relation between the number of parallel jobs

being scheduled and the number of cores of each resource as well as deadlines, performance, and cost.

As with MDP algorithm, the objective is to minimize the financial cost obeying the deadlines stipulated
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by the user in a single-level SLA contract.

In [6], the workflow scheduling problem was formulated as an integer linear program that considers

the leasing of reserved and on-demand resources from multiple IaaS providers according to a two-level

SLA. The scheduler can run either in a SaaS or PaaS cloud provider, and receive workflow execution

requests with deadlines from its clients (first SLA level), but it can also lease resources from multiple

IaaS providers (second SLA level).

A common characteristic of the above mentioned algorithms is that they do not take into account the

fluctuation of the prices of resource allocation due to the varying demand of resources. In order to reduce

costs, a scheduler could allocate or even re-allocate jobs when prices are low.

IV. IMPACT OF AVAILABLE BANDWIDTH ON SCHEDULING

The available bandwidth in channels connecting processing resources of the hybrid cloud impacts the

makespan and the cost of a schedule. This section discusses this impact as well as the effectiveness of

the HEFT [7], MDP [8], and HCOC [5] in scheduling workflows in hybrid clouds. HEFT is a well-

known scheduling algorithm for heterogeneous computing systems and it aims at makespan minimization.

The MDP scheduling algorithm was designed for utility grids and it is often used in the literature

for comparisons with cost-based algorithms. Moreover, the HCOC scheduling algorithm is a recent

development specially for hybrid clouds. By evaluating these algorithms, we can analyze the adequacy of

scheduling algorithms designed for clouds with those designed for other systems but used for scheduling

in cloud systems.

In the evaluation, the capacity of intra cloud channels as well as the inter clouds channels were varied

so that their impact on the scheduling efficacy could be evaluated.

Three thousand different Montage and LIGO DAGs were generated with computation demands varying

in the interval [5 × 105, 4 × 106] millions of instructions (MI), and communication demands varying

randomly in the interval [60, 500] Megabytes. The deadline for completion of the workflow was set to

2.5 times the duration taken to compute the critical path of the DAG. Such value was set since it was

observed in previous experiments that it leads to the highest number of workflow completions by the

three scheduling algorithms. If the predicted makespan is shorter than the deadline, the solution given by

HEFT is adopted, avoiding cost increase due to the leasing of resources.

The number of processing resources in the private cloud was varied from 1 to 10 with the processing

capacities for each randomly taken from the interval [104, 105] MIPS. For the public cloud, there were 4
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types of resources with computing unit capacities and leasing costs equivalent to the Amazon EC2 small,

large, extra large, and extra large high CPU on-demand instance types. In the experiments undertaken,

each computing unit was randomly drawn from the interval [104, 7 × 104] MIPS, referring to the small

instance type computing power. The 4 types of resources were: small (1 core of 1 computing unit, $0.085

per hour); large (2 cores of 2 computing units each, $0.34 per hour); extra large (4 cores of 2 computing

units each, $0.68 per hour); extra large high cpu (8 cores of 2.5 compute units each, $0.68 per hour).

Moreover, in the experiments, the topologies of private cloud and public cloud networks were fully

connected graphs, and the private cloud was connected to each public cloud by an inter cloud link.

Figure 4 shows the makespan, execution cost and number of solutions found for the Montage and LIGO

DAGs by the three scheduling algorithms evaluated. The bars show the average cost and average makespan

with 95% confidence interval. The three curves represent the total number of successful schedules (i.e., the

number of schedules with a makespan lower than the deadline) achieved by each algorithm. The increase in

the number of solutions found by the HEFT algorithm as a function of the increase in available bandwidth

in private cloud reveals that the private bandwidth is of major importance for scheduling workflows in the

private cloud. Moreover, an increase in bandwidth reduces the costs when the target system is a hybrid

cloud.

The number of solutions found by the HCOC and MDP algorithms increases when the bandwidth

between the private and public clouds increases, since new solutions for problem instances which cannot

be satisfied in the private cloud, can now be found using the resources of the public cloud. The small

influence of public cloud bandwidth in the number of solutions found by the HCOC and MDP algorithms

can be explained by the tendency of these algorithms to group dependent jobs to minimize communication

costs.

The inter cloud available bandwidth reduces the makespan. Moreover, when numerous solutions are

found in the hybrid cloud processing, the average cost of the schedule decreases with an increase in

the bandwidth between the private and public clouds. Schedules which are unfeasible in private cloud

processing can be implemented at a low cost when the inter cloud bandwidth increases. The average

makespan value tends to be close to the deadline, since the scheduling algorithms try to minimize cost

as long as the makespan is kept lower than the deadline. Makespan closer to the deadline can use less

expensive (and slower) resources from public clouds, and more resources from the private cloud which

hardly cost anything compared to using public clouds. Results using other DAGs (Random, AIRSN spatial
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Fig. 4. Results for the Montage and LIGO DAGs.

normalization, the example DAG in MDP paper, and Chimera virtual data) not discussed here, reinforce

this conclusion.

Comparison of the makespan produced by the MDP algorithm with that given by the HCOC algorithm

shows that the former, designed for utility computing, underperforms the HCOC, which was specially

designed for hybrid clouds.

Moreover, the cost demanded by HCOC for processing the LIGO workflow is lower than that demanded

by MDP. The low number of solutions found by MDP when processing the Montage DAG do not allow

a significant comparison of the costs for this DAG.

V. CONCLUSION

This paper has discussed the problem of scheduling applications and services in hybrid clouds. A brief

comparison of some of the scheduling algorithms used in hybrid grids has been provided, with the results

suggesting a prominent importance of communication capacity when scheduling workflows in hybrid
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clouds, especially that of the communication channels between the private and public clouds. Such channels

are usually located in the Internet backbone, which increases the challenges involved in the development

of communication-aware scheduling algorithms since the available bandwidth of these links fluctuates

widely. Moreover, given the importance of the inter-cloud communication channels, the development of

communication-aware or even communication-driven scheduling algorithms is of paramount importance

to provide quality of service and competitive costs for hybrid clouds. Furthermore, an efficient algorithm

developed for efficient use on utility grids (MDP) may not be as efficient for hybrid clouds as are

those algorithms developed specially for such systems (HCOC). This superior performance of the HCOC

scheduler may partially be due to its multi-core awareness, which is clearly a characteristic requiring

consideration in hybrid cloud computing.
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