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Asymptotically Optimal Transmit Strategies for the MulépAntenna
Interference Channel

Erik G. Larsson, Danyo Danev and Eduard A. Jorswieck

Abstract— We consider the interference channel with multi- f h
ple antennas at the transmitter. We prove that at high signatto- 1
noise ratio (SNR), the zero-forcing transmit scheme is optaal BS1
in the sum-rate sense. Furthermore we prove that at low SNR,
maximume-ratio transmission is optimal in the sum-rate sens.
We also provide a discussion of the connection to classical
results on spectral efficiency in the wideband regime. Find,
we propose a non-convex optimization approach based on
monotonic optimization to solve the sum rate maximization

problem. j

I. INTRODUCTION BS2

The interference channel (IFC) is a classic object of study Y has
in information theory [1], [2]. While its capacity is an
open problem, a number of results on achievable rates were _ _
established a fairly long time ago [3], [4]. In particulat, i fFo'?'nl': 21?;2"@;“;&;:\]"”'53 interference channel under stultlstfated
is known that strong interference should be decoded and
subtracted off the received data whenever possible, and tha
weak interference should be treated as noise. More recently icit parameterization of the achievable rate regiors wa
there has been renewed interest in the IFC, as witnessed @Ven in [10].

a number of contributions in the research literature (8L [~ contribution: This paper is concerned with the character-
[8], for example). The principal driving motivation for 81i i, 4ti0n of sum-rate optimal transmit strategies for the @IS
interest is that the IFC is a sound model for the spectrufc e provide two main results. First we prove that at
sharing scenario in wireless communications, where MEItiphigh SNR, the zero-forcing (ZF) strategy is optimal in the
independent radio links coexist and interfere in the samg;_rate sense. Second, we show that at low SNR, the sum-

spectral band and therefore interfere with each other. rate-optimal strategy becomes maximal-ratio transmissio

In this work we are concerned with the IFC for the cas@\irT). The results are discussed in the context of spectral
when the transmitter has multiple antennas. We refer to thé?ficiency in the wideband regime [12].

as the multiple-input single-output (MISO) IFC. A sketch of

the MISO IFC, with two transmitter-receiver pairs, is given Il. MODEL

in Figure 1. The importance of using multiple antennas is

twofold. First, it provides the usual rate and diversityrgai  We consider the 2-user MISO IFC in Figure 1. We shall

[9]. Second, if (partial) channel state information is alaie ~@ssume that transmission consists of scalar coding fotlowe

at the transmitters, then this can be exploited to minintize t by beamforming, and that all propagation channels are

interference that one system generates to the other systeffiequency-flat. This leads to the following basic model fue t
Some previous work on the MISO IFC is available. Thdnatched-filtered, symbol-sampled complex baseband data

MISO IFC is a special case of the multiple-input multipleéceived at Mg and MS:

output (MIMO) IFC [5], [6], and hence many results therein

can be specialized to the MISO case. A characterization of

the MISO IFC from a game-theoretic (both non-cooperative

and cooperative) point of view was presented by [11]. An

I . where s; and s, are transmitted symbolsh;; is the
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Under these assumptions the following rates are achieid,0) corresponds to zero-forcing!; = w3 andw,; = w%.

