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Asymptotically Optimal Transmit Strategies for the Multiple Antenna
Interference Channel

Erik G. Larsson, Danyo Danev and Eduard A. Jorswieck

Abstract— We consider the interference channel with multi-
ple antennas at the transmitter. We prove that at high signal-to-
noise ratio (SNR), the zero-forcing transmit scheme is optimal
in the sum-rate sense. Furthermore we prove that at low SNR,
maximum-ratio transmission is optimal in the sum-rate sense.
We also provide a discussion of the connection to classical
results on spectral efficiency in the wideband regime. Finally,
we propose a non-convex optimization approach based on
monotonic optimization to solve the sum rate maximization
problem.

I. I NTRODUCTION

The interference channel (IFC) is a classic object of study
in information theory [1], [2]. While its capacity is an
open problem, a number of results on achievable rates were
established a fairly long time ago [3], [4]. In particular, it
is known that strong interference should be decoded and
subtracted off the received data whenever possible, and that
weak interference should be treated as noise. More recently,
there has been renewed interest in the IFC, as witnessed by
a number of contributions in the research literature ( [5], [6],
[8], for example). The principal driving motivation for this
interest is that the IFC is a sound model for the spectrum
sharing scenario in wireless communications, where multiple
independent radio links coexist and interfere in the same
spectral band and therefore interfere with each other.

In this work we are concerned with the IFC for the case
when the transmitter has multiple antennas. We refer to this
as the multiple-input single-output (MISO) IFC. A sketch of
the MISO IFC, with two transmitter-receiver pairs, is given
in Figure 1. The importance of using multiple antennas is
twofold. First, it provides the usual rate and diversity gains
[9]. Second, if (partial) channel state information is available
at the transmitters, then this can be exploited to minimize the
interference that one system generates to the other system.

Some previous work on the MISO IFC is available. The
MISO IFC is a special case of the multiple-input multiple-
output (MIMO) IFC [5], [6], and hence many results therein
can be specialized to the MISO case. A characterization of
the MISO IFC from a game-theoretic (both non-cooperative
and cooperative) point of view was presented by [11]. An
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Fig. 1. The two-user MISO interference channel under study (illustrated
for n = 2 transmit antennas).

explicit parameterization of the achievable rate region was
given in [10].

Contribution: This paper is concerned with the character-
ization of sum-rate optimal transmit strategies for the MISO
IFC. We provide two main results. First we prove that at
high SNR, the zero-forcing (ZF) strategy is optimal in the
sum-rate sense. Second, we show that at low SNR, the sum-
rate-optimal strategy becomes maximal-ratio transmission
(MRT). The results are discussed in the context of spectral
efficiency in the wideband regime [12].

II. M ODEL

We consider the 2-user MISO IFC in Figure 1. We shall
assume that transmission consists of scalar coding followed
by beamforming,1 and that all propagation channels are
frequency-flat. This leads to the following basic model for the
matched-filtered, symbol-sampled complex baseband data
received at MS1 and MS2:

y1 = hT11w1s1 + hT21w2s2 + e1

y2 = hT22w2s2 + hT12w1s1 + e2

where s1 and s2 are transmitted symbols,hij is the
(complex-valued)n × 1 channel-vector between BSi and
MSj , and wi is the beamforming vector used by BSi.
The variablese1, e2 are noise terms which we model as
i.i.d. Gaussian with zero mean and varianceσ2.

1Single-stream transmission (scalar coding followed by beamforming) is
optimal under certain circumstances, for example providedthat BSi knows
hii and MS1, MS2 treat the interference as Gaussian noise [7], [9].



Under these assumptions the following rates are achiev-
able:

R1(w1,w2) = log2

(

1 +
|wT

1 h11|2
|wT

2 h21|2 + σ2

)

(1)

for the link BS1 →MS1, and

R2(w1,w2) = log2

(

1 +
|wT

2 h22|2
|wT

1 h12|2 + σ2

)

(2)

for BS2 →MS2. For fixed channels{hij}, and under the
power constraint

‖wi‖2 ≤ 1, i = 1, 2, (3)

we define the achievable rate region as

R =
⋃

w1,w2,‖wi‖2≤1

(R1(w1,w2), R2(w1,w2)).

