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Groupwise Frequency Domain Multiuser MMSE
Turbo Equalization for Single Carrier Block

Transmission over Spatially-Correlated Channels
Marcus Grossmann and Christian Schneider

Abstract—This paper proposes a novel turbo equalization
scheme based ongroupwise soft interference cancelling mini-
mum mean-squared error filtering (SC-MMSE) combined with
maximum a posteriori signal detection for multiple access single-
carrier block transmission. For an efficient implementation of
the equalizer, the linear groupwise SC-MMSE filter is directly
derived in the frequency domain by introducing an additional
design criterion in the optimization. Special focus is given on
different heuristic methods for group selection based on mean-
squared error (MSE) and spatial channel correlation criteria.
The first method dynamically forms groups incorporating a priori
information at each turbo iteration, while the second and third
methods provide a static grouping that is valid for all turbo
iterations. Results of correlation chart analysis and bit error
rate simulations demonstrate that thegroupwise turbo frequency
domain equalizer (FDE) achieves a large performance gain over
the conventional SC-MMSE FDE in intersymbol interference
multiple access channels with high spatial correlation among the
multiple users’ transmitted signals. Moreover, it is shownthat the
simple static correlation-based grouping scheme when applied to
the proposed receiver achieves similar performance than the dy-
namic MSE-based scheme at a significantly reduced complexity.
In addition, to assess the practicality of the novel algorithm in
real scenarios, we show numerical results obtained by a series of
simulations using channel-sounding field measurement data.

Index Terms—groupwise minimum mean-squared error turbo
equalization, spatially correlated channels, correlation chart anal-
ysis, single carrier transmission

I. I NTRODUCTION

Turbo equalization [2]-[19] is a joint channel equaliza-
tion/signal detection and decoding technique used for mul-
tiuser single-carrier communication systems with coded data
transmissions over intersymbol-interference (ISI) multiple-
access fading channels. By iteratively exchanging probabilistic
information about the code bits between a soft-input soft-
output (SfiSfo) channel equalizer/multiuser detector and a
bank of SfiSfo channel decoders, the turbo equalizer can
achieve near-optimal performance at very low computational
complexity compared to optimal multiuser detection [1]. In
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its primal form, Douillardet al. [2] involved the maximum
a posteriori probability (MAP) algorithm for iterative joint
equalization and decoding. However, owing to the exponential
increase in computational complexity, such a MAP-based
turbo equalizer is only applicable for systems with a moderate
number of users, transmissions with simple modulation for-
mats, like binary phase shift keying (BPSK), and ISI channels
with few multipath components. Recently, linear filter-based
turbo equalizers utilizing the minimum mean-squared error
(MMSE) criterion have attracted considerable interest [3]-[19].
In this regard, Wang and Poor [3] proposed an iterative detec-
tion scheme for random coded code-division multiple-access
(CDMA) systems that replaces the optimal MAP algorithm
by a low-cost alternative utilizing a combination of a soft
interference canceler and a time-varying (conditional) linear
MMSE filter (SC-MMSE), whose coefficients are calculated
for every transmitted data symbol based on the availablea
priori knowledge from channel decoding. The SC-MMSE-
based turbo approach of [3], with a cubic complexity in all
system parameters, has been later applied by Tüchleret al.
[4] to iterative equalization of single-user coded transmission
with ISI, and further extended by Abeet al. to multiple-input
multiple-output (MIMO) channel equalization in [6]. In [7]-
[11], it has been shown that SC-MMSE block-based frequency
domain equalization (SC-MMSE FDE) allows further reduc-
tion in computational complexity by exploiting the circulant
structure of the channel matrices, obtained when resorting
to a cyclic prefix-based (CP) transmission scheme. More
specifically, the SC-MMSE FDE was derived by applying
the equal variance approximation [10], [12] on the coded
data symbols, yielding time-invariant filter coefficients,and
converting the MMSE equation into the frequency domain.

Unfortunately, due to its simplicity, the conventional SC-
MMSE-based turbo receiver suffers from a considerable per-
formance loss, e.g., as shown in [16] for orthogonal fre-
quency division multiplexing (OFDM) multiuser transmission,
when applied to the ISI multiple access spatially-correlated
fading channel. To overcome this performance degradation,
groupwiseturbo equalization [15], [16] can be employed that
combines SC-MMSE filtering and optimal MAP detection.

The idea ofgroupwisemultiuser detection was first intro-
duced by Varanasi in [20] for uncoded code division multiple-
access (CDMA) channels. The group detector (GD) partitions
the users’ signals into a set of disjoint subgroups, and then
employs the maximum likelihood detection sequentially or
in parallel to the signals in each subgroup. Compared to the
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optimal solution, the GD achieves near-optimal performance
at a significantly reduced complexity. The concept from [20]
was extended in [21] to group antenna detection (GAD) using
linear subspace processing for inter-group interference (IGI)
suppression of spatially-multiplexed MIMO channels with
frequency-flat fading. Also, the authors of [21] presented a
channel correlation-based group selection (GS) scheme that
optimizes the grouping for each individual antenna with re-
spect to optimum system performance. Among other contri-
butions, Moonet. al. [22] has recently shown that the GAD
scheme [21] can be further improved when taking into account
the noise statistics at the receiver. Particularly, they proposed
a group separation strategy based ongroupwiselinear filtering
maximizing the signal-to-interference-plus-noise ratio(SINR)
in each subgroup. In addition, the authors showed that the
SINR criteria can be efficiently be used to derive an SINR-
based GS method that maximizes performance.

Several group detectors employing turbo processing for a
coded data transmission were presented in [14]-[17]. Iterative
soft interference cancellation combined with noise-whitening
filtering, incorporatinga priori information from channel
decoding, was used in [14] to group detection for MIMO flat-
fading systems having more transmitter than receiver antennas.
Note that due to presence of the decoder feedback, the receiver
involves MAP instead of ML detection. In [15], Veselinovic
et al. considered a space-time trellis-coded (STTrC) system in
multiple-access ISI fading channels and derived a time-domain
groupwiseSC-MMSE filtering technique for joint signal detec-
tion of multiple transmit antennas. The aim of jointly detecting
symbols from different antennas was to preserve the effective
degrees of freedom used for suppression of unknown co-
channel interfering signals. In [16], the authors extendedthe
groupwiseSC-MMSE approach from [15] to OFDM multiuser
systems with iterative detection. Group equalization combin-
ing frequency domain SC-MMSE filtering and MAP symbol
detection has also been considered in [17]. However, unliketo
the groupwisefiltering approach [15], [16], the MMSE block
from [17] performs the suppression of residual interferences on
a user-by-userbasis, similar to the standard MMSE filter [4],
to separate the transmitted signals. The MSE at the equalizer
output can therefore not be used to evaluate the performance
of each subgroup which is needed for an adaptive GS at each
turbo iteration.

In this paper, we consider the joint channel equaliza-
tion/multiuser signal detection problem for coded single-
carrier multiple access transmission over ISI channels. Our
goal is to design a computationally efficient turbo receiver
that is robust against spatial channel correlation. To achieve
this goal, we adapt the group detection strategy from [20]
and extend the standard SC-MMSE FDE to a hybrid equalizer
that performs frequency domaingroupwiseprocessing of the
multiple users’ transmitted symbols. In particular, the pro-
posed algorithm divides the users’ signals into several non-
overlapping subgroups and performs IGI equalization utilizing
groupwiseSC-MMSE filtering. The objective of thegroupwise
filter is to jointly suppress residual interferences for the users’
signals in each subgroup. In contrast to previous work [7]-
[12], [17], we directly derive the MMSE filtering block in the

frequency domain to reduce the complexity for the covariance
matrix inversions involved in SC-MMSE equalization.

Particular emphasis is put in this paper on the grouping
strategy which mainly determines the overall performance of
the system. Three greedy algorithms based on MSE and cor-
relation criteria for grouping the users into several subgroups
are proposed. The aim of these algorithms is to find groupings
that reduce noise enhancement due to the SC-MMSE interfer-
ence suppression of highly correlated user signals. The first
scheme dynamically forms subgroups at each turbo iteration
by computing among all possible group partitions the one that
minimizes the maximum subgroup’s MSE. The calculation of
each partition involves a number of matrix inversions, which
however, limits the application of the dynamic MSE-based
algorithm to systems with a small number of users. The second
and third schemes reduce complexity by providing a static
grouping that is valid for all turbo iterations. It is shown
that the simple static correlation-based algorithm outperforms
the static MSE-based grouping scheme and achieves similar
performance than the dynamic MSE-based algorithm at a
significantly reduced complexity when applied to the proposed
turbo receiver.

To quantify the merit of thegroupwiseequalizer, we com-
pare its convergence properties with the standard SC-MMSE
FDE using the correlation chart analysis [13]. Moreover, we
evaluate its bit error rate (BER) and frame error rate (FER)
performance in Rayleigh fading ISI channels with predefined
fixed spatial correlations. In addition, to assess the practicality
of the novel scheme in real scenarios, we show numerical
results obtained by a series of simulations using channel-
sounding field measurement data.