able: Furthermore,
|w1 h‘11|2 > Hthth” ||Hh21h’22||
Ri(wy,ws3) =1lo 14+ —F——7—— 1 a1, ) = ,
) =tom, (14 bR ) @ ) = O Thaall
for the link BS§ —MS;, and corresponds to maximume-ratio transmissian: = w%}~" and
— MRT
T hoo |2 w2 = wy .
Ro(wy, ws) = log, (1 + |Tw2—§2|2) (2)  Let
|’LU1 h12| to §a! £ HHhuhllHa
for B MS,. For fixed channeld h;;}, and under the
P ) %2 2 |y, bz
power constraint
A 1
2 |1y, h
lwil* <1, i=1,2, (3) & = [
, . . = i55
we define the achievable rate region as & H ha1
R s |Psihosl?
= U (Ri (w1, w2), Ro(w1, w2)). AL = T,
th* B
wi,wa,||w;||2<1 21722
l1l. M AIN RESULTS Ny 2 |hizhu|”
Define the sum-rate as follows HHh’i‘thl H
Then we can write
R(wl,wg) £ Rl(wl, ’U)Q) + Rg(wl,wg).
Note thatR is a function ofh;; andw; (where the notati Rlwn,wa) = Rlay, o)
ote thatR is a function ofh;; andw; (where the notation Te N2
- + /1 —
makes the latter dependence explicit). = log |1+ am 7 2)\0151)
Proposition 1: At high SNR, ZF is sum-rate optimal. g7 T A
More precisely tlog (14 (@272 + V1 = a36)°
. ZF . ZF o? + a%)‘Q
,}1_>mo argma)ﬁwl||2§1,Hw2||2§1R(w17w2) = (wf, wy), (6)
where Applying Lemma 2 (see Appendix) proves Proposition 1.
Hi* hi, Next, observe that
wiF — 12
* 2
|, i | sl = /Ty Fons I+ (|10 o |
and N and
;. h; 2
w¥ = % hoz|l = \/||Hh21h22H + ||, oo |
‘thglhmﬂ Applying Lemma 3 (see Appendix) proves Propositions®.
Proposition 2: At low SNR, MRT is sum-rate optimal.
. R WRT MRT To illustrate the results, we make use of the following
S AGMAY 12 <1, s 2 <1 (w1, w2) = (wi™, w3y™), variant of the Pareto boundary parameterization. This pa-
where rameterization is proven in [10] and as explained therein it
B iy also has a game-theoretic interpretation.
WRT — thll and Wi = \h22||' Proposition 3: Any point on the Pareto boundary is
- 220 hievable with the b formi trategi
Proof: (of Propositions 1 and 2) We note first from achievabie wi © beamiofming strategies
Corollary 1 in [10] that for any rate point on the Pareto wiy) = AWy + (1 - \)w and
boundary of the achievable regidt, we must have A A + (1 — A)w ZF||
* AowhT 4+ (1 — A
wr Ip: h ﬁa we, P @ wo(Ne) = ||Azw“2m — El Az? o @)
||Hh12h‘11H ! HHtuhllH 2
for some0 < A\j, Ao < 1.
and The parameterization of the Pareto boundary of the two-
ththQ . \/172 HLzthQ ) ;Jsiler MISO IFC in Eroposition 3 can be interpre(;ed in the
W2 = Qg 3 ¢ —TST L ollowing sense: The strate = 0 corresponds to a
= O Wy o] * it | : on N

completely selfish behavior. On the other hands 1 cor-
wherea, o are real-valued an@ < oy, a3 < 1. Hence, the responds to a completely altruistic behavior. By choosing a
beamforming vectors corresponding to the optimal sum-rateertain), the transmitter can choose its level of selfishness or
point have the form of (4)—(5). Also, the poifdy,as) =  altruism. Note that there is a one-to-one mapping betwegen



-3

anday, in Section Il In particular, for the parameterization 25210
in (7), \x = 0 corresponds to ZF transmission whilg = 1
corresponds to MRT. 2

In the numerical results, we will use the parameterizatio
in (7) to illustrate the complete achievable rate region. i
this region, we mark the ZF and MRT point. As the SNF
is increased for a certain set of channel realizations, we ci
observe that the ZF and MRT rate points behave as predict 0.5¢
theoretically in the last section.

In Figure 2, we show the achievable rate region, alon % °.
with the MRT and ZF points for a two-user MISO IFC with
two antennas at each transmitter, and for fixed but random
chosen channel realizations. lllustrations are provided f
different SNRs in the rang¢—30, —10,0, 10,30} dB. The
asymptotic optimality of MRT for small SNR and ZF for
high SNR can be clearly observed. The path of these tw
operating modes cross at an SNR of about 0 dB.
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V. DISCUSSION 0.051

We p_rpvide an _interpretation and alternative q_erivation o o5 o552 -5 i
Proposition 2 using the results of [12]. Specifically, [12] Rate R, [bpcu]

analyzed the low-SNR regime for a communication link ant 15
introduced two performance measures, namel tﬁe
and the wideband slop&,. Reference [12] then showed

that the system bandwidtB, the transmission rat&, the
transmit powerP and the spectral eﬁiciencﬁ]’(ﬁ—g) satisfy
the fundamental limit

Bec(®)

Rate R2 [bpeu]