III. M AIN RESULTS

Define the sum-rate as follows

R(w1,w2) , R1(w1,w2) +R2(w1,w2).

Note thatR is a function ofhij andwi (where the notation
makes the latter dependence explicit).

Proposition 1: At high SNR, ZF is sum-rate optimal.
More precisely
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Proposition 2: At low SNR, MRT is sum-rate optimal.
More precisely

lim
σ→∞

argmax‖w1‖
2≤1,‖w2‖

2≤1R(w1,w2) = (wMRT
1 ,wMRT

2 ),

where
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1 =

h∗
11

‖h11‖
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22

‖h22‖
.

Proof: (of Propositions 1 and 2) We note first from
Corollary 1 in [10] that for any rate point on the Pareto
boundary of the achievable regionR, we must have
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whereα1, α2 are real-valued and0 ≤ α1, α2 ≤ 1. Hence, the
beamforming vectors corresponding to the optimal sum-rate
point have the form of (4)–(5). Also, the point(α1, α2) =

(0, 0) corresponds to zero-forcing:w1 = wZF
1 andw2 = wZF

2 .
Furthermore,

(α1, α2) = (
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,
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Then we can write

R(w1,w2) = R(α1, α2)

= log

(
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(α1γ1 +

√
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1ξ1)

2
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2λ1

)

+ log
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(6)
Applying Lemma 2 (see Appendix) proves Proposition 1.
Next, observe that

‖h11‖ =

√
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Applying Lemma 3 (see Appendix) proves Proposition 2.

IV. I LLUSTRATION

To illustrate the results, we make use of the following
variant of the Pareto boundary parameterization. This pa-
rameterization is proven in [10] and as explained therein it
also has a game-theoretic interpretation.

Proposition 3: Any point on the Pareto boundary is
achievable with the beamforming strategies

w1(λ1) =
λ1w

MRT
1 + (1 − λ1)w

ZF
1

‖λ1w
MRT
1 + (1 − λ1)wZF

1 ‖
and

w2(λ2) =
λ2w

MRT
2 + (1 − λ2)w

ZF
2

‖λ2w
MRT
2 + (1 − λ2)wZF

2 ‖
(7)

for some0 ≤ λ1, λ2 ≤ 1.
The parameterization of the Pareto boundary of the two-

user MISO IFC in Proposition 3 can be interpreted in the
following sense: The strategyλ = 0 corresponds to a
completely selfish behavior. On the other hand,λ = 1 cor-
responds to a completely altruistic behavior. By choosing a
certainλ, the transmitter can choose its level of selfishness or
altruism. Note that there is a one-to-one mapping betweenλk



andαk in Section III. In particular, for the parameterization
in (7), λk = 0 corresponds to ZF transmission whileλk = 1
corresponds to MRT.

In the numerical results, we will use the parameterization
in (7) to illustrate the complete achievable rate region. In
this region, we mark the ZF and MRT point. As the SNR
is increased for a certain set of channel realizations, we can
observe that the ZF and MRT rate points behave as predicted
theoretically in the last section.

In Figure 2, we show the achievable rate region, along
with the MRT and ZF points for a two-user MISO IFC with
two antennas at each transmitter, and for fixed but randomly
chosen channel realizations. Illustrations are provided for
different SNRs in the range{−30,−10, 0, 10, 30} dB. The
asymptotic optimality of MRT for small SNR and ZF for
high SNR can be clearly observed. The path of these two
operating modes cross at an SNR of about 0 dB.

V. D ISCUSSION

We provide an interpretation and alternative derivation of
Proposition 2 using the results of [12]. Specifically, [12]
analyzed the low-SNR regime for a communication link and
introduced two performance measures, namely the

(
Eb

N0

)

min
and the wideband slopeS0. Reference [12] then showed
that the system bandwidthB, the transmission rateR, the
transmit powerP and the spectral efficiencyC(Eb

N0
) satisfy

the fundamental limit

R

B
≤ C

(
Eb
N0

)

. (8)

The functionC
(
Eb

N0

)

is directly related to the common

capacity expression C(SNR), i.e. C
(
Eb

N0

)

= C(SNR) for
the SNR which solves

Eb
N0

C(SNR) = SNR.

