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Abstract—Operating at sub-Nyquist rate, compressed sensing
(CS) has been successfully applied to the design of impulse
ultra-wideband (I-UWB) receivers where Nyquist sampling is a
formidable challenge. However, strong narrowband interference
(NBI) can easily jam and saturate the receiver front-end and
greatly degrade the system performance. In this paper, CS is
applied to the design of I-UWB receivers with NBI mitigation.
By exploiting the sparsity of the NBI within the pulse UWB
spectrum, a compressive measurement matrix can be designed
that is not only efficient at collecting signal energy, but also nulls
out the NBI effectively. The performance analysis of the proposed
receiver is provided. Simulation results show the effectiveness
of the proposed method for UWB signal detection and NBI
mitigation.

I. INTRODUCTION

The theory of compressive sampling (CS) is applied to
the design of impulse ultra-wideband (I-UWB) receivers with
narrowband interference (NBI) mitigation. Since CS operates
at sub-Nyquist rates, it is particularly suitable for I-UWB
communications where Nyquist sampling is a formidable
challenge. CS acquires the underlying signal information by
projecting the received UWB signal waveform onto compres-
sive measurements. Since the I-UWB signal is sparse on some
basis Ψ, the number of measurements required is far less
than that used to represent the signal at the Nyquist rate
[1]. Unlike full-resolution digital receiver designs, no ultra-
fast ADC is required. Compared with analog AcR receivers,
wideband analog delay elements are also not required.

It has been shown that the performance of I-UWB receiver
based on compressive measurements can be significantly im-
proved if the sparsity of the UWB signal is exploited [2]. A
measurement matrix that is designed with the knowledge of
the sparse signal structure is more efficient at capturing the
underlying signal energy. The receiver first utilizes the Basis
Pursuit Denoising (BPDN) algorithm [3] to estimate the signal
sparsity model from random measurements. The estimated sig-
nal model is then incorporated in constructing a measurement
matrix to project the received UWB signals. Consequently, far
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fewer measurements are required by a generalized likelihood
ratio test (GLRT) detector leading to a simplified hardware
implementation that requires fewer parallel mixer-integrators
for compressive measurements [2].

This paper focus on extending the subspace detection
method proposed in [2] to NBI mitigation. First, the NBI
subspace is estimated from random measurements when the
UWB signal is absent. When detecting the UWB symbols, a
compressive measurement matrix is designed that incorporates
both the UWB subspace and the null subspace of the NBI.
Thus, the NBI can be effectively mitigated on the measure-
ment stage. The proposed UWB receivers have the advantage
that the NBI subspace can be estimated adaptively and the
proposed method can easily null out strong NBI without
introducing extra hardware.

II. COMPRESSIVE SUBSPACE DETECTION UNDER NBI

For wideband signal detection, sampling at the Nyquist rate
is generally prohibitive. The compressive detectors reduce the
sampling rate by projecting the received signal onto a set
of random waveforms and sampling the projected measure-
ments [4]. Let x ∈ RN be the signal to be detected and
w ∼ N (0, σ2IN ) be additive white Gaussian noise. The
compressive detector obtains the compressive measurements
as y = Φw or y = Φ(x + w), where Φ is an M × N
measurement matrix with M ≤ N .

Assume the signal x is K sparse on some basis Ψ =
[ψ

1
, ψ

2
, . . . , ψ

N
]. That is, x can be represented by a linear

combination of K vectors from Ψ where K ¿ N . The K vec-
tors of Ψ construct a N×K matrix H = [ψ

n1
, ψ

n2
, . . . , ψ

nK
],

where ni ∈ {1, 2, . . . , N} for i = 1, . . . , K. The signal x then
can be represented as x = Hθ, where θ is a K × 1 vector
with all non-zero entries. If the signal subspace H is known,
then instead of using a random matrix Φ where each entry is
drawn from a i. i. d. random distribution, we can construct a
compressive subspace measurement matrix as follows:

Φ̄ = G(HT H)−1HT , (1)
where G is an M ×K i.i.d. random matrix with M ≤ K. It
has been shown that Φ̄ is more efficient than Φ at gathering
the received signal energy, thus leading to better detection
performance [2], [5]. When the signal x is unknown, H can
be estimated from the compressive measurements of the pilot
signals via nonlinear optimizations [2], [5].



