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Abstract—In this study, we investigate the task offloading issue
in mobile social networks. Although the ‘d-choice’ paradigm in
‘ball and bin’ theory [1] had shown the power of random choice
in load balancing with random walk model, its performance could
be fairly poor when real trace data sets are concerned. According
to our preliminary evaluation results with ‘MobiClique’ [2], the
‘d-choice’ scheme could not achieve well balanced allocations
in real trace data set. Nevertheless, it would bring fundamental
challenges to task reassignment in the following aspects: First
of all, some of the friendships are relatively stable, which would
lead to a more imbalanced task assignment, even if the ‘d-choice’
scheme is applied for balancing. Secondly, some users would meet
quite infrequently, which could inevitably lead to intolerable time
delay and unfair task allocations.

In tackling with these difficulties, we revisit the real data sets
[2] [3] [4] for exploring the contact property among users. We
find that, the frequently met users could be leveraged for efficient
task execution due to higher task priority. To this end, we propose
the ‘iTop-K’ algorithm, leveraging the basic concept, i.e., ‘your
friends are more powerful than you’ [5], which encourages mobile
users to assign tasks among intimate friends instead of pure
random assignment. With careful selections of ‘Top-K’ friends,
we achieve balanced load and guaranteed performance at the
same time.

Experimental studies verify our scheme and show the effec-
tiveness with three typical data trace sets, including ‘MobiClique’
[2], et al.. In these typical networking scenario [2] [3] [4], ours
outperforms the conventional random choice scheme up to 15⇥,
and the social relationship assignment without priority method
up to 9⇥. Moreover, the ‘Top-K’ scheme could be adaptive
even when no intimate friends are available. By scaling the
‘K’ factor to larger values, our scheme outperforms random
assignment, and could be inspiringly close to the optimal solution.
In summary, ours could effectively explore the social relationship
and leverage it for efficient task assignment, which would further
encourage more mobile users to work together under the rule of
social contacts.
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Network
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I. INTRODUCTION

Nowadays’ smart phone is the main tool for us to access
any kind of information from fixed or mobile ad hoc terminals.
When mobile services are provided to the mass [6], the self-
organized computing, communication, and storage services are
main concerns for most of the mobile users. Specifically, orga-
nizing distributed participants’ sensing data as well as services
in ad hoc way will need distributed coordination in sensing and
computing, together with relatively low communication over-
head. In particular, participatory sensing solutions enable more
users to share their sensing data in non-invasive manner [7] [8]
[9], which encourage collaborations among massive number
of mobile participants [10]. Specifically, in data intensive
mobile computing environment, more concrete collaborations
are desperately needed. Mobile users with heavy tasks need
to offload their tasks to the contacted friends for efficient
execution. And users could offload their tasks to the contacted
friends with higher energy and computing efficiency.

Previous studies fail to achieve perfect load balancing for
two reasons: (1) For centralized task reassignment systems,
the tasks are sent to the remote cloud instead of nearby users,
which would inevitably cost too much bandwidth, and could
not leverage the resources in cloud effectively [7] [11] [5].
(2) Even for pure distributed networks, the balanced task
offloading is still hard to achieve [7] [12] because of the
transitory inter-contact and highly dynamic queueing length
[10] [13] [14].

In this work, we revisit the load balancing scheme according
to ‘ball and bin’ theory [1], which has been proposed as a sim-
ple but effective approach for traffic balancing in distributed
networks [11] [12]. Leveraging the real-trace data ‘Mobi-
Clique’ [2], we make some basic trace-driven simulations.
We find that such scheme is not applicable, especially when
real mobility traces are applied. The reason is, for real trace
data, social relationship dominates users’ contact duration. For
users with close relationship or similar interests, the contact
durations could be extremely large. Due to the non-uniformly
distributed contact duration, random assignment leads to im-
balanced user load distribution. Also, for some users without
such intimate relationship, task assignment in ‘ball and bin
theory’ will inevitably lead to low efficiency. In summary, the
root reason is, conventional ‘ball and bin’ scheme failed to
explore and exploit the inherent social relationships among
mobile users effectively.

We propose a new concept for balanced task offloading
algorithm design, that is, ‘Your friends are more powerful
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than you.’ Considering the social relationship among users,
we propose an ‘iTop-K’ approach in building a robust and
efficient task offloading scheme.