At low SNR, the functionC(Eb

N0

) can be expressed (see [12])
as
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with

(
Eb
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)

min

=
loge 2

Ċ(0)
and S0 =

2
[

Ċ(0)
]2

−C̈(0)
. (10)

The closerEb

N0

gets to
(
Eb

N0

)

min
the better is the approxima-

tion in (9). Note, that the first and second derivative in (10)
are taken of the function common capacity function C(SNR).

The low SNR approximation was recently extended to the
multiple access networks in [13] in terms of its (robust) slope
region. For the multiple access channel, there is basically
no difference in terms of minimumEb

N0
between MAC and

single-user channels. The following result generalizes this to
the MISO interference channel. Define SNR= 1

ρ .
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Fig. 2. Examples of achievable rate regions for the two-usertwo-antenna
MISO IFC. The red points correspond to the parameterizationin (7). The
red squares are the two single-user points. The blue circlescorrespond to ZF
beamforming rates. The blue crosses correspond to the MRT beamforming
rates. The SNR is{−30,−10, 0, 10, 30} dB.



Proposition 4: Let Ck(SNR) = log
(

1 + SNR|hTkkwk|2
)

for 1 ≤ k ≤ 2. Then, even in interference channels, the
following minimum Eb

N0

is achievable

Eb
N0 min

=

[
∂Ck(0)

∂SNR

]−1

. (11)

Proof: We follow closely the proof of [12, Theorem 8]
and start with an upper bound on the achievable rate where
we assume that the receiver knows the codewords of the
other users perfectly and subtract them before decoding the
intended user. The capacity for userk, 1 ≤ k ≤ 2, in this
genie-aided setting is

Ck(SNR) = log
(

1 + SNR|hTkkwk|2
)

, (12)

whose derivative at SNR= 0 is equal to the expression in
(11). To lower-bound the capacity we apply a receiver which
treats the interference of the other user as additive noise.The
lower bound is

Ck(SNR) = log

(

1 +
SNR|hTkkwk|2
σ2 + IjSNR

)

, (13)

whereIj = |hTjkwj |2 is the interference caused by the other
user. The function in (13) has a derivative at SNR= 0 which
is identical to that in (11). This completes the proof because
upper and lower bound converge to the same minimumEb

N0
.

One interesting observation is that the optimal (in terms of
minimum Eb

N0

) receiver at the mobiles is the receiver which
treats the interference simply as additional additive noise.

With this background we are able to restate Proposition 2
and provide an alternative proof.

Proposition 5: The beamforming vectors which optimize
the minimumEb

N0
correspond to the MRT beamformers.

Proof: The result follows directly from the characteri-
zation in (11) because

Eb
N0 min,1

=
1

|hT11w1|2
and

Eb
N0 min,2

=
1

|hT22w2|2

which is minimized by the MRT beamforming vectors.

VI. SUM-RATE MAXIMIZATION BY MONOTONIC

OPTIMIZATION

In applications, one is typically interested in finding
specific points on the Pareto boundary, a notable example
being the sum-rate point. The main difficulty with solving
the sum-rate maximization problem is that the problem is
non-convex. Using the parameterization in Proposition 3, this
maximization problem can be posed as

max
0≤λ1,λ2≤1

{R1(λ) +R2(λ)} , (14)

whereλ = [λ1, λ2]. In this section, we shall illustrate that
problem (14) can be solved using polyblock algorithm for
monotonic optimization [14]. Effectively the approach is to
transform the original nonconvex objective function (14) into
a strictly increasing function over a constraint set that is
normal. The price to pay is that the dimension of the variable

space must be enlarged from two (corresponding toλ1, λ2)
to three. We give a brief description in what follows; more
details are available in [15].