0.4 0.6
The functionC (Ez> is directly related to the common Rate R, [bpeul

capacity expression (SNR), i.e. C (f,—g) = C(SNR) for
the SNR which solves

Ey
— NR) = SN
7 C(SNR) = SNR

Rate R2 [bpeu]

At low SNR, the functlorC(Fb) can be expressed (see [12])

as
Ey So [ Ey E, st |
¢ (VO) ~ 3dB (FO dB Emin dB) ’ ©) % 05 1 15 2 25 3 35
Rate R [bpcu]
with
Ey log, 2 2 {C(O)r
(—) == and Sp=————. (10)
No/ min  C(0) —C(0) )
The closer - gets to the better is the approxima- %

tion in (9). Note that the fmst and second derivative in (10

are taken of the function common capacity functiqisNR).
The low SNR approximation was recently extended to th ‘ ‘ ‘

multiple access networks in [13] in terms of its (robustpglo Aate R, [bpeu]

region. For the multiple access channel, there is basically

no difference in terms of mmlmun% between MAC and Fig. 2. Examples of achievable rate regions for the two-tiwerantenna

. . o . .
single-user channels. The following result generaliz&stth miso IFC. The red points correspond to the parameterizaitio(¥). The

the MISO interference channel. Define SNRL. red squares are the two single-user points. The blue cicolesspond to ZF
4 beamforming rates. The blue crosses correspond to the MRmfleeming
rates. The SNR i§—30, —10, 0, 10,30} dB.




Proposition 4: Let C,(SNR) = log (1 + SNR|hfkwk|2) space must be enlarged from two (correspondingto\;)
for 1 < k < 2. Then, even in interference channels, thdo three. We give a brief description in what follows; more
following minimum £ is achievable details are available in [15].
The first result relates the sum-rate maximization problem
@ ~ [0Cx(0) - (11) to the area of monotonic optimization.

Nowin | OSNR| Proposition 6: The maximum sum-rate problem
Proof: We follow closely the proof of [12, Theorem 8]

and start with an upper bound on the achievable rate where A, {R1(A) + R2(N)}

we assume that the receiver knows the codewords of the '

other users perfectly and subtract them before decoding tisea difference of monotonic functions (d.m.) programming
intended user. The capacity for userl < k < 2, in this problem.

genie-aided setting is Proof: The result follows as a corollary of Lemma 4 in
_ - ) Appendix Il, because the objective function can be rewnritte
Cx(SNR) = log (1 + SNRAT wy| ) , (12) ae

whose derivative at SNR- 0 is equal to the expression in  p (X) + Ry(A) = [f1(A) — ga(N)] + [fo(A) — g1 (N)]

(11). To lower-bound the capacity we apply a receiver which

treats the interference of the other user as additive nolse. = L)+ ) ~le2(A) + (V)]

lower bound is B(X) Y(X)
SNRA}, wp|? where the functiong;(A) andg;(X), ¢ = 1,2 are defined in
C1(SNR) = log (1 Ty I;SNR ) (13) Appendix IIl. By Lemma 4 both functiong(-) andq(-) are
monotonically increasing. ]

wherel; = |thkw]—|2 is the interference caused by the other As a consequence of Proposition 6, problem (14) can be
user. The function in (13) has a derivative at SNR) which  formulated as the following general d.m. problem

is identical to that in (11). This completes the proof beeaus

upper and lower bound converge to the same mininfm Agf&)fp{‘b()‘) — (A} (15)

|

One interesting observation is that the optimal (in terms o¥ith strictly increasing functiong(-) and v (-). Next, we
minimum £&) receiver at the mobiles is the receiver whichSUDSttUte f:(A) = $(1)(1 — ¢) in (15) and obtain the
treats the interference simply as additional additive mois €duivalent programming problem with = [Ay, Az, ¢]

With this background we are able to restate Proposition 2

. . 1 -1 S.t. eD 16

and provide an alternative proof. max{@(z) + ¥(1)(zs — )} * (16)

Proposition 5: The beamforming vectors which optimize o(x)
the minimumﬁ—g correspond to 'Fhe MRT beamformers. _ with the constraint set

Proof: The result follows directly from the characteri-

zation in (11) because D= {m ERY iay <lap<laz<l-— %} (17)
E, R SR 1
Nowming  |hT w2 Noming  |Rhws? Two key observations allow us to proceed. First, we note

that the functior () is strictly increasing. Second, we have

the following result about the constraint set.