Such design is based on two fundamental observations in
our preliminary experimental study.

1) Social contacts are relatively stable and could be used for
task assignment [15] [16]. To this end, there are closer
‘social relationships’ [17] among users with shorter
contact interval, which will lead to higher task execution
priority as well as efficiency [5] [18].

2) The statistical results in social contacts can also be used
for further optimization. For example, users are willing
to assign their tasks to ones with higher social contacts
frequency.

Leveraging these two basic but important findings, we
propose a lightweight and distributed algorithm to enable task
offloading according to social relationships. The contribution
of our work is three-fold:

• First, we explore the social contacts, and exploit the ‘Top-
K’ users with contacting frequency to improve the task
offloading efficiency. In that, social contacts are used for
the ‘Top-K’ mobile users, which are further leveraged for
task execution priorities.

• Second, we validate ‘iTop-K’ with real traces, where the
proposed algorithm could outperform ‘d-choice’ scheme
[1] [19] significantly. To the best of our knowledge, this
work is the first to achieve balanced task assignment in
pure distributed mobile networks, especially when real
trace data sets are considered for evaluation.

• Third, considering the case that, there is no intimate
friends in contact window, we use a scalable ‘K’ scheme,
where the ‘K’ value could be adaptively adjusted in
selecting friends. The ‘K’ value means the number
of candidate users1 for task allocation. We find that,
under the scalable ‘K’ scheme, ‘iTop-K’ significantly
outperforms the basic scheme when ‘K = 2’, and shows
improved balancing property even when ‘K = 16’.

The remainders of this paper are organized as follows: we
review the state of art in Section II, and make a further under-
standing on social contacts with real trace data in Section III.
Further, we present the problem formation in Section IV. After
that, algorithm design is introduced in Section V. To validate
our proposed scheme, extensive evaluations have been done
and illustrated thoroughly in Section VI. Finally, we conclude
our work in Section VII.

II. RELATED WORK

A. Random Walk
Our work relates to the efficient data transfer schemes over

disruption-tolerant networks or opportunistic networks [10],
which highly correlates with the random walk model. The
random walk concept was proposed by Karl Pearson [20].
Note that, in mobile social network, the social relationship
dominates the trajectories of the mobile users. Fortunately,

1Here the candidate users denote the users in communication range to each
other, and could successfully accomplish task offloading in contact windows.

random walks can be incorporated into mobile social network
for exploring the character and opportunities in data transmis-
sions. For instance, Newman [21] proposes the random-walk
betweenness centrality. This interesting metric reasonably de-
fines how often a node in graph is visited by a random walker
between all possible mobile users. Similar to the betweenness
evaluation, Noh and Rieger [22] introduce the random-walk
closeness centrality metric, which measures how fast a node
can effectively get a message from other mobile nodes, in the
random deployed system, such as the distributed mobile social
networks.

The intermittent contacts are useful for data sharing, which
have been well explored and studied in variety of network
settings, from military warfare [23] to disasters recovery [24].
These proposals believe that, the fixed infrastructure is unavail-
able or costly, even highly unreliable. With numerous cheap
and distributed working nodes, more complex tasks could
be accomplished successfully with proper and distributed
cooperations.

B. Task allocation

Many working crowdsourcing systems are making efforts
to realize this vision, in terms of designing actual platforms,
providing cooperative task execution among users with similar
interests and demands. In smart city sensing applications,
crowdsourcing paradigms leverage the pervasive human be-
haviors, e.g., walking, driving and shopping etc., to provide
a large scale urban sensing network with wider coverage in
time and space domain. Even further, the social relationship,
e.g., the crowd gathering and migration are also important
for some specific applications, e.g., flu influence detection,
air quality, and traffic monitoring etc.. The booming of smart
phones speeds up the crowdsourcing based applications for
urban sensing. Recently, the crowdsourcing based sensing
applications are exploited to monitor the urban environment
[28]–[31]. More specifically, Mun et al. [32] employ the
customized and portable sensors on each participant to monitor
the air quality of the city. And more efforts have been made for
environmental monitoring with pervasive computing [30], [31]
[33] [34]. For example, the constructions of noise map for the
smart city are discussed in [35]. Leveraging the microphones
of the participants, these works focus on implementation of
the monitoring system. However, they failed to consider the
task allocation efficiency, because unreliability and inaccuracy
of the observations are inevitable in participatory sensing
networks. To this end, more efforts are needed for efficient
and cooperative task execution. One of the most fundamental
requirement is to balance tasks among users, since overloaded
tasks would lead to intolerable processing delay and single
point of failure.