The first result relates the sum-rate maximization problem
to the area of monotonic optimization.

Proposition 6: The maximum sum-rate problem

max
λ∈[0,1]2

{R1(λ) +R2(λ)}

is a difference of monotonic functions (d.m.) programming
problem.

Proof: The result follows as a corollary of Lemma 4 in
Appendix II, because the objective function can be rewritten
as

R1(λ) +R2(λ) = [f1(λ) − g2(λ)] + [f2(λ) − g1(λ)]

= f1(λ) + f2(λ)
︸ ︷︷ ︸

φ(λ)

−[g2(λ) + g1(λ)
︸ ︷︷ ︸

ψ(λ)

],

where the functionsfi(λ) andgi(λ), i = 1, 2 are defined in
Appendix II. By Lemma 4 both functionsφ(·) andψ(·) are
monotonically increasing.

As a consequence of Proposition 6, problem (14) can be
formulated as the following general d.m. problem

max
λ∈[0,1]2

{φ(λ) − ψ(λ)} (15)

with strictly increasing functionsφ(·) and ψ(·). Next, we
substituteψ(λ) = ψ(1)(1 − t) in (15) and obtain the
equivalent programming problem withx , [λ1, λ2, t]

max{φ(x) + ψ(1)(x3 − 1)
︸ ︷︷ ︸

Φ(x)

} s.t. x ∈ D (16)

with the constraint set

D =

{

x ∈ R
3
+ : x1 ≤ 1, x2 ≤ 1, x3 ≤ 1 − ψ(x1, x2)

ψ(1)

}

. (17)

Two key observations allow us to proceed. First, we note
that the functionΦ(x) is strictly increasing. Second, we have
the following result about the constraint set.

Lemma 1: The setD defined in (17) is normal.
Proof: Choose the vectorx ∈ D and choose any vector

y such that0 ≤ y ≤ x. We need to verify thaty ∈ D. First
note that0 ≤ y1 ≤ x1 ≤ 1 and0 ≤ y2 ≤ x2 ≤ 1. Also, since
ψ(·) is strictly increasing inx1, x2, we haveψ(x1, x2) ≥
ψ(y1, y2). Sincey3 ≤ x3, it follows thaty ∈ D, too.

Furthermore, the constraint set is compact, bounded, and
connected.

We have found that the programming problem in (15) is
equivalent to maximization of a strictly increasing function
over a normal set. This is a monotonic optimization problem
in standard form [14]. Therefore, we can apply the outer
polyblock approximation algorithm [14] to solve the sum-
rate maximization problem (14). For a detailed description
of the monotonic optimization framework and how it can be
applied to solve the sum-rate maximization problem (14),
see [15].



VII. C ONCLUSIONS

The parameterization of the achievable rate region of the
two-user MISO IFC leads to a simple structured but non-
convex optimization problem. In this work, we try to under-
stand the asymptotic behavior of the optimal beamforming
solution at high and low SNR. It turns out that for small SNR,
MRT is optimal and the interpretation in terms of minimum
Eb

N0

justifies the analysis. For high SNR values, the optimal
strategy is ZF beamforming.

APPENDIX I
LOW AND HIGH SNR RESULTS

Lemma 2: Let γ1, γ2, ξ1, ξ2, λ1 and λ2 be positive real
numbers. For anyαi ∈ [0, 1], i ≥ 0 and any positive number
σ, considerR(α1, α2) in (6). We have that

lim
σ→0

arg max
S2

Rσ(α1, α2) = (0, 0),

whereS2 is the unit square inR2 defined as

S2 = {(α1, α2) : 0 ≤ α1, α2 ≤ 1}.

Proof: Consider the function

fσ(α1, α2) = 2Rσ(α1,α2)

=
(σ2+ξ2

1
)(σ2+ξ2

2
)

σ4[σ2+λ1α2
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√
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2

2
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1
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√
1−α2

2
)2
.

(18)

Since the function2x is continuous and strictly increasing
we have that

argmin
S2

Rσ(α1, α2) = arg min
S2

fσ(α1, α2).