The rest of this paper is organized as follows. In Section II
the system and channel model are introduced. A full derivation
of the proposed turbo equalizer is presented in Section III.In
Section IV, we propose three different greedy methods for the
problem of grouping the users into a set of subgroups. The
convergence property analysis is provided in Section V. In
Section VI, we present some numerical results to verify the
performance of the novel schemes. Finally, we summarize our
results in Section VII.

Throughout this paper, the following notations are adopted.
Normal letters represent scalar quantities, boldface lower case
and boldface uppercase letters designate vectors and matrices,
respectively. The transpose and conjugate transpose operators
are denoted by(·)T and (·)H , respectively. The(l, k)th entry
of a matrix A is denoted by[A]l,k. The Q × Q identity
matrix and theQ × 1 all-one vector are denoted byIQ
and 1Q, respectively. The vectorek is the all-zero column
vector with thekth entry being one. The circQ

{

a
}

operator
generates anQ × Q circulant matrix having the elements
of vector a on its first column. The symbol⊗ indicates
the Kronecker product. The operator diag{A} extracts the
diagonal elements of a square matrixA. The operator diag{a}
generates a square diagonal matrix having the elements of
vector a on its diagonal, whereas the operator ddiag{A}
generates a diagonal matrix having the diagonal elements of
A on its main diagonal. Finally, Trace(·) andE[·] denote the
trace operator and expectation, respectively.
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II. SYSTEM MODEL

We consider a synchronous single carrier cyclic prefix
(CP) assisted multiuser uplink system withN active users,
each equipped with a single transmit antenna. The receiver
is equipped withM antennas. The transmission scheme of
the nth user (n = 1, .., N ) is based on bit-interleaved coded
modulation (BICM), where the information bits are organized
in frames. Each frame consists ofNI bits, arranged in a
vectorun, which is first encoded by a rate-rc binary encoder,
yielding the coded bit vectoran. The encoded bit vectoran is
interleaved by a random bit-interleaver, and BPSK modulated1.
The binary encoder is a serially concatenated convolutional
code (SCCC) [32] and identical for all users. After symbol
mapping, the BPSK modulated data sequence at thenth user is
grouped intoK equal-sized blocks, each containingQ BPSK
symbols,bn(k) ≡

[

b0,n(k), ..., bq,n(k), ..., bQ−1,n(k)
]T

, k =
1, ..,K. These blocks are transmitted simultaneously from the
N users over the frequency-selective fading MIMO channel.
Note that throughout the paper, we use indexn to denote
usern.

The channel impulse response (CIR) between thenth user’s
transmit antenna and themth receive antenna is denoted by
hn,m ≡

[

hn,m(0), ..., hn,m(l), ..., hn,m(L− 1)
]T

, whereL is
the channel memory length that is assumed to be identical
for all links. The block-grouping of the transmit data symbols
is assumed to be aligned with the channel coherence time
such that the channel coefficientshn,m(l) can reasonable be
regarded as being time-invariant during the transmission of a
complete frame ofK subsequently transmitted blocks. This
inherently leads to the assumption of a so called (quasi-)
static MIMO channel. Moreover, we always assume that the
N transmitters and the receiver are perfectly synchronized and
all channel gains are known at the receiver. For the simulations
using the statistical channel model, the MIMO channel matri-
ces are generated according to a spatially-correlated Rayleigh
fading distribution. The spatial correlation matrices follow the
well-known Kronecker model [23] and are assumed to be
identical for all channel taps, i.e,

E
[

ĤH
l Ĥl

]

≡ S, l = 0, .., L− 1,

E
[

ĤlĤ
H
l

]

≡ R, l = 0, .., L− 1,

whereĤl denotes theM ×N channel matrix corresponding
the lth delay-tap, andS ∈ CN×N andR ∈ CM×M are the
spatial transmit and receive correlation matrices, respectively.
For simplicity, we assume uncorrelated receive antennas here
with identical radiation pattern, such thatR = IM .

For an efficient implementation of the frequency-domain
filtering at the receiver, each data blockbn(k) is preceded by
a CP of lengthP = L− 1 before transmission, where the CP
is a copy of the lastP symbols of the block. After removal
of the CP at the receiver, the signals from theM antennas
are arranged intoQM × 1 vectorsr(k), k = 1, ..,K. These

1Note that in this paper, we only consider BPSK modulation, however, the
extension to more generic modulation formats is rather straightforward.

vectors are given by

r(k) =
N
∑

n=1

Hnbn(k) + n(k), k = 1, .., N, (1)

whereHn = [HT
n,1, ...,H

T
n,m, ...,HT

n,M ]T ∈ C
MQ×Q is the

block-circulant channel matrix associated to then-th user with
Hn,m = circQ

{

hn,m

}

∈ CQ×Q, andn(k) ∼ CN (0, σ2
0I) is

the additive white Gaussian noise (AWGN). It is well known
that the eigenvalue decomposition ofHn can be expressed
as [10]

Hn = FH
MΞnF, (2)

whereFM ≡ (IM ⊗ F) is the block-Fourier matrix withF
being theQ-point discrete Fourier transform (DFT) matrix,
whose (l, j)-th element is given by1/

√
Qe−

√
−1 2π

Q
lj , 0 ≤

l, j ≤ Q− 1, andΞn is the block-diagonal frequency domain
channel matrix.

An iterative joint channel equalization and decoding struc-
ture is employed at the receiver. The equalizer and theN
single-user channel decoders exchangeextrinsiclog likelihood
ratios (LLRs) of the coded bits. We denote byλ(·)[·] andζ(·)[·]
the extrinsic and thea priori LLR, respectively, where the
subscript(·) is used to distinguish between the components of
the receiver.

The iterative equalizer deals jointly with the channel equal-
ization, the user-signal detection and the symbol-wise de-
mapping. Its aim is to mitigate inter-symbol interference (ISI)
and to cancel multiple-access interference (MAI) caused bythe
multiple-transmit data streams of theN users. It processes the
received signalsr(k) and thea priori information sequences
{

ζe[bq,n(k)]|q = 0, ..., Q− 1, n = 1, ..., N, k = 1, ...K
}

about the code bits from all users, where

ζe[bq,n(k)] ≡ log

(

Prob
(

bq,n(k) = +1
)

Prob
(

bq,n(k) = −1
)

)

,

and outputs theextrinsicLLRs λe[bq,n(k)] for all transmitted
bits bq,n(k). We remark that during the first iteration of
turbo equalization,ζe[bq,n(k)] is zero for alln, q, k. Later on,
it is provided in the form of theextrinsic LLRs λd[an(i)]
from the channel decoder. TheextrinsicLLRs λe[bq,n(k)] are
forwarded via the deinterleavers to the bank ofN single-user
decoders and serve there in the next turbo iteration asa priori
informationζd[an(i)] about the code bitsan(i).

III. H YBRID SOFT CANCELLATION FREQUENCY DOMAIN

MMSE EQUALIZATION

In this section, we establish the equalizer structure for the
proposed hybrid turbo scheme. The new equalizer separates
the transmitted signals intoG disjoint subgroups, labeled
by the sets(A1, ...,Ag, ...,AG), such that each subgroup
Ag = {a1, ..., aU}, a1 < .... < aU containsU integers corre-
sponding to indexes of users that are jointly detected2. Without

2Note that the proposed scheme can easily be extended to groupdetection
with overlapping subgroups.
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loss of generality, we assume identical sized subgroups, such
thatN = GU .

Consider equalization of the transmitted signals from the
U users of thegth subgroup andkth data block. Corre-
spondingly, the received signals can be split into two parts:
the first part contains the transmitted signals from the users
of the desiredgth subgroup and the second part contains
the interference components from the remainingG − 1 sub-
groups and the additive Gaussian noise. By denotingcg(k) ≡
[bT

a1
(k), ...,bT

au
(k), ...,bT

aU
(k)]T , ∀au ∈ Ag as the vector

containing the users’ transmitted signals of thegth subgroup,
we can rewrite (1) as

r(k) = Hgcg(k) +

G
∑

j=1,j 6=g

Hjcj(k) + n(k), (3)

where Hg ≡ [Ha1
, ...,Hau

, ...,HaU
] ∈ CQM×QU , au ∈

Ag is the gth subgroup’s channel matrix. Here, the term
∑G

j=1,j 6=g Hjcj(k) denotes the interference components from
G− 1 non-desired subgroups. For a compact notation of (3),
we define

Hg ≡ [H1, ...,Hg−1,Hg+1, ...,HG], 1 ≤ g ≤ G (4)

and

dg(k) ≡ [cT1 (k), ..., c
T
g−1(k), c

T
g+1(k), ..., c

T
G(k)]