In this paper, we extend the design of the compressive
subspace measurement matrix for NBI mitigation. Let the NBI
be Z = Sϕ, where S ∈ RN×J is the NBI subspace, ϕ ∈ RJ

and J ¿ N − K (narrowband interference). The original
problem of sparse signal detection under NBI is to distinguish
between two hypothesis H0 and H1:

H0 : ŷ = Sϕ + w,

H1 : ŷ = Hθ + Sϕ + w. (2)

The proposed compressive detector first projects the received
signal onto the NBI null space and then constructs a subspace
measurement matrix Φ̆ to obtain compressive measurements.
Let P⊥S = IN×N−S(ST S)−1ST be the orthogonal projection
matrix for the NBI null space, then the detection problem is
converted to distinguish between two hypothesis:

H0 : y̆ = Φ̆P⊥S (Sϕ + w),
H1 : y̆ = Φ̆P⊥S (Hθ + Sϕ + w). (3)

Note that under H1, y̆ reduces to: y̆ = Φ̆P⊥S (Hθ +w). Thus,
the NBI is eliminated at the measurement stage. Let H̆ be H̆ =
P⊥S H , then based on the principle of subspace measurement
matrix design, the matrix Φ̆ is designed as follows:

Φ̆ = G(H̆T H̆)−1H̆T . (4)
Let Φ̃ = Φ̆P⊥S be the composite measurement matrix,
then the detector performance depends on the term: t =
xT Φ̃T (Φ̃Φ̃T )−1Φ̃x, which is the signal energy the detector can
collect. It can be shown that t ≈ (M/K)xT P⊥S x. Compared
with Nyquist sampling, there is no performance loss when
M = K. The introduction of the random matrix G makes
the detector robust to magnitude variations over θ. Each
measurement is equally important.

In practice, both the interference subspace S and the signal
subspace H are unknown. They have to be estimated before
the subspace measurement matrix can be constructed.

III. ULTRA-WIDEBAND COMMUNICATION SYSTEM MODEL

Consider a peer-to-peer I-UWB communication system
where binary symbols are conveyed by a stream of ultra-short
pulses g(t). g(t) has unit energy and time duration Tg . Binary
PAM modulated pulses of g(t) are repeated over consecutive
Nf frames to transmit one binary symbol. The duration of a
frame is Tf and a symbol period is Ts = NfTf . Each frame
contains Nc chips with chip duration Tc.

Pilot symbol assisted modulation combined with direct
sequence spread spectrum (DS) coding and time-hopping (TH)
coding is proposed for signaling [6], [7], [8]. Each burst
includes Np pilot symbols which are not data modulated and
Ns symbols which are data modulated. The total number of
symbols in one burst is Nd = Np + Ns. The pilot symbols
are divided into three groups. The first group contains Np1

symbols that are used to estimate the NBI subspace; the second
group contains Np2 symbols that are used to estimate the UWB
signal subspace; the third group contains Np3 symbols that
are used to provide side information about the channels. The
transmitted waveform x(t) over a burst can be represented as:

x(t) =
NdNf−1∑

n=0

anbbn/Nfc
√

Eg(t− nTf − cnTc), (5)

where an ∈ {±1} is pseudorandom (PN) DS code; cn

is the PN TH code. The TH codeword is assumed to be
uniformly distributed in [0, Nc − 1]. E denotes the energy of
the transmitted waveforms. When transmitting the first group
of the pilot symbols, no UWB pulse is transmitted, thus bi = 0
for i ∈ [0, Np1−1]. It follows that bi = 1 for i ∈ [Np1, Np−1]
and bi ∈ {±1} with equal probability for i ∈ [Np, Nd − 1].
It can be shown that the proposed DS-TH signaling has the
advantage that the transmitted signal spectrum is smooth, thus
providing coexistence with other narrowband communications.