For traffic balancing schemes, few solutions have been
proposed or formally addressed in dealing with the afore-
mentioned challenges, especially in mobile networks for data
delivery [36]. P. Key et al. [12] propose an efficient load
balancing scheme for multi-path routing networks. They cre-
atively leverage the ‘ball and bin’ theory, where traffics are
assigned to paths with ‘d’ choices. Here ‘d’ is the number
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of network paths. Recently, inspired by this idea, an efficient
task offloading scheme has been proposed for mobile social
networks [11], where tasks are assigned to the least loaded
mobile users among ‘d’ choices, where ‘d’ is the number of
candidate mobile users.

The main focus of this paper is load balancing in distributed
crowdsourcing system. Different from previous crowdsourc-
ing applications, we use a pure distributed computation and
communication model, where users do not need to transmit
any messages for centralized computation. Moreover, our
major concern is how to apply the proposed task allocation
scheme with real trace data, where social relationships could
be effectively explored and exploited.

III. REVISITING THE ‘D-CHOICE’ SCHEME WITH
REAL-TRACE DATA SET

First, we evaluate the impact of the real trace data on task
offloading scheme. As it has been verified in previous studies,
simple allocation schemes based on ‘ball and bin’ theory [12]
[11], could effectively balance the network load without global
information. We revisit this problem with real trace data [2],
and find that, the conventional ‘ball and bin’ scheme could not
provide balanced allocations, especially when real data traces
are applied. After that, we make two basic observations on real
trace data. First, the contact frequency is extremely high for
some specific user pairs. Second, the social contact frequency
is not uniformly distributed. These observations motivate us
to explore the social relationship, and leverage it for efficient
task offloading.

A. Impact of the social relationship in real trace data
The basic content of ‘ball and bin’ theory could be stated

as follows. Given that, n nodes are to be thrown into n

bins, where each ball is chosen to each bin uniformly and
independently. The focus is the maximum loaded bin, i.e.
the largest number of balls in all the bins, is approximately

logn

log logn

. If the balls are thrown sequentially, and each ball is
placed in the least loaded bins of d � 2, the maximum load
is log logn

log d

+⇥(1) with high probability. We call this method
‘d-choice paradigm’.

In ‘d-choice’ paradigm, each user randomly selects ‘d’
users among the contacted neighbors, and assigns tasks to
the least loaded one. In light of the real trace data [2],
we make statistical analysis on the contact times of mobile
users. The task load in each user could be available by basic
communication model. When the users are in contact range,
there is a probing/answering process among the contacted
neighbors. To this end, the task load on each user could be
shared among the contacted neighbors. Moreover, according
to the basic scheme of ‘d-choice’, only two neighbors need to
be probed, and the traffic load could be relatively small. This
property is favorable for bandwidth constrained crowdsourcing
network. As shown in Fig. 1, the ‘d-choice’ scheme could not
balance the tasks among users effectively. Comparing with
random assignment, it gets similar performance when task load
is concerned. Specifically, it significantly differs from previous
results evaluated under the random walk model [11].
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Fig. 1. Allocating tasks with d-choice paradigm

B. Basic observations

As shown in Fig. 2a, there are some extremely high contact
ratio (over 1500 times during data collection period) between
some specific user pairs. In mobile social networks, two
persons with high social relationship would frequently meet
each other. These extremely high contact frequencies are
indeed existing, but not representative. As depicted in Fig. 2b,
and Fig. 2c, we remove them by the following rules. First,
the mitigated values should be at least 10 times higher than
the average value. Second, the percentile of the mitigated
values should be less than 1% of all the contacts. According
to Fig. 2c, the distribution is clearly non-uniform. Such that,
we could not assign each user with equal tasks. In fact, it is
a ‘weighted bin’ problem in ‘ball and bin’ theory [1].