T , 1 ≤ g ≤ G
(5)

as the matrix and the vector containing all users’ channels
and all users’ transmitted signals, respectively, except those
from thegth subgroup. Based on (4) and (5), Eqn. (3) can be
compactly written as

r(k) = Hgcg(k) +Hgdg(k) + n(k). (6)

A. Derivation of Frequency Domain Filter Coefficients

The equalizer performs soft interference cancellation and
frequency domain MMSE filtering forgroupwiseseparation
of the users’ transmitted signals. Specifically, followingthe
standard SC-MMSE approach [3], it uses the availablea
priori LLR information

{

ζe[bq,n(k)]|q = 0, ..., Q − 1, n =
1, ..., N, k = 1, ...K

}

to compute soft-estimates̄bq,n(k) =
E
[

bq,n(k)|ζe[bq,n(k)]
]

for each transmitted symbolbq,n(k)
using the conditional mean estimator. With the use of a
sufficiently long random bit-interleaver at each user, it can
be assumed that the valuesb̄k,q(n) are mutually uncorrelated.
Then, it holds that [24]

E
[

b̄q,n(k)b̄i,j(l)
]

= E
[

bq,n(k)b̄i,j(l)
]

= 0 for (q, n, k) 6= (i, j, l). (7)

The soft-estimates are used to construct a soft replica of thegth
subgroup’s desired signals and the interference components as

s(k) = Hgc̄g(k) +Hgd̄g(k), (8)

wherec̄g(k) andd̄g(k) are the conditional mean ofcg(k) and
dg(k), respectively.

Given the soft replica (8), the hybrid equalizer performs soft
interference cancellation and linear groupwise MMSE filtering

of the received signalr(k) to separate the transmitted signals
into G independent subgroups. In contrast to the standard
SC-MMSE approach that performs ISI/MAI cancellation on a
user-by-user basis, the groupwise MMSE filter suppresses all
residual interference components from non-desired subgroups
as well as the desired subgroup’s residual ISI components,
while preserving the effective degrees of freedom of the desired
subgroup’s spatial components for joint signal MAP detection.

Let us define byWg ≡ [Wg,1, ...,Wg,u, ...,Wg,U ],
1 ≤ g ≤ G the filtering matrix for thegth subgroup
of size QM × QU , where each sub-matrixWg,u ≡
[WH

g,u,1, ...,W
H
g,u,m, ...,WH

g,u,M ]H , Wg,u,m ∈ CQ×Q de-
fines the filter matrix corresponding to theuth user. Based
on the modified system model in (6), the filter output signal
at the gth subgroup, which is an estimate ofcg(k), can be
expressed as

zg(k) = WH
g

(

r(k)− s(k)
)

+Mgc̄g(k)

= Mgcg(k) + (WH
g Hg −Mg)

(

cg(k)− c̄g(k)
)

+WH
g Hg

(

dg(k)− d̄g(k)
)

+WH
g n(k), (9)

whereMg ∈ CQU×QU is the equivalent channel matrix after
groupwiseMMSE filtering,

Mg ≡







Mg,1,1 . . . Mg,1,U

...
. . .

...
Mg,U,1 . . . Mg,U,U






(10)

with Mg,i,j ∈ C
Q×Q, 1 ≤ i, j ≤ U being diagonal sub-

matrices, whose entries are given by

Mg,i,j ≡ ddiag{WH
g,iHaj

}.

Note that in (9) the first term represents the received signalof
the desiredgth subgroup, the second term represents the resid-
ual self-interference components from all users within thegth
subgroup, the third term represents the residual interference
components from the users’ signals of the remainingG − 1
subgroups (j 6= g), and the last term represents filtered additive
Gaussian noise.

Design criterion 3.1. For an efficient implementation of
the linear filtering equation (9) in the frequency domain, the
filtering matrixWg is constrained to be block-circulant.

With design criterion 3.1, similar to (2), we can write

Wg = FH
MΓgFU , (11)

where Γg ≡ [Γg,1, ...,Γg,u, ...,Γg,U ] ∈ CQM×QU is the
frequency domain filtering matrix, consisting of sub-matrices
Γg,u ≡ [ΓH

g,u,1, ...,Γ
H
g,u,m, ...,ΓH

g,u,M ]H with Γg,u,m ∈ CQ×Q

being a diagonal matrix. Here the entry[Γg,u,m]q,q denotes
the gth subgroup’s filter coefficient at frequency-binq for
user/receive antenna pair (au,m), au ∈ Ag. By applying the
matrix decomposition (11) to (9), the linear filtering equation
can be converted into the frequency domain,

zg(k) ≡ FUzg(k)

= Mgcg(k) + (ΓH
g Ξg −Mg)(cg(k)− c̄g(k))

+ ΓH
g Ξg(dg(k)− d̄g(k)) + ΓH

g n(k), (12)
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whereΞg = [Ξa1
, ...,Ξau

, ...,ΞaU
], au ∈ Ag, 1 ≤ g ≤ G is

the gth subgroup’s frequency domain channel matrix,Ξg =
[Ξ1, ...,Ξg−1,Ξg+1, ...,ΞG], andcg(k) = FUcg(k), c̄g(k) =
FU c̄g(k), dg(k) = FN−Udg(k), d̄g(k) = FN−U d̄g(k), and
n(k) = FMn(k). Moreover, using (11), we can also write
(10) as

Mg = FH
U MgFU = Ug ⊗ IQ,

whereUg ∈ CU×U with the (i, j)th element being given as
[Ug]i,j = Q−1Trace

(

Γg,iΞaj

)

, 1 ≤ i, j ≤ U , aj ∈ Ag.
Design criterion 3.2.The groupwise frequency domain filter

Γg should minimize the average unconditional (i.e., ensemble
averaged) linear mean-squared error (MSE) between thegth
subgroup’s transmitted signals and the frequency domain filter
output signal (12),

MSEg ≡ Q−1
E
[ ∥

∥zg(k)−Mgcg(k)
∥

∥

2 ]
. (13)

Defining Σ as the covariance matrix of the soft cancellation
(frequency domain) output vectorř(k) ≡ FM (r(k)− s(k)),

Σ ≡ E
[

ř(k)řH(k)
]

= ΞgΛ
(1)
g Ξ

H

g +ΞgΛ
(2)
g Ξ

H

g + σ2
0I

with Λ
(1)
g and Λ

(2)
g being the covariance matrices of the

vectorscg(k) anddg(k), respectively,

Λ(1)
g ≡ E

[

E

[

(

cg(k)− c̄g(k)
)(

cg(k)− c̄g(k)
)H
∣

∣

∣

{

ζe[bq,j(k)], j ∈ Ag, ∀q, k
}

]

]

, (14)

Λ(2)
g ≡ E

[

E

[

(

dg(k)− d̄g(k)
)(

dg(k)− d̄g(k)
)H
∣

∣

∣

{

ζe[bq,j(k)], j ∈ Al, j 6= g, ∀q, k
}

]

]

, (15)

the MSE can be written as

MSEg = Q−1Trace
(

ΓH
g ΣΓg − ΓH

g ΞgΛ
(1)
g MH

g

−MgΛ
(1)
g Ξ

H

g Γg +MgΛ
(1)
g MH

g

)

= Q−1Trace
(

ΓH
g ΣΓg −MgΛ

(1)
g MH

g

)

. (16)

Since perfect random interleaving at each user is assumed,
the covariance matricesΛ(i)

g , i = 1, 2 in (14) and (15) are
diagonal. More precisely, they are given by

Λ(1)
g = Λ̂g ⊗ IQ,

Λ(2)
g = ddiag

{

Λ
(1)
1 , ...,Λ

(1)
g−1,Λ

(1)
g+1...,Λ

(1)
G

}

with Λ̂g ≡ diag
{

1− ϕa1
, ..., 1− ϕau

, ..., 1− ϕaU

}

, au ∈ Ag

being the matrix containing the power levels of the soft-symbol
estimatesϕau

≡ E[b2q,au
(k)]. The power levels may simply

be estimated by the sample average over a complete frame
of BPSK symbol estimates̄bq,n(k) [25]. With the MSE (16)

as our cost function, thegroupwiseMMSE filtering problem
satisfying design criterion 3.2 can be expressed as

Γ̃g =arg min
Γg∈CUQ×MQ

Q−1Trace
(

ΓH
g ΣΓg −MgΛ

(1)
g MH

g

)

s.t. diag{Mg} = 1UQ, (17)

where the constraint on matrixMg is imposed to avoid the
trivial solution Γ̃g = 0. To express (17) in a more convenient
form, we define bŷΓg ≡ Γg(IU ⊗ 1Q) ∈ CU×QM andΥg ≡
Ξg(IU ⊗ 1Q) ∈ CU×QM the subgroup’s filtering and channel
matrix, respectively. Using these notations, the MSE in (16)
can be written as

MSEg = Q−1Trace
(

ΓH
g ΣΓg − (Ug ⊗ IQ)(Λ̂g ⊗ IQ)

× (UH
g ⊗ IQ)

)

= Q−1Trace
(

Γ̂H
g ΣΓ̂g −QUgΛ̂gU

H
g

)

= Q−1Trace
(

Γ̂H
g ΣΓ̂g −Q−1Γ̂H

g ΥgΛ̂gΥ
H
g Γ̂g

)

= Q−1Trace
(

Γ̂H
g Σ0Γ̂g

)

, (18)

where Σ0 ≡ Σ − Q−1ΥgΛ̂gΥ
H
g . Based on (18), we can

rewrite the optimization problem (17) as

Γ̆g ≡ arg min
Γ̂g∈CU×MQ

Q−1Trace
(

Γ̂H
g Σ0Γ̂g

)

s.t.Q−1diag(Γ̂gΥ
H
g ) = 1U . (19)

In Appendix A, it is shown that̆Γg under the constraint in
(19) can be derived as

Γ̆g = Σ−1ΥgΘ
−1
g Ω−1

g , (20)

where

Ωg ≡ Q−1ddiag
{

ΥH
g Σ−1ΥgΘ

−1
g

}

,

Θg ≡ IU −Q−1Λ̂gΥ
H
g Σ−1Υg.