We define

a1 = max
S2
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2
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2
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√
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1)

2.

Since the numerator in the functionfσ(α1, α2) is always
non-negative, we obtain

fσ(α1, α2) ≥
(σ2 + ξ21)(σ2 + ξ22)(σ2 + λ1α

2
2)(σ

2 + λ2α
2
1)

σ4(σ2 + a1)(σ2 + a2)
.

We observe thatfσ(0, 0) = 1 and compare the value of
fσ(α1, α2) with the valuefσ(0, 0). Consequently we get

fσ(α1, α2) − 1 ≥ (σ2+ξ2
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For an arbitrarily chosen positive numberε we can find a
σε > 0 such that

(a1 + a2)σ
4 + a1a2σ

2 ≤ ε/2

for all σ ∈ (0, σε]. Now for every point(α1, α2) ∈ S2 such
that

λ1α
2
2 + λ2α

2
1 ≥ εξ−2

1 ξ−2
2

and everyσ ∈ (0, σε] we have

fσ(α1, α2) − 1 ≥ −(a1+a2)σ
4−a1a2σ

2+ξ2
1
ξ2
2
(λ1α

2

2
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1
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≥ −ε/2+ε
σ2(σ2+a1)(σ2+a2)

= ε
2σ2(σ2+a1)(σ2+a2)

> 0.

Thus for anyσ ∈ (0, σε] the minimum offσ(α1, α2) at a
point of S2 within the elipse defined by the equation

λ1α
2
2 + λ2α

2
1 = εξ−2

1 ξ−2
2 .

Since (0, 0) is within this ellipse for eachε > 0 and its
diameter tends to zero whenε goes to zero, we have that

lim
σ→0

argmin
S2

fσ(α1, α2) = (0, 0),

which proves the lemma.
Lemma 3: Let γ1, γ2, ξ1, ξ2, λ1 and λ2 be positive real

numbers. For anyαi ∈ [0, 1], i ≥ 0 and any positive number
σ, considerR(α1, α2) in (6). We have that

lim
σ→+∞

arg max
S2

Rσ(α1, α2) = (
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√

γ2
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,
γ2

√

γ2
2 + ξ22

),

whereS2 is the unit square inR2 defined as

S2 = {(α1, α2) : 0 ≤ α1, α2 ≤ 1}.

Proof: As in the proof of Lemma 2 we consider the
function fσ(α1, α2) defined by Equation (18). Clearly, for
any positiveσ the functionfσ(α1, α2) is continuous onS2

and differentiable infinitely many times onint(S2) which is
the set of all interior points ofS2. We can calculate the first
partial derivatives to be

∂fσ
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√
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1
)[σ2+λ2α2

1
+(γ2α2+ξ2

√
1−α2

2
)2]

− (γ1α1+ξ1
√

1−α2

1
)(γ1−ξ1α1/

√
1−α2

1
)

σ2+λ1α2

2
+(γ1α1+ξ1

√
1−α2

1
)2

)

and
∂fσ
∂α2

(α1, α2) = 2fσ(α1, α2)×
(

λ1α2(γ1α1+ξ1
√

1−α2

1
)2

(σ2+λ1α2

2
)[σ2+λ1α2

2
+(γ1α1+ξ1

√
1−α2

1
)2]

− (γ2α2+ξ2
√

1−α2

2
)(γ2−ξ2α2/

√
1−α2

2
)

σ2+λ2α2

1
+(γ2α2+ξ2

√
1−α2

2
)2

)

.

Suppose now thatσ > 0 and that(x1, x2) ∈ int(S2) is a
local optimum offσ(α1, α2). We must then have that

∂fσ
∂α1

(x1, x2) =
∂fσ
∂α2

(x1, x2) = 0.