For mobile social networks, the contacts are dominated
by the social relationship, instead of the stochastic features
in random walk model. Taking mobile users equally will
lose the valuable opportunity for improving task allocation
efficiency, which is the root reason leading to poor load-
balancing performance of the ‘d-choice’ paradigm.

Inspired by these observations, we need to exploit the social
relationship to enhance the task offloading schemes, where
mobile users are classified according to social contact frequen-
cies. Further more, task execution time is tightly coupled with
the social relationships.

IV. SYSTEM MODEL AND PROBLEM FORMATION

A. System model

We consider a mobile social network, where n mobile users
are included in a user set, denoted by U = {u

1

, u

2

, · · ·, u
n

}.
Here we assume the application scenario needs cooperation to
work out the given tasks in the system. The applications [25]
[26] [27] could be user centric [37], providing cooperative task
completion among interested users.

Each user u

i

2 U owns a task set T
i

= {t1
i

, · · ·, tm
i

}. For
each task of user i, when it is reallocated to another user j,
it will be processed at user j without being further forwarded
to other users. We do not consider multi-hop forwarding
schemes in this study. The reason is, task offloading is a
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(a) Encounter frequency of users (b) Encounter frequency of users after mitigating
extremely high values

(c) CDF of users’ encounter frequency

Fig. 2. Encounter frequency of users

relatively vital issue for each user. The users would like to
believe their friends in direct contacts2. Also, different from
delay tolerant network routing, there is no destination for
task forwarding. Thus, multiple forwarding will inevitably
affect the task execution time seriously. We put it to future
work, where routing with social relationship technology is
incorporated for enhanced load balancing. The tasks in user
i have not given priority here, and we do not consider the
‘dequeueing’ and ‘enqueueing’ technologies for task priority.
Because in social task offloading network, there would be very
few urgent tasks for reassignment. The tasks with extremely
high priority should be processed on local devices.

For user i, the tasks getting from other users are listed in
queue Q

i

= {˜t1
i

,

˜

t

2

i

, · · ·, ˜tm
i

}, and the queueing length is ||Q
i

||.
Note that, the tasks assigned to user i, are different from the
previous task definition, because these tasks are from different
users. Thus, we denote these tasks with ˜

t

j

i

, which means the
j

th tasks assigned to user i.

B. Problem formation

The investigated problem could be formulated by minimiz-
ing the gap between the average value and the maximum
queueing length achievable w.h.p.. The gap evaluation has
two advantages. First, it is simple. Instead of computing the
gap between average value and all the queues, the maximum
queueing length is investigated, which saves large amount
of communication overhead in distributed mobile network.
Without loss of generality, such evaluation is also reasonable.
Second, it is an important metric in evaluating between the
worst and the average case. For example, we need to know
the task finishing time in average and the worst cases. Also, in
batched task offloading case, the task finishing time depends
on the latest one, which corresponds to the longest queueing
length. Thus, such evaluation is given by:

min(max

i2U

||Q
i

||� E

i2U

[Q

i

])

Two technical challenges need to be formally addressed

2Here contacts means the two users are in communication range and could
exchange data successfully. Direct contacts are denoted to differ the case that
needs forwarding.

before applying social relationship into task offloading algo-
rithms. First, when considering the social relationship, the
selection of mobile users becomes unstable and inefficient.
Increasing the number of candidate users will not help much,
because the number of contacted users is subjected to mobility
patterns, which might not be large especially during specific
‘contact window’. Second, there are ‘exceptional effects’
in our model, i.e., some extremely high and low meeting
frequencies among users will affect the overall performance
significantly. Once the tasks are assigned to an infrequently
contacted user, the task completion time would be extremely
long, especially when acknowledgment is required. Thus, the
design requirement needs efficient and stable mobile user
selection schemes, where balanced task assignment could be
achieved, without being affected by intermittently connected
mobile users seriously. We show this property with simulation
and statistical results in Section V and VI.