Rewriting (20) in the diagonal-block form (11), the optimal
groupwisefrequency domain MMSE filter̃Γg is obtained as

Γ̃g = Σ−1Ξg

(

Θ−1
g Ω−1

g ⊗ IQ
)

. (21)

From (21), we observe that the filter computation requires
the calculation of the inverse of the covariance matrixΣ ∈
CQM×QM . However, taking into account the block-diagonal
structure of the frequency domain channel matricesΞg andΞg

and the symbol covariance matricesΛ(1)
g andΛ

(2)
g , we find

thatΣ is block-diagonal, and therefore its inverse can be effi-
ciently computed, for example by using theLU -decomposition
[30], with only O(QM3) operations per turbo iteration.

Lemma 3.3: By setting U = 1, the proposed hybrid
equalizer is equivalent to the conventional biased SC-MMSE
FDE.

For the special case ofU = 1, i.e., thegth setAg contains
only the index of one user, Eqn. (21) reduces to theunbiased
frequency domain MMSE filter

Γ̃g =
Σ−1Ξg

Q−1Trace(Ξ
H

g Σ−1Ξg)
. (22)
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It can easily be shown that the resulting equalizer structure
based on (22) and the conventionalbiasedSC-MMSE FDE
[10]-[12] have an identical LLR decision metric. Therefore,
both schemes have equal performance in terms of BER.

Using (21) and (9), we may finally express thegroupwise
time-domain filter output at the equalizer as

zg(k) = M̃gcg(k) + vg(k), (23)

whereM̃g = Ŭg ⊗ IQ with Ŭg = Q−1Γ̆H
g Υg, andvg(k) is

the residual interference plus noise term.

B. Derivation of LLR

After groupwise filtering of the received signals, joint
detection of the users’ signals within one subgroup is
performed. The symbol estimates corresponding to the
users’ signals of thegth subgroup to be jointly de-
tected are first grouped together into vectorszg,q(k) ≡
[zq,a1

(k), ..., zq,au
(k), ..., zq,aU

(k)]T ∈ CU×1, au ∈ Ag, for
all q = 1, ..., Q. These vectors are given by

zg,q(k) = Sqzg(k)

= Ŭgcg,q(k) + vg,q(k), (24)

where cg,q(k) = Sqcg(k) and vg,q(k) = Sqvg(k) are the
gth subgroup’s transmitted signal vector and the residual in-
terference and noise vector during theqth transmission period,
respectively, obtained fromcg(k) andvg(k) by multiplication
with selection matrixSq ≡ IU ⊗ eTq . The equivalent channel
matrix Ŭg in (24) is found with (20) as

Ŭg = Ω−1
g Θ−1

g ΥH
g Σ−1Υg.

In order to compute LLR messages for the filtered signal
componentszg,q(k) in (24), we resort to the Gaussian ap-
proximation (see, e.g., [4], [7]) of the residual interference
plus noise term at the filter output, that is known to be valid
in the large system case. Consequently, the vectorvg,q(k) can
be modeled as a multivariate circularly symmetric Gaussian
random process with zero-mean and covariance matrix

Rg = E[vg,q(k)v
H
g,q(k)]

= Q−1Ω−1
g Θ−1

g ΥH
g Σ−1ΥgΩ

−1
g . (25)

We remark thatŬg and Rg are identical for all(q, k) and
have to be computed only once for each subgroup and turbo
iteration. Therefore, theextrinsic LLR for each bq,au

(k) is
obtained as [25]

λe[bq,au
(k)] =

log

∑

x∈X<+1>
u

exp
[

ρg,q(k) +
∑

∀j:j 6=u,x(j)=+1

ζe[bq,aj
(k)]

]

∑

x∈X<−1>
u

exp
[

ρg,q(k) +
∑

∀j:j 6=u,x(j)=+1

ζe[bq,aj
(k)]

] ,

(26)

whereρg,q(k) is the MAP-decision metric defined as

ρg,q(k) ≡ −
(

zg,q(k)− Ŭgx
)H

R−1
g

(

zg,q(k)− Ŭgx
)

, (27)

TABLE I
NUMBER OF COMPLEX MULTIPLICATIONS PER RECEIVED

SYMBOL PER ITERATION.

Complex Multiplications
GroupwiseFDE GMU(2M + 2U + 1) + 2/3(GU3 +M3)

+6GU2 + 5M2 + 1/3(UG +M) + 6G+ 4
FFT/IFFT Operations (M(N + 1) + 2N) log2 Q

Group Detection G2U +GU(2U + 1) +G

andX<±1>
u is the set of2U BPSK data symbolsx ∈ X<±1>

u

for which theuth componentxu = ±1.
An approximate operation count in terms of complex multi-

plications required by the proposed hybrid FDE per turbo iter-
ation is shown in Table I. The algorithm needsM(N+1)+2N
Q-point DFT/IDFT-operations per transmitted block, which is
due to the frequency domain conversion of the received signal,
the soft feedback from channel decoding and the channel
estimates. The calculation of the soft estimates requiringthe
tanh(·) function is not taken into account. Observing Table I,
we find that the overall complexity for the case ofM ≥ N is
of orderO

(

G2U+M(M2+N log2 Q)
)

. We remark that when
the number of users per subgroup is high, i.e., for large values
of U , the exact calculation of (26) becomes computational
expensive. In such cases, the complexity can be reduced by
applying list soft-output sphere detection [27].

C. Comparison with other Criteria

Different alternative choices of optimization criteria can
be used for cancellation of interference components between
subgroups. In [17], equalization is performed by linear filtering
minimizing the unconditional MSE

minimizeQ−1
E

[

∥

∥

∥
Pg

(

r(k)−Hgd̄g(k)
)

− cg(k)
∥

∥

∥

2
]

,

(28)

where Pg ∈ CQU×QM is the time domain MMSE block-
filtering matrix. Also, as shown in [17], a frequency domain
equivalent can be derived fromPg by utilizing the eigenvalue
decomposition of the circulant channel matrices. We note that
the criterion in (28) in the absence ofa priori information
is simply a block-wise notation of the symbol-wise (uncon-
ditional) MSE formulation from [5]. The SC-MMSE filtering
block resulting from (28) is therefore during the first turbo
iteration equivalent to the standard SC-MMSE filtering that
removes interferenceuser-by-userfrom the received signal
to separate the transmitted signals. Unlike to the above MSE
criterion, the objective of our criterion (17) is to obtain afre-
quency domaingroupwiseMMSE filter thatjointly suppresses
residual interferences for the users’ signals in each subgroup.
Besides, more important, only the MSE in (13) can be used to
evaluate the performance of each subgroup, which is needed
for adaptive user grouping incorporatinga priori information
from channel decoding, as considered in Section IV.

Recently, the authors of [22] proposed agroupwisefiltering
technique maximizing the SINR in each subgroup fornon-
iterative joint detection of multi-antenna signals in flat-fading
MIMO channels. Here, we extend the approach from [22]



7

to iterative frequency domain soft interference cancellation
equalization employinggroupwisemaximum-SINR filtering.
Suppose again that design criterion 3.1 holds. Then, using the
notations in (3)-(9), the filtering matrix maximizing the SINR
for the gth subgroup can be obtained as

Γ̌g ≡ arg max
{Γ̂g∈CUQ×MQ}

SINRg, (29)

where SINRg is defined as

SINRg ≡ E
[

‖Mgcg(k)‖2
]

E
[

‖zg(k)−Mgcg(k)‖2
] .

As shown in Appendix B, the optimal value of̌Γg can be
found as a solution of a generalized eigenvalue problem.

We now present a theorem that compares the proposed MSE
and SINR criteria.

Theorem 3.4: The groupwise hybrid equalizers based on
MSE and SINR criteria in (17) and (29), respectively, have an
identical MAP decision metric.