The signal x(t) are transmitted through a multipath I-UWB
channel that is modeled as:

h(t) =
L−1∑

l=0

αlδ(t− τl), (6)

where L is the number of propagation paths and αl and τl

are the attenuation and the delay of the lth path, respectively.
δ(t) denotes the delta function. The maximum excess delay
of the dense multi-path channel is given by Tmed. To avoid
intersymbol interference (ISI) and intrasymbol interference, it
is assumed that Tc > Tg + Tmed.

It is assumed that the received UWB signal is corrupted by
both narrowband interference v(t) and noise w(t). The NBI
v(t) is modeled as the sum of Nv interferences vi(t), where
i = 0, . . . , Nv − 1 and the spectrum of vi(t) is given by:

Svi(f) =
{ Pvi

2 , fvi − Bvi

2 ≤ |fvi | ≤ fvi + Bvi

2
0, otherwise.

(7)

Here, Pvi/2 is the interference level; fvi is the inter-
ference central frequency; Bvi is the interference band-
width. The autocorrelation function of vi(t) is: Rvi(τ) =
PviBvi cos(2πfviτ)sinc(Bviτ).

w(t) is zero-mean, white Gaussian noise with two-sided
power spectral density N0/2. The noisy signal goes through
an ideal bandpass filter with one-sided bandwidth B and center
frequency fc. It is assumed that the desired signal and the NBI
v(t) pass through the filter without any distortion. The received
signal at the output of the filter is:

r̃(t) =

t∫

0

h(t− τ)x(τ)dτ + v(t) + w̃(t). (8)

w̃(t) is a zero-mean Gaussian random process with autocor-
relation function: Rw̃(τ) = BN0sinc(Bτ)cos(2πfcτ).

The filtered signal is then projected onto a set of mea-
surement waveforms where each waveform is matched to
a row vector of a measurement matrix. The compressive
measurement is implemented by M mixer-integrators where
the integration interval Tprj satisfies Tg +Tmed > Tprj ≥ Tg .

Perfect knowledge of PN sequences an, cn and ideal syn-
chronization are assumed on the receiver. The compressive
measurements of received nth frame begin at t = cnTc +
(n − 1)Tf . During the first group of the pilot symbols, the
compressive measurement multiplied by an is represented as:

y1[n] = anΦ1v[n]+anΦ1w[n], n = 0, . . . , Np1Nf −1. (9)



y1[n] is an M × 1 measurement vector contains the outputs
of the M mixer-integrators of the nth frame. v[n] ia an
N × 1 digitized NBI within the measurement interval of
the nth frame. A sampling frequency Fs is implied. As in
critical Nyquist sampling, the underlying sampling frequency
Fs satisfies Fs = 2 ∗ (fc + 0.5B). The data length is
thus N = TprjFs. w[n] is the digitized noise within the
measurement interval of the nth frame. w[n] is assumed to
be white Gaussian noise (WGN) with variance N0B. Φ1 is a
measurement matrix of size M ×N with entry drawn from a
i. i. d. Bernoulli distribution. Note that no UWB signals are
transmitted during this time period. Based on the compressive
measurements y1[n], the NBI subspace can be estimated.

During the second group of the pilot symbols, the received
data are projected onto a different measurement matrix Φ2 that
exploits the information of NBI subspace. The compressive
measurement multiplied by an during this period is repre-
sented as:

y2[n] = Φ2x + an+4NΦ2v[n +4N ]
+an+4NΦ2w[n +4N ], n = 0, 1, . . . , Np2Nf − 1,(10)

where 4N = Np1Nf . xN×1 is the digitized noise-free
received signal h(t)

⊗
w(t) within the measurement interval

Tprj , where
⊗

denotes convolution. Let P⊥v be the projection
matrix of the estimated null space of v(t), then Φ2 is given
by Φ2 = Φ1P⊥v and Φ2v[n +4N ] ≈ 0. Based on the mea-
surements y2[n], the UWB signal subspace can be estimated.