V1. SUM-RATE MAXIMIZATION BY MONOTONIC Lemma 1. The setD defined in (17) is normal.
OPTIMIZATION Proof: Choose the vectar € D and choose any vector

In applications, one is typically interested in finding? such thal) < y < z. We need to verify thag € D. First
PP ! yp y gnote thatd <y, <21 <1land0 <y <z < 1. Also, since

specific points on the Pareto boundary, a notable exampilﬁl) is strictly increasing inz1,zs, we havew(w:, ) >
being the sum-rate point. The main difficulty with solving (y1,42). Sinceys < a3, it foIIo,ws,thaty cD too, =

— . . f 1,Y2)- 3 = 43, ’ .
the sum-rate maximization problem is that the problem g Furthermore, the constraint set is compact, bounded, and
non-convex. Using the parameterization in Propositioii3, t ' ' '

which is minimized by the MRT beamforming vectorsm

maximization problem can be posed as connected. . . .
We have found that the programming problem in (15) is
max  {Ri(A)+ Ra2(A)}, (14) equivalent to maximization of a strictly increasing fuocti
0<A1,A2<1

over a normal set. This is a monotonic optimization problem
whereX = [\, A2]. In this section, we shall illustrate that in standard form [14]. Therefore, we can apply the outer
problem (14) can be solved using polyblock algorithm fopolyblock approximation algorithm [14] to solve the sum-
monotonic optimization [14]. Effectively the approach @ t rate maximization problem (14). For a detailed description
transform the original nonconvex objective function (1pi  of the monotonic optimization framework and how it can be
a strictly increasing function over a constraint set that iapplied to solve the sum-rate maximization problem (14),
normal. The price to pay is that the dimension of the variablsee [15].



VII. CONCLUSIONS For an arbitrarily chosen positive numhemwe can find a

The parameterization of the achievable rate region of th& > 0 such that
two-user MISO IFC leads to a simple structured but non- (a1 + a2)0™ + aras0® < /2
convex optimization problem. In this work, we try to under- _ )
stand the asymptotic behavior of the optimal beamforminpr all o € (0, 0.]. Now for every point(a1, a2) € S* such
solution at high and low SNR. It turns out that for small SNRthat , , s
MRT is optimal and the interpretation in terms of minimum Arag + Asaf > €8y 76
% justifi_es the analysis._For high SNR values, the optimal,q everys ¢ (0,0.] we have
strategy is ZF beamforming.

—(ai1taz)o’ —ai1a20°+£7€3 (M iad+X20?)

folon,a2) =1 >

APPENDIX | = 02(024a1)(024az)
> —e/2+4e
Low AND HIGH SNRRESULTS = o2(024a1)(02+az)
— g
Lemma 2: Let ~1,72,&1,&2, A1 and A\ be positive real = 20707 Fa) (0% Faz) 0.
numbers. For any; € [0, 1], i > 0 and any positive number Thus for anys € (0,0.] the minimum of f,(a;, as) at a
o, considerk(az1, az) in (6). We have that point of 52 within the elipse defined by the equation
lim arg max Rs (a1, a2) = (0,0), M2+ dga? = €722
where $? is the unit square ifR? defined as Since (0,0) is within this ellipse for eacte > 0 and its

) diameter tends to zero whengoes to zero, we have that
S“ = {(051,042) : 0 S 1,09 S 1}.
lim0 argn;izn folan,a2) = (0,0),
o—

Proof: Consider the function which proves the lemma. ]
_ oR,(a1,az) Lemma 3: Let v1,72,&1,&2, A1 and Ay be positive real
folar,as) = 2 ESP numbers. For any; € [0,1], 7 > 0 and any positive number
T etnalt(narte/isan < (18) o, considerR(ay, az) in (6). We have that
2 (02"2'/\16@)(02"‘/\20‘?) 2)2 " lim argmaxR (061 042) = ( n e )
o2+ A203+(r200+€21/1-03) o—+00 g2n N \/'Y% + 5%7 \/’Y% + fg ,

Since the functior2® is continuous and strictly increasing g . o )
we have that where S© is the unit square ifR> defined as