Proof: The proof is given in Appendix C.
ThegroupwiseMMSE and SINR-based filter designs in (17)

and (29), respectively, thus lead to turbo equalizer structures
having identical complexities andextrinsic output LLRs.

IV. GROUPSELECTION METHODS

The performance of the proposed turbo equalizer is largely
determined by the assignment of the users’ signals to sub-
groups. In [22], a GS method based on a capacity criterion
was proposed that maximizes the achievable information rate
of MIMO systems employingnon-iterativegroup detection.
The same authors presented in [31] a grouping scheme using
a min-max subgroup SINR formulation. The algorithms in
[22] and [31] compute the GS metric for all possible group
partitions, and then select the optimum one. Since calculat-
ing the GS metric for each partition involves a number of
complex matrix calculations, these schemes are restrictedto
systems having a small number of users or groupings which
generate large subgroups. Other GS methods exploiting the
channel correlation matrixS have been presented in [21]
and [16]. The algorithm in [21] optimizes the grouping for
each individual antenna of the MIMO system by allowing
overlapping subgroups. Although such an antenna-by-antenna
optimized scheme maximizes performance, it requires very
high complexity cost in practical system configurations. The
GS approach from [16] reduces complexity by adopting only
max/min operations to successively formdisjoint subgroups
maximizing the pairwise correlation sum.

In this section, several new GS criteria foriterative group-
wise MMSE equalization are proposed. Particularly, an algo-
rithm is presented that computes an MSE criterion using the
availablea priori knowledge about the code bits to find, among
all possible combinations ofG subgroups, the group partition
guaranteeing optimum performance at each turbo iteration.
Also, different schemes providing a static grouping valid for
all turbo iterations are discussed. In this regard, a very simple
channel correlation-based algorithm is proposed which does
not needmax/min or compare operations. The performance
of these methods will be compared in Section VI.

A. Grouping based on Min-Max-MSE

First, we propose a GS criterion based on minimization
of the MSE at thegroupwisefilter output. The MSE for the
gth subgroup is obtained by substituting (20) into (16), which
results in the following expression:

MSEg = Trace(Ω−1
g ). (30)

The overall performance of the proposed FDE is mainly
dominated by the subgroup, whose MSE is the highest among
all subgroups. In order to maximize performance, we select
among all possible group partitions the one that minimizes the
worst subgroup’s MSE. A convenient criterion for groupingN
users intoG subgroups is therefore given by

p̂ = arg min
1≤s≤S

max
1≤g≤G

Trace(Ω(s)−1
g ), (31)

whereS denotes the total number of possible combinations
of pairs, and Trace(Ω(s)−1

g ) is the MSE of thegth subgroup
corresponding to thesth (1 ≤ s ≤ S) combination. Based
on (31), we devise a simple method, which is summarized
in Algorithm 1, that dynamically formsG subgroups at each
turbo iteration.

Algorithm 1 Dynamic MSE-based grouping
1: Calculate at each turbo iteration the MSE in (30) for all

subgroups and possible pairings.
2: Solve (31).

Algorithm 1 requires the calculation ofT =
(

N

U

)

inverses
of U × U matrices and it needs to perform the minimum
operationS =

(

N
U

)(

N−U
U

)

· · ·
(

U
U

)

/(G · (G− 1) · . . . · 2) times.
This leads to a high complexity if the numbers of users or
subgroups are large. For example, forN = 16 andG = 4, we
obtain T = 1820 and S = 2627625. To reduce complexity,
instead of dynamically forming the subgroups at each turbo
iteration, a static set can be used for all turbo iterations.This
is the motivation behind the second grouping method, which
is summarized in Algorithm 2, that performs the allocation in
(31) only once at the first turbo iteration.

Algorithm 2 Static MSE-based grouping
1: Calculate at the first turbo iteration the MSE in (30) for

all subgroups and possible pairings.
2: Solve (31).

The MSE in (30) could also be replaced by the subgroup
SINR (47). However, calculating the SINR requires for each
possible partition the Cholesky factorization and the eigen-
value decomposition of the largeQM × QM matrices (44)
and (45), respectively, which may be impractical for large
DFT-sizes and number of receive antennas.

B. Grouping based on Correlation

Next, we propose a correlation-based method to assign users
into subgroups. For this purpose, let us define by

ρk,l =
Trace

(

ΞH
k Ξl

)

√

Trace
(

ΞkΞ
H
k

)

·
√

Trace
(

ΞlΞ
H
l

)
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the pairwise normalized correlation coefficient between user
channel k and l. Further, let V be the upper triangular
correlation matrix with entries

[V]k,l =

{

ρk,l, k > l

0, otherwise.

At high SNR, the performance of the equalizer is largely
influenced by the minimum euclidean distance between the
users’ channels of theG subgroups. It is therefore desirable
to find a group partition that minimizes the maximum pairwise
channel correlation between members of different subgroups.
Given the normalized correlation matrixV, this problem can
formally be expressed as

min max
k∈Ag1

,l∈Ag2
,g1 6=g2,1≤g1,g2≤G

ρk,l. (32)

Solving (32) is a combinatorial problem that requires an
exhaustive search over all possible partitions. Obviously, this
is prohibitively expensive in terms of complexity for largeN
andG. Instead, we propose a greedy approach, which yields a
suboptimal solution, but reduces drastically the computational
load. The proposed method is listed in Algorithm 3.

Algorithm 3 Static correlation-based grouping

1: Initialize the subgroup setsAn = {n}, n = 1, ..., N .
2: Initialize the set containing the user indexesN =
{

1, ...., N
}

.
3: Sort the normalized cross-correlation values of matrix

V in descending order in a vectorv, and keep the
information of the user indexesi, j in V.

4: Set l = 1.
5: if |N | > G then
6: Select thelth position in vectorv. Let i, j be the

corresponding indexes to that position.
7: if i ∈ An1

andj ∈ An2
, n1 6= n2, n1, n2 ∈ N then

8: if |An1
|+ |An2

| ≤ U then
9: An1

= An1
∪ An2

10: Remove indexn2 from setN .
11: end if
12: end if
13: end if
14: Incrementl, and repeat step 5 until the last element of

vectorv, or if G subgroups are filled, i.e.,|N | = G.

Algorithm 3 first allocates theN users intoN subgroups,
and sorts the correlation values of matrixV in descending
order in a vectorv. The algorithm then iteratively allocates two
users corresponding to thelth position (iteration indexl) of
vectorv into one subgroup (lines 5-13). At each iteration, the
two groups having the maximum pairwise channel correlation
are merged. As a result, highly spatially correlated users are
allocated to the same subgroup. This selection may not be
optimal with respect to (32), however, it reduces the noise
enhancement due to the MMSE interference suppression of
highly correlated user signals. The advantage of the preceding
algorithm over the other two methods is that search complexity
is significantly reduced and computation of matrix inversesis
not required.

V. CONVERGENCEANALYSIS

The convergence property of thegroupwiseFDE is analyzed
using correlation charts [13], [18]. The correlation chartrelies,
similar to the well known extrinsic information transfer (EXIT)
chart [26], on the assumption that all LLR messages of the
equalizer and the channel decoders can be modeled as discrete-
time ergodic processes that satisfy theexponential symmetry
condition, such thatp(x) = p(−x) exp(x), wherep(x) is the
probability density function of an LLR message.

Let ϕ(·,n) ≡ E[xnen] be the correlation between the
true binary transmit signalxn and its estimateen ≡
E
[

xn

∣

∣λ(·)[xn]
]

= tanh
(

(1/2)λ(·)[xn]
)

, given the extrinsic
LLR λ(·)[xn] of usern, where the variablexn is a placeholder
for the binary signalsan(i) or bq,n(k). Similarly, we define
α(·,n) ≡ E

[

xntanh
(

(1/2)ζ(·)[xn]
)]

as the correlation between
the true binary signalxn and its estimate tanh

(

(1/2)ζ(·)[xn]
)

,
given thea priori LLR ζ(·)[xn]. Moreover, following [26], we
assume that the conditional probability density functionsof the
random variables(1/2)xnζ(.)[xn] can be well approximated
by Gaussian distributions, i.e.,(1/2)xnζ(.)[xn] ∼ N (µx, σ

2
x),

where due to theexponential symmetryproperty of the LLRs,
µx/σ

2
x = 1. Under these assumptions, the convergence behav-

ior of the FDE can be described by a set ofN correlation
functions,

ϕe,n ≡ fe,n(αe,1, ..., αe,n, ..., αe,N ) ∈ [0, 1],

αe,n ∈ [0, 1], n = 1, ..., N, (33)

where ϕe,n and αe,n denote the correlation at the output
and input of the equalizer, respectively, corresponding tothe
nth user. These functions are determined by Monte-Carlo
simulations, where the correlation values at the equalizer
output are calculated, by invoking the ergodicity, as

ϕe,n ≈ 1

QK

Q−1
∑

q=0

K−1
∑

k=1

bq,n(k)tanh
(

(1/2)λe[bq,n(k)]
)

, ∀n.