For the pilot symbols in the third group and all following
data modulated symbols, the received data are projected onto
another measurement matrix Φ3. As will be described in
Sec.IV-B, the design of Φ3 exploits both the NBI subspace
information and UWB signal subspace information. The com-
pressive measurement multiplied by an during the third group
of pilot symbols is represented as:

y3[n] = Φ3x + an+4̃NΦ3v[n + 4̃N ]

+an+4̃NΦ3w[n + 4̃N ], n = 0, 1, . . . , Np3Nf − 1,(11)

where 4̃N = (Np1+Np2)Nf . The compressive measurement
multiplied by an for the data modulated symbols is represented
as:

yd|j [n] = bjΦ3x + an+4̂NΦ3v[n + 4̂N ]

+an+4̂NΦ3w[n + 4̂N ], n = 0, 1, . . . , Nf − 1, (12)

where 4̂N = (Np+j)Nf and j = 0, 1, . . . , Ns−1. bj ∈ {±1}
is the modulated data for transmission.

IV. SUBSPACE ESTIMATION AND SYMBOL DETECTION

A. Estimation of NBI subspace
Since v(t) is the sum of narrowband signals, v(n) can be

sparsely representated in the DFT or DCT domain. However,
v(n) is length-limited. Thus, its DFT/DCT representation is
not strictly sparse and the signal DCT components show
power-law decaying. We are interested in cancelling the most
significant NBI components in the DCT domain. Thus, y1[n]
is rewrited as:

y1[n] = anΦ1Cζ[n] + anΦ1w[n]. (13)

where C = [c0, c1, . . . , cN−1] is the inverse DCT transform
matrix and ζ[n] is the representation of v[n] in the DCT do-
main. Since anΦ1w[n] is colored noise, a whitening procedure
is followed. The whitened measurement data is:

ỹ1[n] = anUΦ1Cζ[n] + anUΦ1w[n]. (14)

where U is the whitening matrix such that UUT =
(Φ1ΦT

1 )−1. Since UΦ1w[n] is white Gaussian noise, the
BPDN method can be directly used to estimate ζ[n]. The
resultant solution ζ̂[n] is then used to estimate the NBI
subspace in the DCT domain.

Let ζ̃ be

ζ̃ =
Np1Nf−1∑

n=0

|ζ̂[n]| (15)

and let ζmax = max{ζ̃0, ζ̃1, . . . , ζ̃N−1} be the entry in
ζ̃ with the largest magnitude. Then the NBI subspace can
be approximately represented by Cv = [cn0 , cn1 , . . . , cnJ

],
where nj ∈ {i| |ζi| > µζmax}. Here µ is an adjustable
threshold used to detect the most significant components of
NBI. The projection matrix P⊥v is then designed as: P⊥v =
IN −Cv(CT

v Cv)−1CT
v .

B. Estimation of UWB signal subspace

It has been demonstrated that the received I-UWB signal is
sparse on some dictionary Ψc [1]. The design of the dictionary
Ψc exploits the time sparsity of the multipath UWB channel
model h(t). Please refer to [1] for details on the dictionary
design for I-UWB signals.

The compressive measurements over all the second group
of the pilot symbols are averaged to reduce the noise effect.
The averaged measurement is given by:

ȳ2 =
1

Np2Nf

Np2Nf−1∑
n=0

y2[n]. (16)

Since NBI mitigation has been explicitly performed, we can
model the residual NBI Φ2v[n+4N ] as zero-mean Gaussian
noise with covariance matrix Φ2RvΦT

2 , where Rv(i, j) =∑Nv−1
k=0 Rvk

(|i− j|/Fx). ȳ2 is then whitened using whitening
matrix Ũ with Ũ ŨT = Np2Nf [Φ2(Rv + N0BI)ΦT

2 ]−1.
Let Ψu be the sampled version of the dictionary Ψc with

sampling frequency Fs. The signal structure is assumed to be
x = Huθu, where the N ×K matrix Hu is constructed by K
vectors of Ψu. Given Φ2, Ψu and the whitened measurements
y2, the BPDN algorithm is employed to estimate K and the
K relevant vectors of x from Ψu. Let Ĥu be the estimation
of Hu by the BPDN algorithm and H̃u = P⊥v Ĥu, then the
M ×N measurement matrix Φ3 is constructed by:

Φ3 = G(H̃T
u H̃u)−1H̃T

u , (17)

where G is an M ×K i.i.d. random matrix.