2= 10< <
a,rgnéiQnRa(ath) = argnégnfa(alon)- S {(041;042) 0< ap, 0 < 1}

We define Proof: As in the proof of Lemma 2 we consider the
function f, (a1, as) defined by Equation (18). Clearly, for
any positives the functionf, (a1, az) is continuous onS?
and and differentiable infinitely many times dnt(S?) which is
ay = max A1 + (yiaq + &1y /1 — a2)? the set of all interior points of?. We can calculate the first
52 partial derivatives to be

Since the numerator in the functiofy (a1, a2) is always  gf,

a1 = n}qaztx )\20&% + (y2an 4+ &24/1 — a%)Q

non-negative, we obtain Do, (a1, ) = 2fo (a1, az)x
f(anan) > T EO + E)(0" + hoF)(0” + Agod) Aoor(panttay/1zad)’
o\01,02) =2 . (02+/\2a1)[02+/\2a1+(72a2+§2\/1—a2)2]

o402 +a1)(0?2 +a
( D 2) _(71a1+61\/1a§)('y1£1a1/\/1a§))

We observe thatf,(0,0) = 1 and compare the value of o2 A1 03+ (marte1y/1—a2)?
fola1, ag) with the valuef,(0,0). Consequently we get

and
(02 +€7) (02 +€3) (0 +A105) (0 + A2 a})
folon,00) =1 2 (e rar (7 Faz) ol 0Jo (1. a3) = 2f(an, a2)
_ (48 + 05+ ai—a1—as)o? Oan 1, X2 olan, @2)x
- o2+a1)(0%+asz) —
(5%"’5%)(/\1;§+/\2a§2)+555§+/\1/\20¢§a§—111112 Aoz (nantéiy/1 i)’
AN G G (> T had) o2+ A3+ (riaa +e1y/1-a3)?]
B e e _ (noateey/T-ad) (a—&aaa/y/1-a3)
£2¢3xMA20afald o2+ Xaad+(y20n+E24/1—a3)? '
+0'4(02+a1)(0'22+a2) . o\
> __lmtan)o® _ ares Suppose now that > 0 and that(z;,z2) € int(S*) is a
— (gFa)(ePtas), o (0% Far) (0 Faz) local optimum of f, (a1, ). We must then have that
+ 521‘522()\10624’)\22041)
02(02+4a1)(02+az 8fo’ afo

_ —(a1taz)o —ajaso® +E2€2 (M aZ+A2a2)

= =0.
02(024a1)(0%+az) ’ day (@1, 22) (w1,72)

~ daz




This is equivalent to Since the functions; —&;x/v/1 — a2 are continuous fox: €
€111 Nes (yaza-tEan/TTD)? [0,1), we have that for a sufficiently smal] the inequalities
_ 2T1(V2T21+82 —Ty

N R Y e ey X 19 (21) are equivalent to
a2+/\1z§+(%w1+£1ﬁ)2 Vi _ ( <ap < Vi =12
o2 2wt +(aaatéay/1-23) V& V&
and Here the functiony(e) is such thatlim. .o g(¢) = 0. This
 Lrr Mm(naitay/1-2))? simply means that for an arbitrary > 0 we can choose
n 1— a3  (y2matéay/1—a2) (02 +A2a?) (20) e > 0 and consequently. such that
o2+ h2xi+(v2z2+E21/1—23)? Vi Vi )
02+A1z§+(v1w1+£1\/1—zf)2 ’ o i d <z < T 1= 15 27 (22)
V7 & Vi +&