Note that each equalizer functionfe,n(·) is conditioned on the
specific channel realization and receiver noise power.

Similar, we describe the correlation function for each SCCC
decoder that combines the operation of the inner and outer
decoder into a single decoder component as [19]

ϕd,n ≡ fd,n(αd,n), n = 1, ..., N.

The functionfd,n(·) can be used to obtain as estimate of BER
after channel decoding at each turbo iteration of the turbo
equalizer [13].

As indicated by (33), each equalizer correlation function
depends onN input values and the corresponding surface
is (N + 1)-dimensional. The convergence behavior of the
iterative receiver is described by several interconnectedmulti-
dimensional correlation charts. In order to avoid such a cum-
bersome visualization, we use the projection technique from
[29] to reduce the dimensionality of each equalizer correla-
tion surface to two dimensions (2D). We definege,n(αe,n),
n = 1, ..., N as the projected equalizer correlation function
corresponding to thenth user. This function may be written



9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ϕ

e
,n

/
α

d
,n

ϕd,n/αe,n

 

 

ge,n(αe,n), n = 1, 2, 3, 4

ge,n(αd,n), n = 5, 6, 7, 8

hybrid equalizer
SC-MMSE FDE
SCCC decoder (f−1

d,n(·))
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(U = 4) and the standard SC-MMSE FDE (U = 1) for each user for a single
random channel realization atEs/N0 = 2 dB. Q = 512.
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Fig. 2. Correlation functions (projection) of the proposedhybrid equalizer
(U = 4) and the standard SC-MMSE FDE (U = 1) for each user for a single
random channel realization atEs/N0 = 6 dB. Q = 512.

as

ge,n(αe,n) ≡ lim
Te→∞

fe,n(ϕ
(Te)
d,1 , ..., ϕ

(Te)
d,n−1, αe,n,

ϕ
(Te)
d,n+1, ..., ϕ

(Te)
e,N ), αe,n ∈ [0, 1], ∀n, (34)

where for each indexn, theN−1 equalizer’s input correlations
ϕ
(Te)
d,r , r = 1, ..., N , r 6= n are the result of the following

recursions:

ϕ(l)
e,r = fe,r(ϕ

(l)
d,1, ..., ϕ

(l)
d,n−1, αe,n, ϕ

(l)
d,n+1, ...., ϕ

(l)
d,n)∀r,

ϕ
(l+1)
d,n = fd,n(ϕ

(l)
e,n), ∀n, for l = 0, ..., Te with ϕ

(0)
d,n = 0, ∀n.

(35)

Using the above 2D-projections, the convergence behavior
can now be analyzed byN independent 2D-correlation charts,
one for each user.

Fig. 1 and 2 illustrate the projected correlation curves of the
grouwpiseequalizer and the conventional SC-MMSE FDE for
a single random channel realization at SNREs/N0 = 2 dB
and Es/N0 = 6 dB, respectively. The correlation functions
of the SCCC decoders are identical for all users and obtained
when the outer encoder is a rate-1/2, memory-4, recursive con-
volutional code defined by the generator(gr, g0) = (23, 35),
where gr denotes the feedback polynomial, and the inner
encoder is a simple rate-1 code having the polynomials
(gr, g0) = (3, 2). An N = 8 multiuser scenario is assumed
where four of the eight users’ channels are highly spatially
correlated at the transmit side and the remaining users’ chan-
nels are close to orthogonal. The off-diagonal elements of the
correlation matrixS are set to[S]ij = 0.9, for 1 ≤ i, j ≤ 4,
i 6= j, and [S]ij = 0 otherwise. The number of subgroups
of the groupwiseFDE is set toG = 2 and the four highly
correlated users’ signals are allocated into one subgroup.

Fig. 2 also shows exemplary the trajectory, representing the
correlation exchange between the equalizer and the SCCC
channel decoder, corresponding to the first user. A vertical
step between the 2D-projected equalizer curve and the SCCC
decoder curve corresponds with respect to (35) to a large
number of iterations between the equalizer and all SCCC chan-
nel decoders (except the first one), until the equalizer output
correlationϕ(l)

e,1 has converged to a fixed value. A horizontal
step between both curves represents a single activation of the
SCCC channel decoder of the first user.

As observed from Fig. 1, for the low SNR value of2 dB,
both turbo equalizers have similar performances for all users.
Moreover, we find that only for the users’ signals having
low spatial correlation the convergence tunnels between the
equalizer and decoder curves are existent and convergence
of turbo equalization may be achieved. For the remaining
highly correlated users’ signals the two turbo equalizers fail
to convergence and thus to decode these users’ messages. In
contrast, as shown in Fig. 2, when increasing the SNR value
to 6 dB, we observe that only thegroupwiseFDE is able to
form an open convergence tunnel for the four highly spatially
correlated user signals and thus to successfully decode all
users’ messages. This indicates thatgroupwiseequalization
improves the convergence threshold and can achieve better
performance than standard SC-MMSE FDE in the presence
of high spatial channel correlation.

VI. N UMERICAL RESULTS

In this section, numerical results of BER and frame error
rate (FER) simulations conducted to evaluate the performance
enhancement achieved by the proposedgroupwiseequalizer
over the standard SC-MMSE FDE are presented. We consider
a single carrier block transmission system with DFT-size
Q = 512. Two different multiuser system setups having
N = M = 4 and N = M = 8 users/receive antennas are
investigated. The turbo equalizer performsTe = 10 iterations
between the equalizer and theN SCCC channel decoders.
We assume a static activation schedule of the components
of the receiver, where after each activation of the equalizer,
decoding of all SCCC decoders proceeds iteratively over



10

TABLE II
SYSTEM PARAMETERS.

Tx antennasN 4/8
Rx antennasM 4/8
DFT lengthQ 512 symbols

Frame lengthKQ 4096 symbols
Outer Encoder Rate-1/2, Memory-4 RSC code ([23, 35])
Inner Encoder Rate-1 memory-1 RSC code ([3,2])

Stochastic Channel Model Rayleigh block-fading MIMO channel
(equal average power per tap)

with Kronecker spatial correlation model
Channel MemoryL 22/32

Interleaving Random
Iterations Te = 10, Td = 10

Channel estimation Perfect
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Fig. 3. Average BER performance of the proposed hybrid scheme and the
standard SC-MMSE FDE at each turbo iteration of anN = M = 4 multiuser
system for Rayleigh fading channels with spatial transmit correlation values
α = 0.0 andα = 0.9.

Td = 10 iterations between the inner and outer SCCC decoder.
The numbers of iterations are chosen to be large enough to
ensure convergence. Two channel models are considered in the
simulations: first a simpleL = 32-tap Rayleigh block-fading
MIMO channel with uncorrelated receive antennas and equal
average tap-energy and second anL = 22-tap measurement
data-based MIMO channel. The channel gains are constant
during the transmission of one frame of4096 BPSK symbols
per user, but change independently from frame to frame. Table
II summarizes the major simulation parameters.

For the simulations, the average SNR at the receiver is
defined as

Es

N0
≡
∑N

n=1

∑M

m=1

∑L−1
l=0 E

[

|hn,m(l)|2
]

E0

Mσ2
0

,

whereE0 is the energy per symbol at the transmitter.

A. Stochastic Channel Model Based Results

Fig. 3 shows the BER performance for theL = 32-tap
Rayleigh fading channel at each turbo iteration achieved by
the two turbo equalizers for theN = M = 4 multiuser system
in a scenario where all four users channels are identically

spatially correlated with parameterα = 0.0 or α = 0.9. The
correlation factorα corresponds to the off-diagonal elements
of the transmit correlation matrixS, i.e., [S]i,j = α for
1 ≤ i, j ≤ N , i 6= j. The groupsize is set toU = N (G = 1)
such that all users are allocated into a single group. In this
setup, all ISI components of the received signals from theM
antennas are suppressed bygroupwiseMMSE filtering, while
the separation of the users’s transmitted signals is performed
by MAP symbol detection. As a reference point, Fig. 3 also
shows the simulation result of the corresponding matched
filter bound (MFB) achieved when all interference has been
removed in the system. The MFB serves as a lower bound on
the BER of both turbo receivers here, obtained when the LLR
feedback from theN channel decoders is perfect. According
to Fig. 3, the two systems achieve identical performances
at each turbo iteration and thus, they offer the same signal
separation capabilities when the users’ channels are spatially
uncorrelated (α = 0.0). Moreover, we find that the gap to the
MFB vanishes at SNRs larger than0.8 dB. In the presence
of high spatial correlation (α = 0.9), however, the simulation
results indicate that thegroupwisescheme outperforms the
standard SC-MMSE FDE by2.2 dB SNR at BER=10−4.