V. ‘iTOP-K’: SOCIAL RELATIONSHIP BASED TASK
OFFLOADING ALGORITHM

In tackling with the aforementioned challenges, we propose
a social relationship based task offloading algorithm. We
leverage the concept of ‘Top-K’, where the first K users in
the friend list are selected for task allocation. The ‘Top-K’
friends bear more regular contact pattern than others, which
will lead to more stable task allocations. The only negative
effect of ‘Top-K’ scheme is, when there are no users in contact
window, the ‘Top-K’ scheme will lead to unbalanced allocation
or longer delay. In this work, we use an adaptive scheme,
where the number of ‘K’ is adaptive and scalable. Such that,
we call our scheme ‘iTop-K’, which means a customized and
adaptive method. The ‘iTop-K’ algorithm slightly modifies the
original ‘d-choice’ scheme, where the random ‘d’ candidates
are replaced by the selected ‘friends’ in ‘Top-K’ discipline.

A. Finding the ‘Top-K’ Social Contacts

We leverage the trace data from MobiClique application at
ACM Sigcomm conference 2009 [2]. The trace data recorded
traces of Bluetooth encounters, opportunistic messaging, and
social profiles of 76 users. We pick up the records of user
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Fig. 3. Considering task priority with social contacts
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Fig. 4. Waiting for ‘Top-K’ users with scalability

TABLE I
ILLUSTRATION FOR SOCIAL RELATIONSHIP RANKING LIST

User Top-K(K=3) contact user Priority
1 5 (545), 10 (231), 69 (119) 1, 2, 3
2 75 (23), 63 (16), 66 (12) 1, 2, 3
3 32 (146), 33 (126), 4 (58) 1, 2, 3
4 3 (58), 32 (53), 29 (47) 1, 2, 3

i(1  i  76) and sort them in descending order like Table I.
As a result, we get the ‘Top-K’ friend list for each user i.

We build a relationship table according to the encountering
frequency similar to Fig.3. Note that, for user Jimmy, who
has the highest priority level, the number of contacts between
Jimmy and Tom is 105 times during the data collection period.
To decrease the task execution time, we need to assign the
tasks to close friends or familiar people.

In mobile social network, the mobility dominates the task
allocation opportunity. Different from conventional task allo-
cation, the availability of each mobile user is considered in
mobile network, as the availability differs from each other.
Pure balancing among users would lead to unfairness among
users. The reason for this claim is, when the availability of
different users differs, say, some mobile users are frequently
contacted while others are not. If we still allocate tasks to each
user equally, the task allocation might be not efficient. First,
the tasks assigned to inactive mobile users would lead to larger
task execution time. In contrast, the active mobile users could
be more efficient in task allocation. For efficient offloading
consideration, the active mobile users could bear more tasks
and make the network more efficient. Specifically, since the
availability among users differs, we should not simply apply
the load-balancing scheme to the mobile crowdsourcing net-
work directly.

Thus, in our scheme, we pursuit another form of bal-
ancing, that is, users are allocating tasks according to the
availability of mobile users, which is subjected to the mobility
patterns. Moreover, there should be a balanced allocation
among users with unequal availability. Thus, allocating more
tasks to frequently contacted user could effectively improve
the network efficiency, because tasks assigned to these users
could be effectively executed, and the task execution results
could be returned to the task sender in a relatively short

time. In contrast, for the infrequently contacted users, when
more tasks are assigned, the time delay could be very long.
Thus, the balancing scheme should be tailored for mobility
features. Also in the social domain, the mobility patterns could
be leveraged for task execution. Because in social network
discipline, intimate users would have a close relationship,
and would like to execute the tasks with higher priority.
This feature has been widely explored and exploited in many
literatures [38] [24]. We make further exploration on our trace
data for spatial and temporal correlation feature. Such feature
could further support the close relationship between frequently
contacted users. Thus, in our scheme, we fully consider the
mobile and social features in load balancing scheme, where
tasks are allocated according to the mobility patterns and social
relationships.