Let us now define
for all ¢ > o.. We observe that when > o. we have

a; = max vz +&/1— x5 P .
=:i€[0.1] Jo (Oél,OéQ) > 0, if a; > i

and dai V&
b; = _min %z +&\/1 — 2?2 and
€[0,1] 0fs 0. if Yi
. . - if oy < — —
for i = 1,2. For the nght hand side of Equation (19) we o (a1, 2) <0, i i < Vi +E
have that . . he f ( )
or i = 1,2. Since for anys > 0, the functionf, (a1, as
2
o1 (222 + E2/1 — 23) % is continuous onS?, this implies that for an arbitrary
(mr1 + &1 = 23)(0? + \ia3) point (a1, az) € S?, there exists a pointzy,zz) in the
02 + Mk + (i + & /1 — 22)? - square defined by (22) such thAt(aq, a2) > fy(z1,22).
= Moreover, this inequality is strict if the poirty;, as) does
2 2 /1 _ 2)2 )
o+ hoi + (1272 + V1~ 23) not belong to the square defined by (22). Thuérif, z») is
and a point, where a global minimum of, (a1, a2) is achieved,
Ao (Yoo + §QM)2 thenz, andz, satisfy (22) for any sufficiently large. This
5 2 o X shows that
(a1 + &1 —a7)(0? + \23)
o + Ma3 + (mar + &1 —af)? lim argmm folar,az) = 7 e )
2 2 2)2 e \/’71 +&' Vi3 +8
02 + Xt + (V22 + 24/ 1 — 23)
Aoa2(0? + M\ +a?) This completes the proof of the lemma.
bio2(a? + b3) u
Since APPENDIXII

lim Xoa2(0? + X\ +a?)

=0 MONOTONIC OPTIMIZATION RESULTS
N 2(~2 2
o—+00 b10’ (0’ + b2)

) Let us define the following quantities for further use
we have that for an arbitrary > 0, there existwr!) such

that A2 (0? + A 4 ) o= bl 2 =[0I,
as5(o” + +a
2;;(02 < v = flhull, e = [REIE,
1 2
and thus Obviously, the inequalities
§121
Ogmiwl—zz‘gea mizmz=0  and oy 2921 20 (23)
1

whenevere > agl). In a similar fashion we conclude that hold. Define further the functions

there exist37§2) such that

fix) = log (o7 + [wi (M) hat|? + [wa (X)) ha|?)
0<~y— RN <e, f2(A) = log (o2 + |wa(X2) T haa|® + |wi (A1)  hio)?),
V 1- T3 91(>\) = 10g (O’ + |U)1()\1)Th12| ) R
whenever o > o). Choosing o. to be equal to 92(A) = log(o; + |[wa(A2)" hau|*) .

1 2 ; -
max{os ’,0:"'}, we obtain that folw > 0. we have Finally, let f(A) = f1(A)+ fa(A) andg(A) = g1(A)-+ga ().
Gy i=1.9 1) Lemma 4: The functions fi(A), f2(X), f(A) as well as

0< Yi — S g, . . . .
91(A), g2(A), g(A) are strictly increasing irkh; and A.

o V1—a?



Proof: All six functions depend om\; or A\, via the
following terms

ar(\) = |wf (A)hn|
v+ (1= M) wd) T R
[[Awi™ + (1 — A)wT [
2
(Al + kg )
= H 1L
N2 (1= A2 4+ 20 (1 — Ay el
(1= A1 )7y12)?
1=2M (1= A)(1 = 22)
Similarly, we obtain
(A2y22 + (1 = Ag)y21)?
az(X2) = |wi (A)hg|* = ,
2 1—2X(1 = A2)(1 - 22)
)\2,)/2
)\ — T )\ h 2 _ 1/11
ﬁl( 1) |w1( ) 12| 172)\1(17)\1)(17%)7
)\2,)/2
)\ — T )\ h 2 _ 2 122 )
ﬁQ( 2) |w2( ) 21| 172)\2(17>\2)(17%)

Next, the first derivatives
computed directly as
da1 ()\1)
dA1

with respect to or Ay are

211 (A1y11 + (1 = A)y12)
(711 = 2A1(1 = Ap) (711 — 712))?
(’7121 - 7%2)(1 - )‘1) >0,

(24)

and

the

(1]
(2]
(31

(4]
(5]

(6]

(7]
(8]
El

[20]

where the last inequality follows from (23). The monotonic-

ity of aa(\2) follows similarly. The first derivative off; (A1)
with respect to)\; is given by
dBi (A1) 22173 (11 (1 = A1) + Aiy2)

= > 0.
dA (v11 = 2A2 (1 = A1) (v —712))? —

Since f(\1, A2) andg(A\1, A2) can be expressed as
f) = log(on +ai(M) + B2(N2))
+log(o], +az(A2) + Bi(A1))

(25)

11]

[12]

(23]

[14]

[15]

g(A)

log(o7 + B2(X2)) +log(or + B1 (A1)

result in Lemma 4 follows from (24) and (25). =
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