Next, we consider theN = M = 8 multiuser scenario with
[S]i,j = α for 1 ≤ i, j ≤ 4, i 6= j and[S]i,j = 0 for 5 ≤ i, j ≤
8, i 6= j. In this case, we chose a groupsize ofU = 4 and
allocate the four correlated user signals into the first subgroup.
Fig 4 (a) and (b) depict the resulting BER and FER curves,
respectively, for the two subgroups and turbo receivers of this
system setup with the correlation valueα as a parameter. As
can be seen, the performance of users in the first subgroup
significantly degrades for both turbo schemes with increasing
values ofα. Clearly, the larger the spatial correlation the larger
the gain achieved by thegroupwisescheme over the standard
equalizer. Moreover, we see that for the correlated case (α =
0.9), convergence of thegroupwiseFDE is initiated at an SNR
of around6 dB, which is consistent with the analysis in Section
V. On the other hand, we observe that the performance of
the second subgroup is nearly identical for all values ofα,
indicating that both turbo schemes can perfectly separate the
signals between both subgroups.

More importantly, we observe that the slope of the FER
curves remains identical when increasing the value ofα,
implying that the achievable diversity order is maintained,
regardless of the users’ spatial channel correlation. Similar
to the results obtained in [28] for linear MMSE detectors,
we notice that spatial channel correlation does not have any
impact on the diversity order of MMSE-based turbo systems.

B. Channel-Sounding Data Based Evaluation and Results

In the previous subsection, the performance of thegroup-
wise equalizer was analyzed utilizing a stochastic MIMO
channel model with predefined fixed spatial correlations. In
realistic scenarios, however, the spatial-temporal properties
of the radio channel depend on the propagation environment
and the location of the mobile users and the receiver. Since
these channel properties are strongly time-varying, the spatial
transmit and receive correlation matrices constructed from
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Fig. 4. Average BER and FER performance for the two subgroups(black: first
subgroup (user 1 to 4)), gray: second subgroup (user 5 to 8)) of the hybrid
scheme and the standard SC-MMSE FDE for anN = M = 8 multiuser
system over Rayleigh fading channels with varying spatial transmit correlation
valuesα.

the MIMO channel matrix [23], are time-varying as well.
The two extreme cases leading to relatively high and low
spatial correlation coefficients between the users’ channels are,
in general, the line-of-sight (LOS) and the non-line-of-sight
(NLOS) propagation scenario, respectively.

In order to assess the practicality of thegroupwiseFDE in
real fields, the performance is evaluated in this subsectionby
a series of simulations using channel-sounding field measure-
ment data. For this purpose, a MIMO measurement campaign
was conducted in the city center of Ilmenau, Germany. A top
view of the considered urban micro-cell scenario is shown in
Fig. 5. The measurement route has a length of approximately
60 m and was sampled with2000 snapshots, corresponding
to a distance of about0.03 m between neighboring snapshots.
An 16-element uniform circular array (UCA) with minimum
element spacing of half the wavelength was used at the

Fig. 5. Overview of measurement route and position of AP.

TABLE III
MEASUREMENTCAMPAIGN SETUP.

Scenario Urban micro-cell
Environment Open place with LOS cond. and

pedestrain street with NLOS cond.
Track length 60 m

Channel Sounder RUSK ATM, Medav GmbH
Transmit array UCA, 16 elements
Receive array ULA, 8 elements

Transmitter height/tilt 1.5 m/0◦

Receiver height/tilt 4 m/2◦-3◦ down
Transmit power 33 dBm at power amplifier output

Center frequency 5.2 GHz
Bandwidth 120 MHz

AGC switching between MIMO snapshots
Maximal velocity 6 km/h

transmitter side as a mobile terminal (MT). The MT was
moved at walking speed along the route marked by the dashed
line shown in Fig. 5. At the receiver side, an8-element
uniform linear array (ULA) with element spacing of0.4 times
wavelength was used as an access point (AP). The receiver
position was fixed and the height of the ULA was about4 m
above ground. The measurement route can roughly be divided
into two regions; the first part in front of the large open place is
mainly dominated by LOS propagation between MT and AP;
the second part at half of the route, the MT moves from the
open place into the pedestrian street, is mainly characterized
by NLOS propagation. The area was surrounded by buildings
with a height of approximately10 to 15 m. In order to
highlight the LOS and NLOS propagation conditions along
the measurement route, the normalized total receive power at
the AP is depicted in Fig. 6. The major specifications of the
measurement campaign and the antenna setup are summarized
in Table III.

1) Preprocessing of Channel-Sounding Data:The mea-
sured CIRs are preprocessed to be applicable in system
simulations. Following [33], the noise power estimation and
cut method is applied to each measured CIR to remove the
influence of the measurement noise. Moreover, a subband of
20 MHz, corresponding to the channel bandwidth used in the
system simulations, is extracted from the measurement dataat
the center frequency. The channel matrices for the multiuser
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Fig. 6. Normalized total receive power along measurement route

setup are generated by combining the CIRs at eight randomly
chosen mobile positions along the measurement route. At each
position, one element of the antenna array at the transmitter
side is randomly selected. This results inN = M = 8 MIMO
channels. Three different multiuser scenarios are considered
for system simulations.

S1) In the first scenario, the eight users are randomly dis-
tributed into two subgroups. The four users of the first
and second subgroup are placed in the subarea with LOS
and NLOS propagation condition, respectively. The two
subgroups are well separated by1000 snapshots, which
corresponds to a distance of approximately30 m between
the MTs. Furthermore, the distance between users within
each subgroup is fixed and set to100 snapshots, resulting
in a spatial separation of around3 m. The two subgroups
are moved along the measurement route until the end of
the LOS/NLOS subarea is reached. This multiuser sce-
nario reflects the behavior of moving, spatially, spacious,
located users.

S2) The second multiuser scenario is identical to the first sce-
nario, except that the spatial separation between the users
in each subgroup is reduced to5 snapshots (≈ 0.15 m).
This scenario reflects the behavior of moving, spatially,
very dense, located users.

S3) The third multiuser scenario models a random drop-based
approach. Each drop is defined over10 subsequent snap-
shots (≈ 0.30 m) by randomly allocating the eight users
into two subgroups that are placed in the subareas with
LOS/NLOS propagation condition. The radius of the two
subgroups is fixed and set to15 snapshots (≈ 0.45 m).
Moreover, the users’ positions within each subgroup and
the subgroups’ center positions on the measurement route
are randomly chosen for each drop. Similar to the spatial
channel modeling (SCM) or WINNER channel model
[34], the drops are independent and represent randomly
selected multiuser setups, where the MIMO channel
undergoes fast fading according to the mobile movement
of the users.
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Fig. 7. CDF of pairwise users’ channel correlation coefficient for each
subgroup of the three multiuser scenarios.

Fig. 7 shows the cumulative density function (CDF) of the
pairwise users’ channel correlation coefficient for the three
multiuser scenarios S1, S2 and S3. In all three scenarios, asex-
pected, we observe that users (from the first subgroup) placed
in the LOS subarea experience higher spatial correlations than
users (from the scond subgroup) placed in the NLOS subarea.
Furthermore, we find that the largest correlation coefficients
are obtained for the spatially, closely, located users from
scenario S2.

Fig. 8 (a) and (b) depict the BER performance for the two
subgroups achieved by thegroupwisescheme (with groupsizes
U = 2 and U = 4) and the standard SC-MMSE FDE for
scenario S1 and S2, respectively. As can be seen, similar
performances are obtained by both turbo receivers for both
subgroups when all users are spatially well separated (scenario
S1). On the contrary, when users are spatially, closely, located
and experience LOS propagation, as in scenario S2, the
groupwisereceiver clearly outperforms the standard receiver
and achieves1 dB and 6 dB gains at BER=10−2 for the
groupsizesU = 2 andU = 4, respectively.

Fig. 9 illustrates the BER comparison for thegroupwise
receiver with MSE and correlation-based group selection for
scenario S3. Similar to Fig. 8, we observe a performance
gain of the groupwise receiver with increasing groupsize.
Interestingly, we also observe that all three grouping schemes
perform similar at the first iteration, whereas the simple
static correlation-based grouping scheme (algorithm 3) yields
a significant gain over the static MSE-based scheme (algorithm
2) at the last turbo iteration. This indicates that group selection
based on the MSE criterion at the first iteration may not
be optimal for the overall iterative process. The results in
Fig. 9 also show that the simple correlation-based grouping
(algorithm 3) achieves similar performance than the dynamic
MSE-based scheme (algorithm 1) at a reduced complexity.
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Fig. 8. Average BER performance for the two subgroups (black: first
subgroup (user 1 to 4)), gray: second subgroup (user 5 to 8)) of the hybrid
scheme and the standard SC-MMSE FDE for anN = M = 8 multiuser
system for (a) scenario S1 and (b) scenario S2.