C. GLRT detector

Assume the data bits {1,−1} are sent with equal probability.
Without loss of generality, the compressed detection of the
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Fig. 1. Performance of subspace UWB detector with NBI mitigation.

jth symbol bj is discussed. Depending on the compressive
measurements, two hypothesis must be distinguished:

H0 : yd|j [n] = −Φ3x + an+4̂NΦ3v[n + 4̂N ]

+an+4̃NΦ3w[n + 4̃N ], (bj = −1),

H1 : yd|j [n] = Φ3x + an+4̂NΦ3v[n + 4̂N ]

+an+4̃NΦ3w[n + 4̃N ], (bj = 1),

with n = 0, 1, . . . , Nf − 1. Note that Φ3x can be estimated
from compressive measurements of the third group of the pilot
symbols within the same burst. Since the residual NBI can
be approximated as Gaussian noise, it can be shown that a
sufficient test statistic of the GLRT detector is:

T (yd|j) = (Φ3x + Φ3ξp)T (N0BΦ3ΦT
3 )−1(bjΦ3x + Φ3ξd),

(18)
where ξp = 1

Np3Nf

∑Np3Nf−1
n=0 w[n + 4̃N ] +v[n + 4̃N ] and

ξd = 1
Nf

∑Nf−1
n=0 w[n+4̂N ]+v[n+4̂N ]. If T (yd|j) > 0, the

estimation of bj is 1; else, it is −1. An approximate expression
for the bit error probability of the detector conditioned on
h(t) and G, Pe|G,h, can be derived based on Gaussian
approximations. It can be shown that [9]:

Pe|G,h = Q

[((Np3 + 1
Np3Nf

) 1
|z|2 +

M

Np3N2
f |z|4

)− 1
2
]
. (19)

z is given by z = VΦ3x, where V is designed such that
VT V = [Φ3(N0BIN + Rv)ΦT

3 ]−1.

V. SIMULATION RESULT
In our simulation, the proposed compressive detector with

NBI mitigation is evaluated for I-UWB signal detection under
strong narrow band interference. The UWB channel model
used for simulation is IEEE 802.15.4a C-1 for residential
line of sight (LOS) environment [10]. The mean root-mean-
square (RMS) delay spread of C-1 is 17 ns. Unit energy
of the channel model is assumed. The transmitted pulse is
the second derivative of Gaussian with the central frequency
fc = 3 GHz and pulse width Tg ≈ 0.35 ns. For the front-
end bandpass filter, the noise bandwidth B is 8 GHz. The

virtual sampling frequency Fs for the random digital sequence
is 16 GHz. The I-UWB singling parameters are set as follows:
Np1 = 5, Np2 = 30, Np3 = 10, Nf = 5, Tc = 32 ns,
Tf = 800 ns and Tprj = 32 ns for objective data rate of
250 kb/s. The maximal PN TH codeword is Nc = 25. For
subspace compressive detection, the number of compressive
measurements M is only 64, compared with N = 512, the
length of the digitized signal. The NBI is modeled as the sum
of two NBI interferences. One NBI is centered at f1 = 1.6
GHz with bandwidth B1 = 20 MHz. The other NBI is centered
at f2 = 1.6 GHz with bandwidth B2 = 10 MHz. QPSK
modulation for both NBI signals is assumed. The signal to
interference power ratio (SIR) is −20 dB.

The performance of the proposed UWB receiver is evaluated
under different E/N0 ratio and the simulation results are
shown in Fig. 1. For comparison purposes, the simulation
results of subspace UWB signal detection is also shown, where
there is no NBI subspace estimation and cancellation, but
only DS-TH coding is used for NBI mitigation (Np1 = 0
and Np2 = 35). The proposed UWB detector with NBI
subspace estimation and cancellation substantially outperforms
the compressive subspace detector which does not exploit the
NBI signal structure.

VI. CONCLUSION

In this paper, CS based UWB receiver operating at sub-
Nyquist rate is proposed for UWB signal detection and NBI
mitigation. By exploiting the signal and NBI subspace, the
proposed receiver is not only efficient at gathering signal
energy, but also effective at NBI mitigation. Furthermore,
NBI subspace detection and cancellation do not require extra
hardware. In the future, the proposed UWB receiver design
will be extended to multiuser UWB signal detection.
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