Algorithm 1 iTop-K algorithm for task offloading in mobile
social network
Input:

trace data of Sigcomm2009 [2]
users number, n

Output:
queue length: w

1

, w

2

, ...w

n

1: Initialize {w
1

, w

2

, ...w

n

} = 0, count = 0

2: Load trace data of SIGCOMM 2009
3: Procedure FindTopK(n,K)
4: Sort the encountering frequency list for each user
5: Record in file
6: End Procedure
7: Procedure Top-KAllocate(n)
8: For each slot do
9: search for encounters between users

10: For each user ido
11: If Top-KContain(i)==true then
12: S  Top-K user first met in this slot
13: Flag=Rank(S)
14: Else Expand K value
15: End
16: w

s

= w

s

+ 1/g

(K

max

�Flag)

17: Endfor
18: Endfor
19: End Procedure
20: return w

1

, w

2

, ...w

n
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Fig. 5. Evaluations for Top-k users inter-contact interval

B. Waiting for K Friends with Scalability
We consider the task execution time, when ‘Top-K’ friends

are identified. As shown in Fig. 4, if there is no user in the
‘Top-K’ list in one contact window, assigning tasks to ‘non
Top-K’ users will not ensure the high contact frequency. Also,
the task execution priority will not be guaranteed, which will
be discussed in Sec. V-C. As shown in Fig. 4, at the given
slot, say slot i, if in the next slot i+1, there is no user in the
‘Top-K’ list. Thus, the selection scope K

i

would be scaled to
2K

i

.
Further, if in the next slot i + 2, there is still no ‘Top-K’

friends, the selection scope K

i+2

would be 2K

i+1

= 4K

i

.
Once there are users in the scalable ‘Top-K’ list, the selection
scope returns to K

min

, and in our scheme, we set it to 2, since
it is the minimum value required for ‘d-choice’ scheme.

The scaling law of selection scope K is given by the
following equations:

K

i+1

=

(
2K

i

if there is no Top-K friend in slot i
2 if there is at least one Top-K friend in slot i

C. Considering Task Priority with Social Contacts
In social network, friends often contact with each other

frequently. According to previous studies, people meeting each
other often would indicate higher social relationships among
them [17]. And in these relationships, the task execution
priority will be higher than others.

Previous studies have considered fully on the social relation-
ship and the psychology factors. As the task execution priority
is affected by the psychology reasons, the task execution time
would follow the exponential feature, where users in different
ranks may differ significantly in execution time [18]. In our
study, the task execution time formula is empirical. And we
set the task execution time for user ranked in the i

th place to:

T

i

= T

↵

⇥ 2

i

where T

↵

is the original task execution time, say, without
priority. And K is the selection scope for ‘Top-K’ selection.
Note that, for the scalable case, the factor K also scales.

Considering various psychology impacts and social relation-
ships, the task execution time can be given by:

T

i

= T

↵

⇥ g

i

where g > 1 is the base factor.
The algorithm description is shown in Algorithm 1. The

procedure FindTopK(n,K) is called to get the ‘Top-K’
list of each user, and the procedure Top � KAllocate(n)

allocates tasks to users according to the ‘Top-K’ list. The
function Rank(S) could get the actual rank of user S. Also,
Top�KContain(i) could check if user i has ‘Top-K’ friends
in contacted ranges, where K

max

is the maximum number of
scalable K.

D. Discussions
The duration of a contact window could be formally defined

in the following way: T

w

= t

e

� t

s

, where the t

s

denotes
the starting time that the mobile users could transmit data
over a contact session, and the t

e

denotes the time that the
contact session ends. Before the contact session, the neighbor
discovery and handshake process for data transmission have
been initiated. In our scheme, we assume that, the task
information, i.e., the task execution is delay tolerant. Thus, the
major concern is the task load. We do not evaluate the finishing
time for tasks. And the execution results for tasks need not to
be fed back to the task sender within contact windows. In our
model, we only consider the balancing property among mobile
users. The application is for cooperative task execution, which
is typical in most of the previous studies on crowdsourcing
network. The main purposes for this cooperation are to save
energy and make good use of computation resources with fair
task allocations.

The contact duration is also an important factor to our
scheme, especially when the task offloading overheads are con-
cerned. In our system model, we assume that, the duration of
contacts is sufficient for task sharing for two reasons. First, the
mobile users would use short range, high bandwidth transmis-
sions, such as WiFi and Bluetooth, where short transmission
duration is required. Second, the contact durations, especially
for the trace data set, are sufficiently large for simple data
sharing. According to our statistical results, most of the contact
duration is larger than several tens of seconds. Moreover, in
most of the studies [38] [24], very short contact durations with
unstable connections are generally not considered as contacts.