VII. C ONCLUSION

A novel turbo equalization scheme based on a group sepa-
ration strategy has been proposed in this paper as a framework
for multiple access single carrier block transmission. Thenovel
turbo equalizer offers a great design flexibility in terms ofcom-
plexity and robustness against spatial channel correlation. The
correlation chart analysis and BER performance evaluation
have confirmed that the novel frequency domaingroupwise
turbo scheme achieves for a moderately chosen group size
a considerable performance gain compared to the standard
SC-MMSE FDE in channels with high spatial correlation
among the users’ signals. We have also developed three
new GS algorithms based on MSE and channel correlation
criteria for group selection. By a realistic channel sounding
data based performance evaluation it has been demonstrated
that the simple static correlation-based GS algorithm achieves
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Fig. 9. Average BER performance of the hybrid scheme and the standard
SC-MMSE FDE for scenario S3.

similar performance than the dynamic MSE-based method at
a significantly reduced complexity.
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APPENDIX A

LAGRANGIAN FOR GROUPWISEMSE CRITERION

The optimization problem in (19) is obviously convex. Thus,
it has a unique solution given in terms of the Karush-Kuhn-
Tucker (KKT) conditions applied to the Lagrangian function

L(Γ̂g,λ) = Q−1Trace
(

Γ̂H
g Σ0Γ̂g

)

+ λT
(

Q−1diag(Γ̂H
g Υg)− 1U

)

, (36)

whereλ = [λ1, ..., λU ]
T is a vector containing the Lagrangian

multipliers. Letγ̂g,u be theu column ofΓ̂g. The optimization
of (36) is equivalent to the optimization of the individual
component-cost functions, indexed byu, separately. Therefore,
Eqn. (36) also be written as

L(Γ̂g,λ) =

U
∑

u=1

(

Q−1γ̂H
g,uΣ0γ̂g,u

+ λu

(

Q−1γ̂H
g,uΥgeu − 1

)

)

. (37)

The KKT conditions to (37) are given by

Q−1Σ0γ̂g,u +Q−1λuΥgeu = 0, ∀u, (38)

Q−1eTuΥ
H
g γ̂g,u − 1 = 0, ∀u. (39)

After some straightforward manipulations of (38) and (39),
the optimal frequency domain filter for theuth component is
obtained as

γ̂g,u = Q
(

eTuΥ
H
g Σ−1

0 Υgeu
)−1

Σ−1
0 Υgeu. (40)

Finally, applying the matrix-inversion lemma to (40) and
rewriting the result in matrix-notation yields the expression
in (20).
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APPENDIX B

GROUPWISEFILTER COEFFICIENTS FORSINR CRITERION

In this subsection, we derive the optimal filter weights solv-
ing the SINR criterion (29). The SINR for thegth subgroup
can be expressed as

SINRg ≡ E
[

‖Mgcg(k)‖2
]

E
[

‖zg(k)−Mgcg(k)‖2
]

=
Trace

(

MgM
H
g

)

Trace

(

(

WH
g Hg −Mg

)

Λ
(1)
g

(

WH
g Hg −Mg

)H

+WH
g HgΛ

(2)
g H

H

g Wg +WH
g Wg

)

=
Trace

(

(

Ug ⊗ IU
)(

Ug ⊗ IU
)H
)

Trace
(

ΓH
g ΣΓg −MgΛ

(1)
g MH

g

)

=
Trace

(

Γ̂H
g ΥgΥ

H
g Γ̂g

)

Trace
(

Γ̂H
g

(

QΣ−ΥgΛ̂gΥH
g

)

Γ̂g

) . (41)

Based on (41), the problem of maximizing the SINR for each
subgroup can be written as

Γ̆g = arg max
{Γ̂g∈CU×MQ}

Trace
(

Γ̂H
g Zg,1Γ̂g

)

Trace
(

Γ̂H
g Zg,2Γ̂g

) , (42)

where Zg,1 ≡ ΥgΥ
H
g ∈ CQM×QM and Zg,2 ≡ QΣ −

ΥgΛ̂gΥ
H
g ∈ CQM×QM are Hermitian and Hermitian positive

definite, respectively. Therefore, Eqn. (42) can be expressed
as a generalized eigenvalue problem, where the matricesZg,1

andZg,2 can be jointly diagonalized as [35]

XH
g Zg,1Xg = Qg (43)

XH
g Zg,2Xg = Q2IU . (44)

Here,Qg = diag{tg,1, tg,2, ..., tg,U , 0, ...0} is anQM ×QM
diagonal matrix, containing the generalized nonnegative eigen-
valuestg,1 ≥ tg,2 ≥ ... ≥ tg,U listed in decreasing order, and
Xg is the matrix of the corresponding generalized eigenvec-
tors. Then, the optimal filter corresponds to the firstU columns
of Xg. Similar to [22], the solution to (42) can be found by
applying the Cholesky factorization toZg,2, Zg,2 = CH

g Cg,
and solving the standard eigenvalue problem

Q2C−H
g Zg,1C

−1
g = EgQgE

H
g , (45)

whereEg ∈ CQM×QM is unitary. The optimal filter maximiz-
ing the above ratio is then given by

Γ̆g = QC−1
g Tg, (46)

whereTg ∈ CQM×U consists of the firstU eigenvectors ofEg

corresponding to theU nonzero eigenvalues ofQg. Moreover,
the SINR related to thegth subgroup is found to

SINRg =
1

UQ2

U
∑

u=1

tg,u. (47)

Also, the equivalent channel and covariance matrices of the
filter output signalzg,q(k) in (24), respectively, are obtained
as

Ŭg = Q−1TH
g C−H

g Υg andŘg = IU . (48)

From (48), we observe that thegroupwisefrequency domain
SINR filter (46) is a noise-whitening filter that whitens the
residual interference plus noise term.

APPENDIX C

PROOF OF THEOREM3.4

To prove that the MSE and SINR criteria (17) and (29) lead
to the same MAP decision metricρg,q(k), we first explicitly
expressρg,q(k) as a function of the filter̂Γg and covariance
matrixRg. By noting thatzg,q(k) in (24) is given byzg,q(k) =
SqF

H
U ΓH

g ř(k)+Ug c̄g,q(k), the MAP decision metric (27) can
be written as

ρg,q(k) = −
(

zg,q(k)−Ugx
)H

R−1
g

(

zg,q(k)−Ugx
)

=
(

SqF
H
U ΓH

g ř(k)−Ug(x− c̄g,q(k))
)H

R−1
g

×
(

SqF
H
U ΓH

g ř(k)−Ug(x− c̄g,q(k))
)

. (49)

The matrix productSqF
H
U ΓH

g is obviously equivalent to the
productΓ̂H

g DH
q , whereDq ≡

(

IM ⊗ diag{eTq F}
)

. Moreover,
sinceUg = Q−1Γ̂H

g Υg, we can further write (49) as

ρg,q(k) =
(

DH
q ř(k)−Q−1Υg

(

x− c̄g,q(k)
)

)H

Γ̂gR
−1
g

× Γ̂H
g

(

DH
q ř(k)−Q−1Υg

(

x− c̄g,q(k)
)

)

. (50)

Consequently from (50), we see that it remains to show that
the matrix product

Yg ≡ Γ̂gR
−1
g Γ̂H

g (51)

is identical for the MSE and SINR criteria. For the MSE
criterion (17),Yg in (51) can be expressed with (20) and (25)
as

Yg = Γ̆gR
−1
g Γ̆H

g

=
(

Σ−1ΥgΘ
−1
g Ω−1

g

)(

Q−1Ω−1
g Θ−1

g ΥH
g Σ−1ΥgΩ

−1
g

)−1

×
(

Σ−1ΥgΘ
−1
g Ω−1

g

)H

= QΣ−1ΥgΘ
−1
g

(

ΥH
g Σ−1Υg

)−1
ΥH

g Σ−1. (52)

Let us now computêΓgR
−1
g Γ̂H

g for the SINR formulation
(17). Using the filter in (46) and the covariance matrix in (48),
we get

Γ̌gŘ
−1
g Γ̌H

g = Q2C−1
g TgT

H
g C−H

g . (53)

From (45), we have

TgT
H
g = Q4C−H

g Zg,1C
−1
g TgQ̂

−2
g TH

g C−H
g ZH

g,1C
−1
g (54)

and

Q̂−1
g = Q−2

(

ΥH
g C−1

g Tg

)−1(
TH

g C−H
g Υg

)−1
, (55)

whereQ̂g = diag{tg,1, tg,2, ..., tg,U} is the U × U diagonal
matrix containing theU nonzero diagonal elements ofQg.
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Substituting (54) and (55) into (53) and using simple algebra,
we have

Γ̌gR
−1
g Γ̌H

g

= Q2Z−1
g,2Υg

(

ΥH
g Z−1

g,2Υg

)−1
ΥH

g Z−1
g,2.

Now, applying the matrix inversion lemma toZ−1
g,2Υg, we

obtain

Γ̌gR
−1
g Γ̌H

g

= QΣ−1ΥgΘ
−1
g

(

ΥH
g Σ−1Υg

)−1
ΥH

g Σ−1

= Yg,

which is identical to (52).
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