This is equivalent to

γ1 −
ξ1x1

√

1 − x2
1

=
λ2x1(γ2x2+ξ2

√
1−x2

2
)2

(γ1x1+ξ1
√

1−x2

1
)(σ2+λ1x2

2
)
×

σ2+λ1x
2

2
+(γ1x1+ξ1

√
1−x2

1
)2

σ2+λ2x2

1
+(γ2x2+ξ2

√
1−x2

2
)2

(19)

and

γ1 −
ξ2x2

√

1 − x2
2

=
λ1x2(γ1x1+ξ1

√
1−x2

1
)2

(γ2x2+ξ2
√

1−x2

2
)(σ2+λ2x2

1
)
×

σ2+λ2x
2

1
+(γ2x2+ξ2

√
1−x2

2
)2

σ2+λ1x2

2
+(γ1x1+ξ1

√
1−x2

1
)2
.

(20)

Let us now define

ai = max
xi∈[0,1]

γixi + ξi

√

1 − x2
i

and

bi = min
xi∈[0,1]

γixi + ξi

√

1 − x2
i

for i = 1, 2. For the right hand side of Equation (19) we
have that

λ2x1(γ2x2 + ξ2
√

1 − x2
2)

2

(γ1x1 + ξ1
√

1 − x2
1)(σ

2 + λ1x2
2)

×

σ2 + λ1x
2
2 + (γ1x1 + ξ1

√

1 − x2
1)

2

σ2 + λ2x2
1 + (γ2x2 + ξ2

√

1 − x2
2)

2
≥ 0

and

λ2x1(γ2x2 + ξ2
√

1 − x2
2)

2

(γ1x1 + ξ1
√

1 − x2
1)(σ

2 + λ1x2
2)

×

σ2 + λ1x
2
2 + (γ1x1 + ξ1

√

1 − x2
1)

2

σ2 + λ2x2
1 + (γ2x2 + ξ2

√

1 − x2
2)

2

≤ λ2a
2
2(σ

2 + λ1 + a2
1)

b1σ2(σ2 + b22)
.

Since

lim
σ→+∞

λ2a
2
2(σ

2 + λ1 + a2
1)

b1σ2(σ2 + b22)
= 0

we have that for an arbitraryε > 0, there existsσ(1)
ε such

that
λ2a

2
2(σ

2 + λ1 + a2
1)

b1σ2(σ2 + b22)
≤ ε

and thus

0 ≤ γ1 −
ξ1x1

√

1 − x2
1

≤ ε,

wheneverσ ≥ σ
(1)
ε . In a similar fashion we conclude that

there existsσ(2)
ε such that

0 ≤ γ2 −
ξ2x2

√

1 − x2
2

≤ ε,

whenever σ ≥ σ
(2)
ε . Choosing σε to be equal to

max{σ(1)
ε , σ

(2)
ε }, we obtain that forσ ≥ σε we have

0 ≤ γi −
ξixi

√

1 − x2
i

≤ ε, i = 1, 2. (21)

Since the functionsγi−ξix/
√

1 − x2 are continuous forx ∈
[0, 1), we have that for a sufficiently smallε, the inequalities
(21) are equivalent to

γi
√

γ2
i + ξ2i

− g(ε) ≤ xi ≤
γi

√

γ2
i + ξ2i

, i = 1, 2.

Here the functiong(ε) is such thatlimε→0 g(ε) = 0. This
simply means that for an arbitraryδ > 0 we can choose
ε > 0 and consequentlyσε such that

γi
√

γ2
i + ξ2i

− δ ≤ xi ≤
γi

√

γ2
i + ξ2i

, i = 1, 2, (22)

for all σ ≥ σε. We observe that whenσ ≥ σε we have

∂fσ
∂αi

(α1, α2) > 0, if αi >
γi

√

γ2
i + ξ2i

and
∂fσ
∂αi

(α1, α2) < 0, if αi <
γi

√

γ2
i + ξ2i

− δ,

for i = 1, 2. Since for anyσ > 0, the functionfσ(α1, α2)
is continuous onS2, this implies that for an arbitrary
point (α1, α2) ∈ S2, there exists a point(x1, x2) in the
square defined by (22) such thatfσ(α1, α2) ≥ fσ(x1, x2).
Moreover, this inequality is strict if the point(α1, α2) does
not belong to the square defined by (22). Thus if(x1, x2) is
a point, where a global minimum offσ(α1, α2) is achieved,
thenx1 andx2 satisfy (22) for any sufficiently largeσ. This
shows that

lim
σ→+∞

arg min
S2

fσ(α1, α2) = (
γ1

√

γ2
1 + ξ21

,
γ2

√

γ2
2 + ξ22

),

This completes the proof of the lemma.