In this scenario, we also assume the inter contact interval is
much greater than task execution time. Since in delay tolerant
network, the inter contact interval could be several seconds to
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Fig. 6. Impact of K value when tasks are executed without priority

minutes long. Considering the bandwidth constrained mobile
device-to-device scenario, the tasks could be generally simple
with little traffic, means the relatively short time of the re-
turning of results. We make further simulation study and show
the aforementioned effects. As shown in the following figures,
mobile users with shorter inter contact interval are selected as
friends or Top-K users, where the tasks are executed more
efficiently. Even for the case where the task execution time
is longer than inter contact time, since the users with close
relationship has higher priority for task execution, the task
could also be processed with shorter time. We compare the
encounter interval of top-k users and the rest users. As depicted
in Fig 5, we find that, for highly contacted users, the inter-
contact interval could be smaller than others, which have been
depicted in aforementioned evaluation results. Without loss
of generality, in Fig. 5a, user with No. 59 is selected for
illustration. Users in No. 23 and 40 are further evaluated and
comparison are made among the ‘Top-K’ users and the rest of
common users, which are depicted in Fig. 5b and 5c. Such
that, when tasks are assigned to top-k users, the execution

results could be returned to the task sender when next time
contact happens.

VI. EXPERIMENTAL STUDY WITH REAL TRACE DATA SETS

A. Finding ‘Top-K’ users
In this paper, we use three experimental data sets for

evaluations, which are: Sigcomm-2009 [2], Infocom05 [4], and
Stanford-2010 [3].

• Sigcomm-2009 [2] recorded encounters between 76 peo-
ple participated in Sigcomm’09.

• Infocom-2005 [4] collected the same data between 41
people from Infocom’05 at Grand Hyatt Miami in March
2005.

• Stanford-2010 [3] logged face-to-face contacts among
789 participants in a US high school between 7AM to
4PM.

The simulator is implemented in Matlab platform, and
executed in a laptop of Lenovo X201, with Intel i5CPU
(2.53GHz), and 4GB memory. This simulator has been tested
and verified in our previous studies [11] [19].
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(b) data from Infocom’05
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(c) data from Stanford’10

Fig. 7. Top-K scheme with task priority
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Fig. 8. Evaluations for different factors impacting the task balancing performance

B. impact of Top-K without priority
Sigcomm-2009 [2]: We first evaluate the performance of

the scalable ‘K’ with real traces from MobiClique. In order
to execute task allocation in every time slot, we divide the
original time data into series of time slots. As the earliest time
stamp is 30s and the latest is 320684s, the slot interval is set
into 200s according to previous analysis about contact intervals
and distributions. It is a typical value for most of the mobile
contacts, and also sufficient for data transfer in necessary. In
each time slot, each user will share only one task. Thus, users
allocate their tasks in each time slot respectively.

First, in order to show the effectiveness of task execution
priority, we make an experimental study on the scheme ‘Top-
K’ without priority. As shown in Fig. 6a, 6b, 6c, the ‘K-value’
is set into 2, 6 and 20 respectively. Note that, K = 2 is a basic
setting, and K = 6 is a typical value when mobile traces are
applied. Also, note that, the case K = 20 means very large
selection scope for candidate users.

Infocom-2005 [4]: We then evaluate the performance of the
scalable ‘K’ with real traces from ‘Haggle’. Considering the
earliest time stamp is 20733s and the latest is 274883s, the
slot interval is set into 200s, which is appropriate according
to previous analysis about contact intervals and distributions.
Fig. 6d, 6e, and 6f depict the task load, especially when
tasks are executed without priority. Even when the K value
increases, there are still large number of imbalanced task loads
among users.

Stanford-2010 [3]: The third trace comes from [3]. Fig. 6g,
6h,and 6i show the performance of same scheme on ‘Top-K’

without priority. Although the Stanford trace has shown sig-
nificantly good social relationship property, the task execution
without priority still leads to poor performance. As depicted in
these sub-figures, the task allocations have not shown effective
load balancing among users. To this end, we can conclude
that, increasing selection scope K only will not improve the
balancing performance, especially when social relationships
are dominating the user contacts.

C. Impact of Top-K with priority
Sigcomm-2009 [2]: We show the effectiveness of task

execution priority in Sigcomm-2009 data set. The task priority
is set according to the method proposed in Sec. V-C. Fig. 7a
shows that, the tasks are well balanced among users, even
when K is set to 2. Notably, when the K value increases, the
performance improves accordingly. The ‘scalable K’ scheme
(K

min

= 2) performs better comparing to the static case when
‘K=2’, and performs even better than the case when ‘K=16’.

Infocom-2005 [4]: As shown in Fig. 7b, we evaluate the
scheme ‘Top-K’ with priority in data set ‘Infocom-2005’. The
figure validates that the effective load balancing could be
achieved when task priority is applied. Since Infocom-2005
trace data has not shown strong social contact relationship,
the value of K should be set larger to achieve balanced
performance. We could see that, when K is greater than 8,
especially when K = 16, the tasks could be well balanced,
achieving similar performance as shown in Fig. 7a.

Stanford-2010 [3]: As shown in Fig. 7c, note that the
‘scalable k’ curve is almost in same shape with the ‘k=16’
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Fig. 9. Impact of K value when tasks are executed with priority

line. The reason is, the number of users in this trace is far more
greater than the previous two data sets, where ‘marginal ef-
fects’ are more significant. Selecting ‘Top-K’ friends becomes
more easy and convincible, which shows more potential when
the algorithm is applied to the realistic social networks.

Remarks: The priority based execution effectively improves
the task balancing performance. First, the social relationship,
which is dominated by mobile contacts, could be fully lever-
aged for more than task assignment, and even further for
execution. Second, the favorable feature is, the ‘Top-K’ users
could be effectively used for efficient task offloading, where
users could reach the relatively frequent user without big
efforts. As depicted in Fig. 8a, the priority based schemes
outperforms those methods without priority significantly.

D. Scaling the task execution factor

We also consider the case when the base value g is set to
other values for psychology and social relationship reasons.
That is, we need to scale this factor to see the impact of task
execution. Fig. 8b tells that, when the base value g changes,

the task assignments provide similar performance, and we
conclude that, this factor does not impact the performance
significantly when task balancing is concerned.

E. Efficiency Comparison among different data sets

In order to compare the execution time of algorithm ‘iTop-
K’ with three data sets, we normalize the task weight into
the range [0, 1]. As depicted in Fig. 8c, under trace data set
Infocom-2005, ‘iTop-K’ performs relatively poor comparing
with the other two data sets. The reason is, records in
‘Infocom-2005’ are a little bit sparse, when the encountering
frequencies are concerned. The relatively infrequent contacts
would possibly lead to weak ‘Top-K’ friend list. In contrast,
‘iTop-K’ performs well when Stanford-2010 is applied. When
more participants could be involved, especially for the real so-
cial environment, ‘iTop-K’ would achieve better performance.

In summary, comparing with the most loaded users, our
proposed scheme outperforms the conventional random choice
up to 15⇥, and the social relationship assignment without
priority method up to 9⇥.
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Fig. 10. Normalized task load performance of scheme with priority (Infocom and Stanford)

We show our results with the bar chart and CDF form,
making comparisons for schemes with priority and without
priority. As depicted in Fig. 6, the scheme without priority
performs poor with imbalanced task load assignment. While
for the priority based scheme, as depicted in Fig. 9, the bal-
ancing performance significantly improves comparing with the
scheme without priority. While for trace Infocom and Stanford,
the results are in Fig. 10. In general, scheme with priority
works better than scheme without priority. However, when
k=20, scheme with priority has not shown much superiority,
where the friend list is too long that the lower-ranking users
have little difference in task execution time.

VII. CONCLUSION
We propose a social relationship based algorithm for ef-

ficient task offloading, with trace data collected from real
deployed mobile social networks [2] [4] [3]. We find that, the
social relationship could be explored and exploited for bal-
anced task offloading among mobile users. Task priority asso-
ciates with the social relationships, and plays an important role
for task execution time. Further, waiting for the forthcoming
friends is applicable and effective for mobile users. In future
work, we are going to further explore the social relationship
and find more convincible models for task execution among
social friends. Also, more effective methods for Top-K friends
are called for, especially, when the task execution time differs
significantly among friends and strangers. At last, we plan
to apply our methods to realistic applications like processing
pictures to translate words within a crowd of people.
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