APPENDIX II
MONOTONIC OPTIMIZATION RESULTS

Let us define the following quantities for further use

γ11 = ||h11||, γ12 = ||hH11Π⊥
h12

||,
γ22 = ||h11||, γ21 = ||hH22Π⊥

h21
||.

Obviously, the inequalities

γ11 ≥ γ12 ≥ 0 and γ22 ≥ γ21 ≥ 0 (23)

hold. Define further the functions

f1(λ) = log
(
σ2
n + |w1(λ1)

Th11|2 + |w2(λ2)
Th21|2

)
,

f2(λ) = log
(
σ2
n + |w2(λ2)

Th22|2 + |w1(λ1)
Th12|2

)
,

g1(λ) = log
(
σ2
n + |w1(λ1)

Th12|2
)
,

g2(λ) = log
(
σ2
n + |w2(λ2)

Th21|2
)
.

Finally, letf(λ) = f1(λ)+f2(λ) andg(λ) = g1(λ)+g2(λ).
Lemma 4: The functionsf1(λ), f2(λ), f(λ) as well as

g1(λ), g2(λ), g(λ) are strictly increasing inλ1 andλ2.



Proof: All six functions depend onλ1 or λ2 via the
following terms

α1(λ1) = |wT
1 (λ1)h11|2

=
| (λ1w

MRT
1 + (1 − λ1)w

ZF
1 )
T

h11|2
||λ1w

MRT
1 + (1 − λ1)wZF

1 ||2

=

(

λ1||h11|| + (1−λ1)

||Π⊥

h12
h11||

(hH11Π
⊥
h12

h11)

)2

λ2
1 + (1 − λ1)2 + 2λ1(1 − λ1)

||hH

11
Π⊥

h12
||

||h11||

=
(λ1γ11 + (1 − λ1)γ12)

2

1 − 2λ1(1 − λ1)(1 − γ12
γ11

)
.

Similarly, we obtain

α2(λ2) = |wT
2 (λ)h22|2 =

(λ2γ22 + (1 − λ2)γ21)
2

1 − 2λ2(1 − λ2)(1 − γ21
γ22

)
,

β1(λ1) = |wT
1 (λ)h12|2 =

λ2
1γ

2
11

1 − 2λ1(1 − λ1)(1 − γ12
γ11

)
,

β2(λ2) = |wT
2 (λ)h21|2 =

λ2
2γ

2
22

1 − 2λ2(1 − λ2)(1 − γ21
γ22

)
.

Next, the first derivatives with respect toλ1 or λ2 are
computed directly as

dα1(λ1)

dλ1
=

2γ11(λ1γ11 + (1 − λ1)γ12)

(γ11 − 2λ1(1 − λ1)(γ11 − γ12))2
×

(γ2
11 − γ2

12)(1 − λ1) ≥ 0, (24)

where the last inequality follows from (23). The monotonic-
ity of α2(λ2) follows similarly. The first derivative ofβ1(λ1)
with respect toλ1 is given by

dβ1(λ1)

dλ1
=

2λ1γ
3
11(γ11(1 − λ1) + λ1γ12)

(γ11 − 2λ1(1 − λ1)(γ11 − γ12))2
≥ 0. (25)

Sincef(λ1, λ2) andg(λ1, λ2) can be expressed as

f(λ) = log(σ2
n + α1(λ1) + β2(λ2))

+ log(σ2
n + α2(λ2) + β1(λ1))

and

g(λ) = log(σ2
n + β2(λ2)) + log(σ2

n + β1(λ1))

the result in Lemma 4 follows from (24) and (25).
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